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" Widely deployed in hospitals and research centers
® Endogenous contrast mechanism
" Non-invasive imaging tool to study human brain anatomy and function

Structural MRI - Functional MRI

Series of 3D volumes
= 2X2X2 mm?3
= 30-60 slices
Single 3D volume = every 1-3 sec

= 1x1x1 mm?3 = during 5-10 minutes
= takes couple of minutes

Siemens 3T Prisma MRI scanner @ Campus Biotech / picture (c) EPFL/Alban Kakulya




Big data in human MRI

= _..Is afact!
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Big data in human MRI

Resource Sites|Subjects| Size | Population |[sMRI| DWI | tfMRI |rfMRI
L@ 11000 func connectomes | 35 1.355 |~240GB HC X X
&y |BOE | 20 | 1112 |-200GB | HC,ASD | «x ] x
“0E lABIDEN WL 17 | 1144 |200GB | HCASD | x ] x
@@ |aDHD200 | 8 | 776 |160GB | HC,ADHD | x | x
son PON | s | 7ss |-tooes| womoiaD | x | ||
ADNI 2 63 850 ~800GB | HC,MCI,AD X X X
JRD BIRN , 10 285 ~30GB HC, SZ X
Gt fcamoan MG e | ame | e | X ox
@comeeone  HCP_ | 2 |..900 | 521B | HC X0 X
Other INDI retrospective 8 568 ~1TB |HC,EP,SZ,COC| x X X X
Other INDI prospective | 8 | 467 |~500GB| HC x | x| | x
@ MRS | 1| eer ftetB| WG | ox | ox | ox | x|
OASIS 2 566 70GB HC,AD X
OpenfVRI |OpenfMRI | 55 | 1941 | ~2TB | HCSZ x | x | x |
ABLUS TUUT |IABCD Project 21 10.000 HC (9-10y) X X X X
O LY (UK Biobank | | 10000 | | HC x | x | x | x

" Open data of thousands of subjects!...

Adapted and updated from [Poldrack and Gorgolewski, Nature Neuroscience, 2014]




Big challenge is knowledge extraction

® Beyond normative models: human diversity

Discovery of how brain anatomy & function supports
cognition, consciousness,...

Biomarker development for brain disease & disorder
= Early & differential diagnosis, prognosis
* Identification and stratification into subtypes
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[Chen et al, 2009; Stephan et al, 2015; Lustig et al, 2003; Greicius, 2004]



Big challenge is knowledge extraction

" Beyond normative models: human diversity

Discovery of how brain anatomy & function supports
cognition, consciousness,...

Biomarker development for brain disease & disorder
Early & differential diagnosis, prognosis
|dentification and stratification into subtypes

" Functional MRI provides unique non-invasive window
on the brain at work
Since 1991
30’000 papers
4’400 last year

“software that runs
on the hardware”
~ dynamics!




FMRI blood-oxygenation-level-dependent (BOLD) signals are slow proxy for neuronal activity
rde
BOLD FMRI \
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Neurovascular coupling:
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Neurons are active:
metabolic demand at
synapses

Deoxygenated Hb is
paramagnetic and drives
BOLD signal

Oxygen is carried by
hemoglobin in RBCs

[Buxton et al 1997; Friston et al. 1998, 2000; lannetti & Wise, 2007]



FMRI blood-oxygenation-level-dependent (BOLD) signals are slow proxy for neuronal activity
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* Notice the response timing:
~2 sec delay, 4-6 sec to peak,

up to 20 sec back to baseline

[Buxton et al 1997; Friston et al. 1998, 2000; lannetti & Wise, 2007]



fMRI of evoked activity

I THE MYSTERY OF CONSCIOUSNESS By Steven Pinker I HOW THE BRAIN REWIRES ITSELF By Sharen Begley
I SIX WAYS TO HANDLE STRESS By Christine Gorman Il THE NATURE OF MEMORY By Michael D. Lemoaick
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movie accelerated 4 times statistical processing




fMRI of evoked and intrinsic activity
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fMRI of spontaneous activity

changes w.r.t. baseline
resting-state scan (minimally preprocessed)

- BOLD signal (PCC)

| | | | | | | | | J
0 50 100 150 200 250 300 350 400 450 500

seconds

movie accelerated 4 times minimal compliance!




