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A stationary understanding of brain function
Stationary to dynamic

n A bilateral finger tapping experiment started it all…
Finger tapping Resting-state

n Probing resting-state voxel-wise 
synchrony with a seed region

n Bilateral, symmetric foci with strong 
seed correlation  

n Functionally relevant resting-state networks co-exist and interact

IPS: inferior parietal sulcus
MPF: medial prefrontal cortexPCC: posterior cingulate cortex

(Fox et al. 2005)

Visual network Auditory network

Default mode network Task-positive network

(Damoiseaux et al. 2006)

(Biswal et al., 1995)
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n More daydreaming = increased FC fluctuations between posterior 
cingulate cortex and other default mode network regions

FCV: functional connectivity variability
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Overcoming window limitations
n Optimal window length (W) and window step (S)

n Going for more than one window type with a 
time-frequency analysis

(Leonardi and Van 
De Ville 2015)

n W short enough not to 
miss real dFC fluctuations

n W long enough to detect 
only real dFC fluctuations

SENSITIVITY SPECIFICITY
W >

1

fmin

SW (30)SW (20)

SW (30)SW (20) SW (30)SW (20)

SW (30)SW (20)

SW (30)SW (20)

Cross-magnitude

Cross-phase

(Rack-Gomer and Liu 2012)

n Two facets: cross-magnitude vs cross-phase
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Overcoming window limitations
n Playing with the window shape

n Data-driven window definition

Rectangular Tukey Hamming Gaussian Exponential
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n Detect significant connectivity 
change points: dynamic 
connectivity detection (DCD)

n Gradually refine pre-built connectivity estimate: 
dynamic conditional correlation (DCC)

(Xu and Lindquist 2015)

(Lindquist et al. 2014)

Probing dFC landscape

SW: sliding window
EWMA: exponentially weighted moving average
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Assessing connectivity inside the window
n Using more elaborate measures to assess connectivity

n Casting sparsity on the set of functional connections

(Kiviniemi et al. 2011)

Probing dFC landscape

n Sliding time-window ICA (SlitICA): spatial independence across components
n Independent vector analysis (IVA): spatial independence across 

components + matching between components from different windows 

(Ma et al. 2014)

n Using window-less assessments of synchrony: multiplication of 
temporal derivatives (MTD) (Shine et al. 2015)

(Friedman et al. 2008)

SCV: source component vector

IC: independent component

PICA: probabilistic independent component analysis
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Dynamic graph analysis

n Those measures fluctuate dynamically over time

n Many graph measures enable network-level analysis

Probing dFC landscape

(Van den Heuvel and Pol 2010)

(Rubinov and Sporns 2010)
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Dynamic graph analysis
n Time points of high modularity and low efficiency vs low modularity 

and high efficiency

(Zalesky et al. 2014) 
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n Independently active networks vs Interacting modules

(Betzel et al. 2016) 

Modularity (Q) Efficiency (E)

CONT:  control DMN: default mode DAN: dorsal attention LIM: limbic
VAN: ventral attentionSMN: somatomotor VIS: visual
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Dynamic graph analysis
n Brain structure constrains strong functional modularity

(Liégeois et al. 2015)

Probing dFC landscape

n Flexibility in escaping this constraint relates to cognition
n Salience network nodes shift their modular allegiance more in cognitively 

flexible individuals

(Chen et al. 2016)

Salience network(SN) nodes

R: correlation to brain structure

Single subject
Subject average

AUD: auditory SM: somatomotor
VIS: visual CC: cognitive control
DM: default mode



Sliding window analysis: the simplest dFC tool
Probing dFC landscape



Sliding window analysis: the simplest dFC tool
Probing dFC landscape



Extracting dFC states
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subject 
concatenation

time x subjects

c
o

n
n
e
c
ti
o

n
s

...C1 � C̄1 C2 � C̄2C1 C2

Subject 1 Subject 2

Extracting dFC states
Probing dFC landscape

n Concatenated data yield building blocks for the whole population

(Leonardi et al. 2013) 



subject 
concatenation

time x subjects

c
o

n
n
e
c
ti
o

n
s

...C1 � C̄1 C2 � C̄2C1 C2

Subject 1 Subject 2

Extracting dFC states

(Allen et al. 2014) 

Probing dFC landscape

n Resting-state view: mutually exclusive states

n Concatenated data yield building blocks for the whole population

(Leonardi et al. 2013) 



subject 
concatenation

time x subjects

c
o

n
n
e
c
ti
o

n
s

...C1 � C̄1 C2 � C̄2C1 C2

Subject 1 Subject 2

Extracting dFC states

(Allen et al. 2014) 

Probing dFC landscape

n Resting-state view: mutually exclusive states
n Cleaning recipes: selection of subject exemplars

n Concatenated data yield building blocks for the whole population

(Leonardi et al. 2013) 



subject 
concatenation

time x subjects

c
o

n
n
e
c
ti
o

n
s

...C1 � C̄1 C2 � C̄2C1 C2

Subject 1 Subject 2

Extracting dFC states

(Allen et al. 2014) 

