Suspicious of fluctuations?
A signal processing view on dynamic functional connectivity

Dimitri Van De Ville

Medical Image Processing Lab (MIPLAB)

Department of Radiology and Medical Informatics, Université de Genève
Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne

http://miplab.unige.ch/
http://miplab.epfl.ch/

The Dynamic Human Brain, HBM Morning Workshop, June 2014, Hamburg, Germany
Estimating dynamic FC

- Look at network dynamics
 - Parcellation can be atlas based or functional
 - Sliding-window pairwise correlations

- which fluctuations might be introduced due to the estimation method?
- what is the effect of sampling and noise?
- how to deal with high number of connections?

[Chang and Glover, NeuroImage, 2010]
\[x_i = \sqrt{2} \cos(2\pi f_i \text{TR}) \]

region 1

region 2

\[y_i = \sqrt{2} \cos(2\pi f_i \text{TR} + \theta) \]

\[x_i = \sqrt{2} \cos(2\pi f_i \text{TR}) \]

\[y_i = \sqrt{2} \cos(2\pi f_i \text{TR} + \theta) \]

"average" FC (0.87)

frequency \(f = 0.035 \text{ Hz} \)

window length \(w = 40 \text{ sec} \)
\[x_i = \sqrt{2} \cos(2\pi fi \ \text{TR}) \]

\[y_i = \sqrt{2} \cos(2\pi fi \ \text{TR} + \theta) \]
\[x_i = \sqrt{2} \cos(2\pi f_i \text{TR}) \]

\[y_i = \sqrt{2} \cos(2\pi f_i \text{TR} + \theta) \]

frequency \(f = 0.035 \) Hz

window length \(w = 10 \) sec
Spurious fluctuations of dynFC

- Sliding-window covariance revisited:

\[
c_{xy}[n] = \cos(\theta) + \frac{1}{w^2 \pi f^2} \cos(2\pi fnTR + \theta) \sin(\pi fwTR) - \frac{2}{w^2 \pi^2 f^2} \cos(2\pi fnTR) \cos(2\pi fnTR + \theta) \sin^2(\pi fwTR)
\]

- Average FC
- Zero-crossing at multiples of wavelength 1/f
- Different n
Spurious fluctuations of dynFC

- Max-min for all different window shifts n

Original timecourses should be high-pass filtered with cut-off $1/w$ to avoid spurious fluctuations of dFC
\[x_i = \sqrt{2} \cos(2\pi f_i \text{ TR}) \]

\[y_i = \sqrt{2} \cos(2\pi f_i \text{ TR} + \theta) \cos(2\pi f_0 i \text{ TR}) \]

frequency \(f = 0.035 \) Hz
window length \(w = 30 \) sec
modulation at 0.005 Hz
Real fluctuations of dynFC

- Two deterministic signals:
 \[
 x_i = \sqrt{2} \cos(2\pi f_i \text{TR}) \\
 y_i = \sqrt{2} \cos(2\pi f_i \text{TR}) \cos(2\pi f_0 i \text{TR})
 \]

 - modulatory component with frequency \(f_0 \ll f \)

- Sliding-window covariance revisited:
 \[
 c_{xy}[n] = \frac{\text{TR}}{w} \frac{\sin(\pi f_0 w)}{\sin(\pi f_0)} \cos(2\pi f_0 n \text{TR}) + \text{harmonics}
 \]

 - weighting depends on low-pass filtering properties of window: \(f_0 \) below \(1/w \)
 - dynFC recovers modulatory component!

 (or equivalent cut-off in case of tapering)
Real fluctuations of dynFC

- Two deterministic signals:
 \[x_i = \sqrt{2} \cos(2\pi f_i \text{TR}) \]
 \[y_i = \sqrt{2} \cos(2\pi f_i \text{TR}) \cos(2\pi f_0 i \text{TR}) \]

- modulatory component with frequency \(f_0 << f \)

- Sliding-window covariance revisited:
 \[c_{xy}[n] = \frac{\text{TR} \sin(\pi f_0 w)}{w \sin(\pi f_0)} \cos(2\pi f_0 n \text{TR}) + \text{harmonics} \]
Effect of sampling (TR) and noise

5% (parametric) confidence interval for $H_0 : \rho = 0$

- Other null hypothesis; e.g., $H_0 : \rho = \bar{\rho}$
- Non-parametric test (phase randomization)
- Correction for m’comparisons; e.g., per time unit

TR=1s
TR=2s
TR=3s
DynFC is not about data reduction

- Sliding window correlation in 3 healthy subjects
 - Window length is 30 TRs, step of 2 TRs, TR=1.1 sec

- Number of connections grows quadratically with #regions
- Rank of each FC frame is limited by window length (in TRs)
Building blocks of dynFC

- Various types of matrix factorizations are possible
 - k-means
 - PCA
 - sparsity constraints
 - ...

- FC patterns are in common for all subjects

Co-variance (PCA, k-means, HOSVD)
global fluctuations in FC

cingulate gyri, medial frontal gyri, precuneus (default-mode network)
primary sensory in red

inferior and middle frontal gyri, inferior parietal
(fronto-parietal)

presentation O-W2
1750: “Dynamic functional connectivity: Better characterized by separated states or a mixture of patterns?” (Nora Leonardi)

posterior DMN
temporal and inferior frontal

[Leonardi et al, NeuroImage, 2013]
Thank you for the dynamical attention