

The Big Neuroimaging Data Extraction: How Advanced Signal Processing Can Unravel the Brain's Functional Organization

Dimitri Van De Ville

Medical Image Processing Laboratory (MIP:lab) Institute of Bioengineering/Center for Neuroprosthetics Ecole Polytechnique Fédérale de Lausanne

http://miplab.epfl.ch/

Washington DC / December 8, 2016 / IEEE GlobalSIP

Department of Radiology Université de Genève

Magnetic resonance imaging (MRI)

- Widely deployed in hospitals and research centers
- Endogenous contrast mechanism
- Non-invasive imaging tool to study human brain anatomy and function

Structural MRI

Single 3D volume

- 1x1x1 mm³
- takes couple of minutes

Functional MRI

Series of 3D volumes

- 2x2x2 mm³
- 30-60 slices
- every 1-3 sec
- during 5-10 minutes

Big data in human MRI

... is a fact!

Ind

Data-Sharing Initiative

Autism Brain Imaging Data Exchange

Big data in human MRI

	Resource	Sites	Subjects	Size	Population	sMRI	DWI	tfMRI	rfMRI
FUNCTIONAL CONNECTOMES PROJECT	1000 func connectomes	35	1.355	~240GB	HC	x			x
	ABIDE	20	1.112	~200GB	HC, ASD	x			x
Autism Brain Imaging Data Exchange	ABIDE II	17	1.144	~200GB	HC ASD	x			x
ADHD	ADHD-200	8	776	~160GB	HC, ADHD	x			x
	ADNI	59	758	~100GB	HC,MCI,AD	x			
ADINI	ADNI 2	63	850	~800GB	HC,MCI,AD	x	х		x
BIRN	BIRN	10	285	~30GB	HC, SZ	Х			
	Cam-CAN Nev 2016	1	653	~1TB	HC	Х	Х	Х	x
Human Project	HCP	2	900	52TB	HC	X	х	Х	x
	Other INDI retrospective	8	568	~1TB	HC,EP,SZ,COC	x	х	Х	х
International Neuroimaging Data-Sharing Initiative	Other INDI prospective	8	467	~500GB	HC	x	х		x
nki	NKI-RS	1	921	1.2TB	HC	Х	х	Х	x
OASIS	OASIS	2	566	70GB	HC,AD	x			
OpenfMRI	OpenfMRI	55	1.941	~2TB	HC,SZ	x	х	Х	
ABCDSTUDY Adolescent Brain Cognitive Development	ABCD Project	21	10.000		HC (9-10y)	x	х	х	х
biobank ^{uk}	UK Biobank		10.000		HC	x	х	Х	x

Open data of thousands of subjects!...

Adapted and updated from [Poldrack and Gorgolewski, Nature Neuroscience, 2014]

Big challenge is knowledge extraction

- Beyond normative models: human diversity
 - Discovery of how brain anatomy & function supports cognition, consciousness,...
 - Biomarker development for brain disease & disorder
 - Early & differential diagnosis, prognosis
 - Identification and stratification into subtypes

[Chen et al, 2009; Stephan et al, 2015; Lustig et al, 2003; Greicius, 2004]

Big challenge is knowledge extraction

- Beyond normative models: human diversity
 - Discovery of how brain anatomy & function supports cognition, consciousness,...
 - Biomarker development for brain disease & disorder
 - Early & differential diagnosis, prognosis
 - Identification and stratification into subtypes
- Functional MRI provides unique non-invasive window on the brain at work
 - Since 1991
 - 30'000 papers
 - 4'400 last year
 - "software that runs on the hardware"
 ~ dynamics!

