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Siemens 3T Prisma MRI scanner @ Campus Biotech / picture (c) EPFL/Alban Kakulya

Widely deployed in hospitals and research centers
Endogenous contrast mechanism
Non-invasive imaging tool

Magnetic resonance imaging (MRI)
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How brain regions are connected

Brain function
 

Activation levels

Information flow

How brain regions communicate
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New framework for integrated analysis of brain structure & function
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T1-weighted structural MRI provides  
high-resolution tissue contrast

structural 
information

n Gray matter, white matter, cerebrospinal fluid
n High-spatial resolution volumetric information
n Gray matter contains cell bodies, dendrites, 

axon terminals
n White matter contains bundles of axons

n Gray-matter segmentation provides parcellation 
of the brain in major cortical regions

white matter
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Diffusion-weighted MRI provides  
orientation information inside white matter

[Beaulieu, 2002; Ohno et al, 2013]

structural 
information

gray matter gray matter
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White-matter orientations can be captured 
using tensors or more complex models

structural 
information

n Tensor models summarize dominant local 
orientation of nerve fiber bundles

n Limited flexibility; e.g., crossings, fanning,…
n More complex models for orientation distribution 

functions to fit multiple orientations per voxel
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Tractography can perform 
virtual dissection of white-matter fibers

structural 
information

n Deterministic and probabilistic 
methods reconstruct streamlines

n Non-invasive, in-vivo, whole brain
n Groupings can be matched to 

neuroanatomical tracts

[Lawes et al, 2008] �10

Brain atlas Tractography Brain graph

Structural connectome summarizes wiring of the brain

[Sporns et al, 2005; Hagmann et al, 2005]

Structural connectome
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structural 
information

n Comprehensive map of neural connections  
in the brain  
— the “wiring diagram”

Structural network analysis
n Nodes, edges, and organization of the brain

�11[Park, Friston, Science, 2013]
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Structural network analysis
n Nodes, edges, and organization of the brain network

�12[Park, Friston, Science, 2013]

modular organization
n intra-modular connections  

~ common functionality
n inter-modular connections  

through hub nodes  
~ facilitate communication
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Functional MRI provides information on brain activity based 
on changes in blood perfusion

Blood-oxygenation level dependent (BOLD) signals

functional 
information

�15

Functional connectome
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information

Functional connectivity to quantify statistical 
interdependencies of activity timecourses

Blood-oxygenation level dependent (BOLD) signals

n Comprehensive map of information sharing 
through activity in the brain  
— the “communication diagram”

Functional network analysis
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functional 
network 
analysis

[Fair et al, PLOS Comp Biol, 2009]

n Neurodevelopment: from local to distributed organization 
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Different ways to integrate structure-function
n Correlation between structural and functional connectivity
n Functionally-guided structural analysis
n Brain simulation approaches (e.g., The Virtual Brain)

�17[Honey et al, PNAS, 2009; Greicius et al, Cerebral Cortex, 2009; Deco, Jirsa, McIntosh, TiN, 2013]

THEVIRTUALBRAIN

Consider undirected weighted graph with N nodes

Edge weights are in N ⇥N symmetric adjacency matrix A; degree matrix D

Graph signal processing framework

�18[Glasser et al, Nature, 2016]

n 21 healthy subjects
n Glasser’s multimodal cortical parcellation  

360 ROIs, converted to volume mask 
n Adjacency matrix derived from tractography

n Multi-shell multi-tissue response function 
estimation, spherical deconvolution, tractogram 
generation with 107 output streamlines

n Normalization of fiber counts by ROIs volumes 
(sum of connected regions)

n Symmetric normalization of adjacency matrix
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regions

Consider undirected weighted graph with N nodes

Edge weights are in N ⇥N symmetric adjacency matrix A; degree matrix D

Graph signal is length-N vector associating a value with every node

Graph signal processing framework

�19[Shuman et al, IEEE Signal Processing Magazine, 2013]
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n resting-state fMRI session (14 min)
n visual working-memory task (5 min)

regions

Adjacency matrix A

Shift operator on graph

Eigendecomposition U⇤ = AU

Frequencies encoded as
�0
k = �max��k; order by increasing

�0
1 = 0  �0

2  . . .  �0
N

Can generalize to directed graphs

Laplacian L = D �A

Second-order derivative on graph

Eigendecomposition U⇤ = LU

Eigenvalues play role of frequencies

and eigenvectors of frequency com-

ponents

Order as increasing eigenvalues

�1 = 0  �2  . . .  �N

Consider undirected weighted graph with N nodes

Edge weights are in N ⇥N symmetric adjacency matrix A; degree matrix D

Graph signal is length-N vector associating a value with every node

Graph Fourier transform

�20[Shuman et al, IEEE Signal Processing Magazine, 2013; Sandryhaila, Moura, IEEE TSP, 2013]