PCC connectivity: task-positive and task-negative networks

PCC seed correlation

-2 -5 .5 2

zZ-score




Resting-state/intrinsic networks by (spatial) ICA

Visual Visual Visual Default-mode Cerebellum
RSN

P p— e

|CA provides functional parcellation without (much) overlap
ICA is uninformed about the (hemodynamic) nature of the signal

Timecourses associated with ICs have high variability
ﬁ [Afshin-Pour et al, Neurolmage, 2012]
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Sensorimotor Auditory Salience Executive control Executive control

[Smith et al., 2009] 13




A case to account for spatial and
temporal overlap

“I'he human association cortex consists of multiple,
interdigitated large-scale networks, that, while partially
overlapping, possess predominantly parallel organization.

Our (essential) correlational analyses will miss
vital details of dynamics of network interactions.”

B.’I. Thomas Yeo et al, NeuroImage, 2014



timecourses

Towards capturing dynamics

= Correlational
over whole r

implicitly as

0 100

eq EStEnEhE simmary statistic

tesgegfom low SNR and

potential aliasing

tionary behavior |
[Chang and Glover, 2010; Allen et al, 2014; Leonardi et al, 2014]

T T T
: PCC
SIIIIIIID DU IO I I oo P R I I oI ROIS
.................... ! L 1 e M
300 400 500 600 700 statistical
dependencies
characterize
can we extract ‘key points’ that S"ﬁrage
capture the important events? ehavior
during
[Tagliazucchi et al., 2012] resting state
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Co-activation patterns

= Averaging of all spatial activity patterns leads to proxy
for seed connectivity

: [ LR \ M
‘l‘l ‘ ...” “ | ":III]

|
0 100 2 S00

timecourses

seed-based correlation:

[Tagliazucchi et al., 2012; Liu and Duyn, PNAS, 2013]
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Co-activation patterns

= Temporal clustering of selected frames for extreme
values of a seed region

1l temporal
' clusters

timecourses

= Averaging of spatial activity patterns for each
temporal cluster leads to “co-activation pattern” (CAP)

[Tagliazucchi et al., 2012; Liu and Duyn, PNAS, 2013] 17



Co-activation patterns

= Averaging of spatial activity patterns within temporal
clusters lead to “co-activation patterns” (CAPS)
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[Liu and Duyn, PNAS, 2013; Liu, Chang, Duyn, Frontiers in Systems Neuroscience, 2013]

18



Co-activation patterns

= Averaging of spatial activity patterns within temporal
clusters lead to “co-activation patterns” (CAPS)

Does not Network 1 “8&%@#&

disentangle |
temporal Network 2 &8 G a ﬁ Y
overlap! |

Contaminated Network 3 Bl @9 Q a @ a ﬁ,ﬁ 3
by non-seed Network 4 “ 288& 8 0

related

activity *‘66660
Network 12 06960.

Network 1+3

aiooaco

[Liu and Duyn, PNAS, 2013; Liu, Chang, Duyn, Frontiers in Systems Neuroscience, 2013]



Towards capturing dynamics

= For “sharper’” dynamics, we propose a novel framework:

Incorporate knowledge about the hemodynamic system

Getting from activity-related to activity-inducing signal (deconvolution)
Assumption that underlying activity-inducing signal is of the
“block type”

Consists of moments of sustained activation and de-activation

Avoid constraints on
Temporal overlap of components’ timecourses
Spatial overlap of components’ maps

20



FMRI blood-oxygenation-level-dependent (BOLD) signals are slow proxy for neuronal activity
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[Buxton et al 1997; Friston et al. 1998, 2000; lannetti & Wise, 2007]



FMRI blood-oxygenation-level-dependent (BOLD) signals are slow proxy for neuronal activity
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[Khalidov, VDV et al, IEEE Transactions on SP, 2011; Karahanoglu, VDV et al, Neurolmage, 2013]
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FMRI blood-oxygenation-level-dependent (BOLD) signals are slow proxy for neuronal activity
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[Khalidov, VDV et al, IEEE Transactions on SP, 2011; Karahanoglu, VDV et al, Neurolmage, 2013]



BOLD is full of innovation

measured signal in posterior cingulate rtex PCC)

A
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activity-inducing signal

derivative phase randomized

innovation signal empirical

[Karahanoglu, VDV, et al, Neurolmage, 2013]




Activity-inducing view on resting-state fMRI

activity-inducing signal of a voxel in posterior cingulate cortex

] ] ] 1
150 250 300 350
seconds

movie accelerated 4 times




Innovation never comes alone

posterior cingular cortex (L)

angular gyrus (L)

superior frontal medial (R)

and 10’000 voxels more...