[Buxton et al 1997; Friston et al. 1998, 2000; lannetti & Wise, 2007]

[Buxton et al 1997; Friston et al. 1998, 2000; lannetti & Wise, 2007]

fMRI of evoked activity min 0 max III THE MYSTERY OF CONSCIO SIX WAYS TO HANDLE STRESS B SPReci emotion $\mathbb{W}^{\mathbb{V}}$ **USER'S GUIDE** 100 150 12 10 t-value 8 6 statistical processing movie accelerated 4 times +5

fMRI of evoked and intrinsic activity

"the brain is active even in the absence of task, primarily driven by internal dynamics, with external events *modulating* rather than *determining* the activity of the system" [Fox et al., 2006]

fMRI of spontaneous activity

PCC connectivity: task-positive and task-negative networks

Resting-state/intrinsic networks by (spatial) ICA

A case to account for spatial and temporal overlap

"The human association cortex consists of multiple, interdigitated large-scale networks, that, while partially <u>overlapping</u>, possess predominantly <u>parallel</u> organization.

Our (essential) correlational analyses will miss vital details of dynamics of network interactions."

B.T. Thomas Yeo et al, NeuroImage, 2014

Towards capturing dynamics

 Averaging of all spatial activity patterns leads to proxy for seed connectivity

average over all selected frames:

seed-based correlation:

 Temporal clustering of selected frames for extreme values of a seed region

 Averaging of spatial activity patterns for each temporal cluster leads to "co-activation pattern" (CAP)

 Averaging of spatial activity patterns within temporal clusters lead to "co-activation patterns" (CAPs)

[Liu and Duyn, PNAS, 2013; Liu, Chang, Duyn, Frontiers in Systems Neuroscience, 2013]

- Averaging of spatial activity patterns within temporal clusters lead to "co-activation patterns" (CAPs)
 - Does not disentangle temporal overlap!
 - Contaminated by non-seed related activity

[Liu and Duyn, PNAS, 2013; Liu, Chang, Duyn, Frontiers in Systems Neuroscience, 2013]

Towards capturing dynamics

• For "sharper" dynamics, we propose a novel framework:

- Incorporate knowledge about the hemodynamic system
 - Getting from activity-related to activity-inducing signal (*deconvolution*)
- Assumption that underlying activity-inducing signal is of the "block type"
 - Consists of moments of sustained activation and de-activation
- Avoid constraints on
 - Temporal overlap of components' timecourses
 - Spatial overlap of components' maps

[Buxton et al 1997; Friston et al. 1998, 2000; lannetti & Wise, 2007]

[Khalidov, VDV et al, *IEEE Transactions on SP*, 2011; Karahanoglu, VDV et al, *NeuroImage*, 2013]

BOLD is full of innovation

Activity-inducing view on resting-state fMRI

movie accelerated 4 times

Innovation never comes alone

[Karahanoglu and VDV, Nature Communications, 2015]

Innovation never comes alone

angular gyrus (L)

posterior cingular cortex (L)

superior frontal medial (R)

and 10'000 voxels more...

Sustained activity can be recovered by back-projecting iCAPs to activity-inducing signals temporal overlap is possible

[Karahanoglu and VDV, Nature Communications, 2015]