Graph Fourier transform (GFT): ŝ = UTs, and s = Uŝ



Graph Fourier modes of the brain
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Graph energy spectral density: ⇠̂ss = |ŝ|2

Average density of resting-state fMRI data with K frames {sk}k=1,...,K

sk �! ŝk �! ⇠̂sksk
= |ŝk|2 �! ⇠̂s̄s =

1

K

KX

k=1

⇠̂sksk

Graph energy spectral density

�22

100 200 300 400 500 600 700 800 900 1000 1100
time [TR]

50

100

150

200

250

300

350

re
gi

on
s

-4

-3

-2

-1

0

1

2

3

4

10-1 100

10-1

100

101

�0

⇠̂

variability across subjects

n Power-law behavior demonstrates brain 
activity patterns (function) are using 
natural “smoothness” of brain structure

Generate graph signals with same spectral density as empirical

Powerful surrogate data with same “graph correlation” to build null-hypothesis
distributions

Permute signs: diagonal sign permutation matrix P

s �! ŝ �! ŝsurr = P ŝ �! ssurr

Graph surrogates — randomization

�23[Theiler et al, Physica D, 1992; Pirondini, Vybornova, Coscia, VDV, IEEE SPL, 2016]
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n Generate many surrogates to build 
distribution under null

n Same permutation matrix across 
time keeps temporal properties

Detect spatial “non-stationarities”

For resting-state, determine 5% threshold on absolute-valued activity based on
surrogates

Apply threshold to empirical data

Which brain regions get wild (or tame)?
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19 surrogates

thresholding
re
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time
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[Huang, Bolton et al, Proceedings of the IEEE, 2018]



Define ideal low- and high-pass spectral windows

Equal energy based on average spectral densities

Low graph frequencies are aligned w.r.t. brain structure

High graph frequencies are liberal w.r.t. brain structure

Graph filtering by spectral windowing

�25[Huang et al, IEEE JSTSP, 2016; Huang, Bolton et al, Proceedings of the IEEE, 2018]

10-1 100

10-1

100

101

�0

⇠̂

low graph 
frequencies

30

high graph 
frequencies

330

Processing graph signals by filters that are spectrally defined

Convolution is not shift-invariant due to irregularity of graph

Spectral filtering: diagonal matrix F contains spectral window

s �! ŝ = UTs �! ŝfilt = F ŝ �! sfilt = Uŝfilt

Graph signal filtering
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Processing graph signals by filters that are spectrally defined

Convolution is not shift-invariant due to irregularity of graph

Spectral filtering: diagonal matrix F contains spectral window

s �! ŝ = UTs �! ŝfilt = F ŝ �! sfilt = Uŝfilt

Graph signal filtering
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Sensory regions
n occipital (visual)
n pre- and post-central 

(somatomotor)
n temporal (auditory)

Aligned versus liberal — in resting state

�28



Aligned versus liberal — in resting state
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High-level cognition
n multisensory 

integration
n memory
n decision making
n …

Aligned versus liberal — in task
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Similar regions than in 
resting state, except for 
superior parietal 
regions recruited in 
task both for aligned 
and liberal view on 
activity

Function-structure relationships
n New way to investigate function-structure integration

n For different regions, significantly more/less activity than 
expected by signals with equal “spatial graph smoothness”

n Alignment with structure differs as well

n In line with other studies
n Medaglia et al. show relationship between liberal activity and 

perceptual switching task (see talk Alejandro Ribeiro)
n Sensory regions are less information for fMRI-fingerprinting

n Graph spectral windows are still “easy”
n Other designs (e.g., graph wavelets) could refine results
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sensory
regions

high-level 
regions

more active 
than expected

less active 
than expected

activity is 
more liberal

activity is 
more aligned

[Medaglia et al., Nat Hum Beh, 2018; Finn et al, Nat Neuro, 2017; Hammond et al, ACHA, 2011]

Investigating major functional networks

n Brain regions highly studied for 
task-positive vs -negative 
involvement

n Selection of subgraphs according 
to two sets of regions

n Explain pattern by low graph-
frequency components

n Aligned with structure

�32

task-positive/fronto-parietal network (10 nodes)  
task-negative/default-mode network (30 nodes)

[Christoff et al., Nat Rev Neurosci, 2016; relates also to Atasoy et al., Nat Comm, 2016]

⇡ ĝ1 +ĝ2 +ĝ3 + . . .