[Karahanoglu and VDV, Nature Communications, 2015]



Innovation never comes alone

posterior cingular cortex (L)

T A O Y A N.eh [

Temporal labels refer to similar spatial patterns of
transient activity (iCAPS: innovation-driven CAPS)
w spatial overlap is possible

Sustained activity can be recovered by
back-projecting iCAPs to activity-inducing signals
w temporal overlap is possible

H
Emm
e [
. ‘ iﬁ » é L I ‘

12 1331 4142 325 181 121 213 153 14 12 23 34 3148 11 2 12 2 % 2
[Karahanoglu and VDV, Nature Communications, 2015]




iICAPS: innovation-driven co-activation patterns

AUD 9.8% FPN 8% pVIS7.8% sVIS 7.2% PRE 6.8%
55s 6.1s 6.2s 59s 49s
0.56+0.07 0.57+0.09 0.6+0.08 0.55+0.06 0.57+0.06

.ﬂ 65026°8°%

.

a
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Q iICAPs ordered in terms of
q occurrence
13

5 1 : 1 /° ACC 3.8 /° iCAP-1: auditory, most occurring
0.57+0.07 0. GZiO 11 0.57+0.12

Z-score Occurrence Duration  Stability




Siemens 3T Prisma MRI scanner @ Campus Biotech / picture (c) EPFL/Alban Kakulya




ICAPS: innovation-driven co-activation patterns
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iICAPS: innovation-driven co-activation patterns
(@) ‘@
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iCAPS: innovation-driven co-activation patterns
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Spatial overlap between iCAPs

DMN - pDMN pVIS - pDMN

i .x
; } h \ | i A

sVIS - VISP PRE - VISP

Hub regions of iCAPs

precuneus, dorsal PCC, superior parietal lobe,
mid cingulate cortex, middle occipital and angular gyrus




Default mode network de-CAP-sulated

PCC seed correlation

-2 -5 5 2

zZ-score

pDMN

ICAPs dynamically assemble DMN
(and other known RSNSs)




Temporal overlap of iCAPs
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Relationship between iCAPs and behavior

[ covavagien  Macrare
| sensory
B.. . i
i [
- el ol
I = (3 hierarchical [—| [ ]
= 5 clustering @)
< 3

2098 |CAPs combinations

4 )

|defau|t \ attention

* Highest level of hierarchy:
sensory / DMN / attention

» Behavioral profiles can be
determined (BrainMap)

.. and form consistent
groupings as driven by
iICAPs’ combinations behavioral correlation

- v

BrainMap:
[Lancaster et al, Frontiers Neuroinformatics, 2012]
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Deciphering moment-to-moment activity

iCAPs behavior

@ Perception

[ V]

[Karahanoglu and VDV, Nature Communications, 2015]



Time to rethink our models?

Salience network

/| ) |\,

psychomotor activity
Default mode goal-directed action Fronto-parietal /
network sensory & limbic processing executive networks

ﬂ anticorrelation
8 '\ﬁ z Y’ :._3

self-referential mental cognition, attention
activity

[Menon, Uddin, Brain Struct Func, 2010; Menon, TICS, 2011; Nekovarova et al, Frontiers, 2014]




Time to rethink our models?

Salience network

Default mode @
network
ﬁ / xg..?
4 Fronto-parietal /

executive networks

|82
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Time to rethink our models?

Default mode
network

Salience network

same signs
®o---0 mixed signs

Fronto-parietal /
executive networks
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Preliminary results in ASD (51 ASD /36 NT)

Spatial differences in DMN subsystem

decreased activation in
ventromedial prefrontal cortex
increased activation in
precuneus

Differences in temporal dynamics of
DMN subsystem

reduced total duration

reduced occurrence

suggests reduced self-referential

processing during rest

future examination of

relationship with ASD core

features 50 -

0 -
NT
(1 Bte)steEXate)sd collaboration with Total duration (sec) Occurrences

I 9 [sfSar:hgslill Manoach and Van der Kouwe Labs




Big data extraction = reduction

= Resting-state fMRI data from HCP

Subjects Runs Scans Volume Size Total Size
900 1200 « 3.6 MB

el0r¢ ’
O

Subjects Total Size

_ 160 MB-250GB

3.6 MB

= Still, this only provides an alternative view on the data and
requires additional computational methods & models!

Characterize dynamics by temporal modeling
Combine with machine learning

System-level mechanistic models of brain processes
42



Conclusion & outlook

= Emergence of “big data” MRI offers unprecedented
opportunities for brain science

Feature extraction (data representation) is crucial to
obtain relevant and interpretable results

Interplay between hypothesis-driven and exploratory
research

= Dynamics of resting-state fMRiI

Is not about oscillations, but about transients!

(="broadband feature”)
... hote transient has a “deterministic” 1/f spectrum!

Clear transient behavior is recovered
Massive spatial and temporal overlap

Patterns of co-activation build up a (low-rank)
approximation of functional connectivity measures

43
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