Probing dFC landscape

n Resting-state view: mutually exclusive states
n Cleaning recipes: selection of subject exemplars
n Interpretation: state reflective of connectivity value

n Concatenated data yield building blocks for the whole population

(Leonardi et al. 2013) 



subject 
concatenation

time x subjects

c
o

n
n
e
c
ti
o

n
s

...C1 � C̄1 C2 � C̄2C1 C2

Subject 1 Subject 2

Extracting dFC states

(Allen et al. 2014) 

Probing dFC landscape

n Resting-state view: mutually exclusive states
n Cleaning recipes: selection of subject exemplars
n Interpretation: state reflective of connectivity value

n Concatenated data yield building blocks for the whole population

(Leonardi et al. 2013) 

n Informative metrics: counts, dwell time



subject 
concatenation

time x subjects

c
o

n
n
e
c
ti
o

n
s

...C1 � C̄1 C2 � C̄2C1 C2

Subject 1 Subject 2

Extracting dFC states

(Allen et al. 2014) 

Probing dFC landscape

n Resting-state view: mutually exclusive states
n Cleaning recipes: selection of subject exemplars
n Interpretation: state reflective of connectivity value

(Leonardi et al. 2013) 

n Concatenated data yield building blocks for the whole population

(Leonardi et al. 2013) 

n Informative metrics: counts, dwell time

vs linear combination of states



subject 
concatenation

time x subjects

c
o

n
n
e
c
ti
o

n
s

...C1 � C̄1 C2 � C̄2C1 C2

Subject 1 Subject 2

Extracting dFC states

(Allen et al. 2014) 

Probing dFC landscape

n Resting-state view: mutually exclusive states
n Cleaning recipes: selection of subject exemplars
n Interpretation: state reflective of connectivity value

(Leonardi et al. 2013) 

n Concatenated data yield building blocks for the whole population

(Leonardi et al. 2013) 

-C1 -C2

n Informative metrics: counts, dwell time

vs linear combination of states
vs demeaning

vs change from mean



subject 
concatenation

time x subjects

c
o

n
n
e
c
ti
o

n
s

...C1 � C̄1 C2 � C̄2C1 C2

Subject 1 Subject 2

Extracting dFC states

(Allen et al. 2014) 

Probing dFC landscape

n Resting-state view: mutually exclusive states
n Cleaning recipes: selection of subject exemplars
n Interpretation: state reflective of connectivity value

(Leonardi et al. 2013) 

n Concatenated data yield building blocks for the whole population

(Leonardi et al. 2013) 

-C1 -C2

n Informative metrics: counts, dwell time

vs linear combination of states

vs weights, meta-states

vs demeaning
vs change from mean
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HC, hippocampus SFG, superior frontal gyrus
MFG, middle frontal gyrus PHG, parahippocampus gyrus
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Moments of unsynchronized activity

CN: caudate nucleus MFG: middle frontal gyrus HC: hippocampus…

(Liu and Duyn 2013)
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Innovative dFC directions

n Hypothesises sparsity of the underlying neuronal (activity-inducing) signal

(Caballero Gaudes et al. 2013)

n Requires a hemodynamic response function estimate

measured fMRI signalactivity-related signal
hemodynamic response 
function

activity-inducing signal

SPARSE

deconvolution (Karahanoglu et al. 2013)

GLM: general linear model
SPFM: sparse paradigm free mapping

ATS: activation time series
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Temporal modeling
n Brain activity can be seen as a spatiotemporal sequence

Updated template

Preprocessed
image series

(Majeed et al. 2011)

(Smith et al. 2012)n Assuming temporally independent systems
n Physiologically implausible

n Explicitly model the spatiotemporal sequence of brain states
n Requires a lot of data and good hypotheses, but generative and flexible

Hidden state sequence
1 3 1 2

Observed time courses

µ1, ∑1 µ3, ∑3 µ1, ∑1 µ2, ∑2

(Eavani et al. 2013, Chiang et al. 2016)

Innovative dFC directions

n Smoothening up activity or connectivity estimates
n Cannot capture abrupt changes of the system

(Monti et al. 2014)
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Origin & relevance of dFC

n dFC correlates with brain electrical activity
(Thompson et al. 2013, Tagliazucchi et al. 2012, Chang et al. 2013) 

MDT: Mean Dwell Time

dFC origin and relevance

(Betzel et al. 2016) (Hutchison and Morton 2015)

n part of dFC fluctuations survive rigorous statistical testing

(Betzel et al. 2016, Zalesky et al. 2014, Keilholz et al. 2013) 

n Cross-session shuffling, (amplitude-adjusted) phase randomisation…

n dFC varies along demographic variables
(Hutchison and Morton 2015, Yaesoubi et al. 2015)n Age, gender…
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