Slepian design problem transposed to graphs:

Find band-limited graph signals with maximal energy concentration in
selected subgraph S (indicated by S)

µ =
ĝTUT

WSUW ĝ

ĝT ĝ
, (Rayleigh quotient)

where UW only contains first NW GFT basis vectors, and C = UT
WSUW is the

concentration matrix. Graph Slepians are then given by g = UW ĝ.

Graph Slepians

�33

task-positive/fronto-parietal network (10 nodes)  
task-negative/default-mode network (30 nodes)

⇡ ĝ1 +ĝ2 +ĝ3 + . . .

[Tsitsvero et al, IEEE TSP, 2016; Van De Ville et al, IEEE Signal Processing Letters, 2017]

David S. Slepian

1923-2007

Criterion with positive and negative subgraph:

We introduce two types of nodal selection, which lead to a new criterion:

µ =
ĝTUT

W (S+ � S�)UW ĝ

ĝT ĝ

We order the Graph Slepians according to decreasing energy con-
centration: 1 > µ1 � µ2 � . . . > �1

Generalized graph Slepians

�34[Demesmaeker, Preti, Van De Ville, IEEE Transactions on Signal Processing, in press; see arXiv]
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n Slepian basis, using main structural backbone, captures 
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Brain graph revisited

[Itturia-Medina et al, NeuroImage, 2007; Yet et al, IEEE TMI, 2010]

n Build large voxel-level brain graph (in subject space)
n Single node represent 1.25x1.25x1.25 mm3

n Total of about 850K nodes
n Local connectivity extracted from diffusion-weighted information 

- diffusion shape from orientation distribution function 
- strength from quantitative anisotropy 

n Huge, but sparse adjacency matrix
n Computing leading eigenvectors using large-scale numerical eigensolvers
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Human	brain	eigenmodes	estimated	by	the	graph	Laplacian	corresponding	to	the	
top	10	lowest	frequency.		Graph Fourier modes revisited
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Human	brain	eigenmodes	estimated	by	the	graph	Laplacian	corresponding	to	the	
top	10	lowest	frequency.		

Graph Fourier modes revisited

[Zhang, Arfanakis, NeuroImage, 2018; O’Muircheartaigh, Jbabdi, NeuroImage, 2017]
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n Procrustes transform between subject-specific 
eigenmodes shows consistency up to approx. 300
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Brain graph “inpainting”

[Tarun et al, OHBM, 2018]

n fMRI BOLD signals are only meaningful on the gray matter
n Graph signal recovery problem on the complete brain graph

n Fill in plausible activity signals on white matter 
n Using measured gray-matter fMRI activity as boundary condition
n Diffusion of activity into white matter using brain graph

s
��
GM

= BOLD

@s

@t
= ��Ls
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Brain graph “inpainting”

[Tarun et al, OHBM, 2018]

n Shows how gray-matter activity “exploits” the white-matter wiring
n Different from tractography due to boundary conditions
n Recovered graph signals have a direct physical embedding as brain volume, 

which allows for further processing steps



Conclusion
Systems-level neuroscience today

Integration
Brain structure, (dys)function, and (ultimately) behavior

Understand organizational principles of the brain
Network organization
Dynamics and interactions

Large amounts of data become available
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Conclusion
Systems-level neuroscience today

Integration
Brain structure, (dys)function, and (ultimately) behavior

Understand organizational principles of the brain
Network organization
Dynamics and interactions

Large amounts of data become available
Graph signal processing, a new and elegant framework for 
computational neuroimaging

Natural way to incorporate brain structure
Connectome provides “backbone” graph

Investigate brain function frame-by-frame
Functional information can be analyzed dynamically

Challenges
Give precise interpretation to GSP operations such as filtering,…

Normalization, spectral windowing, stability of eigenvectors, implementations,…

Joint modeling of space and time
Integrate different types information (i.e., multiplex graphs)  
at multiples scales (i.e., multilevel graphs)
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