AUD

8%

6.1 s

0.57±0.09

pVIS7.8% 6.2 s 0.6±0.08

PRE 6.8% 4.9 s 0.57±0.06

9.8%

5.5 s

0.56±0.07

FPN

MOT 6% 6.7 s 0.52±0.06

DMN 5.6% 7.6 s 0.59±0.07

5.9 s

0.55±0.06

sVIS 7.2%

EXEC 5.3% 4.7 s 0.7±0.12

iCAPs ordered in terms of occurrence

iCAP-1: auditory, most occurring

9.8%

5.5 s

0.56±0.07

AUD

FPN 8% 6.1 s 0.57±0.09

pVIS7.8% 6.2 s 0.6±0.08

5.9 s

0.55±0.06

sVIS 7.2%

PRE 6.8% 4.9 s 0.57±0.06

VISP 6.1% 4.5 s 0.56±0.08

4.6%

5.1 s

z-score

SAL

MOT 6% 6.7 s 0.52±0.06

DMN 5.6% 7.6 s 0.59±0.07

Stability

EXEC 5.3% 4.7 s 0.7±0.12

pDMN 5% 4 s 0.59±0.08

Occurrence Duration

iCAPs ordered in terms of occurrence

sensory components

AUD

8%

6.1 s

0.57±0.09

pVIS7.8% 6.2 s 0.6±0.08 sVIS 7.2% 5.9 s

0.55±0.06

PRE 6.8% 4.9 s 0.57±0.06

9.8%

5.5 s

0.56±0.07

VISP 6.1% 4.5 s 0.56±0.08

FPN

MOT 6% 6.7 s 0.52±0.06

DMN 5.6% 7.6 s 0.59±0.07 EXEC 5.3%

4.7 s 0.7±0.12 pDMN 5% 4 s

0.59±0.08

iCAPs ordered in terms of occurrence

> iCAP-8: "full" DMN, longest duration

AUD

8%

6.1 s

0.57±0.09

pVIS7.8% 6.2 s 0.6±0.08

sVIS 7.2% 5.9 s 0.55±0.06

PRE 6.8% 4.9 s 0.57±0.06

9.8%

5.5 s

0.56±0.07

VISP 6.1% 4.5 s 0.56±0.08

z-score

FPN

MOT 6% 6.7 s 0.52±0.06

DMN 5.6% 7.6 s 0.59±0.07

0.7±0.12

11 SAL ACC ŚUВ 4.6% 3.8% 4.1% 5.1 s 5.1 s 4 s 0.57±0.07 0.62±0.11 0.57±0.12 -1.5 1.5 Occurrence Duration Stability

Access to subsystems of the default-mode network

Spatial overlap between iCAPs

20 most frequent combinations

Relationship between iCAPs and behavior

hierarchical clustering

2098 iCAPs combinations

- Highest level of hierarchy: sensory / DMN / attention
- Behavioral profiles can be determined (BrainMap)
- ... and form consistent groupings as driven by iCAPs' combinations

BrainMap: [Lancaster et al, Frontiers Neuroinformatics, 2012]

Deciphering moment-to-moment activity

[Karahanoglu and VDV, *Nature Communications*, 2015]

Time to rethink our models?

[Menon, Uddin, Brain Struct Func, 2010; Menon, TICS, 2011; Nekovarova et al, Frontiers, 2014]

Time to rethink our models?

Default mode network

anticorrelation

Fronto-parietal / executive networks

Time to rethink our models?

Preliminary results in ASD (51 ASD / 36 NT)

Spatial differences in DMN subsystem

Manoach and Van der Kouwe Labs

- decreased activation in ventromedial prefrontal cortex
- increased activation in precuneus

Differences in temporal dynamics of DMN subsystem

- reduced total duration
- reduced occurrence
- suggests reduced self-referential processing during rest
- future examination of relationship with ASD core features

fondation collaboration with

bertarelli

Big data extraction = reduction

Resting-state fMRI data from HCP

- Still, this only provides an alternative view on the data and requires additional computational methods & models!
 - Characterize dynamics by temporal modeling
 - Combine with machine learning
 - System-level mechanistic models of brain processes

Conclusion & outlook

- Emergence of "big data" MRI offers unprecedented opportunities for brain science
 - Feature extraction (data representation) is crucial to obtain relevant and interpretable results
 - Interplay between hypothesis-driven and exploratory research
- Dynamics of resting-state fMRI
 - Is not about oscillations, but about transients! (="broadband feature")
 - ... note transient has a "deterministic" 1/f spectrum!
 - Clear transient behavior is recovered
 - Massive spatial and temporal overlap
 - Patterns of co-activation build up a (low-rank) approximation of functional connectivity measures

MIP:lab @ Campus Biotech

http://miplab.epfl.ch

References

- F. I. Karahanoglu, D. Van De Ville, "Transient Brain Activity Disentangles fMRI Resting-date Dynamics in Terms of Spatially and Temporally Overlapping Networks", *Nature Communications*, vol. 6, p. 7751, 2015.
- F. I. Karahanoglu, C. Caballero Gaudes, F. Lazeyras, D. Van De Ville, "Total Activation: FMRI Deconvolution through Spatio-Temporal Regularization", *NeuroImage*, vol. 73, pp. 121-134, 2013.
- F. I. Karahanoglu, I. Bayram, D. Van De Ville, "A Signal Processing Approach to Generalized 1D Total Variation", *IEEE Transactions on Signal Processing*, vol. 59, no. 11, pp. 5265-5274, Nov. 2011.