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[Iannetti and Wise, MRI, 2007]

FMRI blood-oxygenation-level-dependent (BOLD) signals are slow proxy for neuronal activity
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statistical hypothesis testing
- evidence against noise assumption

- non-modeled baseline is considered constant+noise
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measured BOLD signalideal BOLD signalexperimental paradigm

Modeling the BOLD signal can be used to find evidence of induced brain activity
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Connectivity mapping: functional networks

[Adapted from Raichle, TICS, 2010;  
Yeo et al, J Neurophys., 2011]
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ganization: topographic representation of visual space in the
visual regions and topographic representation of body space
in the somatomotor regions.

Visual topography. The visual network in the 7-network
estimate (Fig. 11) was fractionated into two separate sub-
networks (purple and bright red) in the 17-network estimate
(Fig. 13). The boundary between the two visual subnetworks
cut perpendicularly across the calcarine fissure, suggesting
the division of the early visual areas into central and
peripheral components. To evaluate this possibility, Fig. 15
overlays the eccentricity estimates of the visuotopic data set
over the boundaries of the two separate visual subnetworks.
The early visual areas were divided into two subnetworks
along an isoeccentricity line of !4°. We refer to these two
subnetworks as “central” and “peripheral,” although an
immediate question arises as to whether the division of

lower visual areas into central and peripheral components
extends to higher visual areas. The particular traveling wave
paradigm used in the visuotopic data set was designed to
estimate visual eccentricity within the V1-V3 complex and
is therefore unreliable outside the complex. To gain further
clarification on visual areas outside the V1-V3 complex, we
inspected the boundaries of the 17-network parcellation
overlaid on the map of approximate human visual areas
provided by Van Essen (2004). The boundary between the
central and peripheral representations continues through the
extrastriate visual areas consistent with the possibility that
the division of lower visual areas into central and peripheral
components generally applies to the extrastriate cortex, with
certain caveats that will be taken up in the DISCUSSION.

To assess the validity of the clustering analysis of visual
cortex, six seed regions were selected from the discovery

Fig. 11. A coarse (7-network) parcellation of
the human cerebral cortex based on 1,000
subjects. To provide the best estimates of the
7 cortical networks, clustering was performed
on the fMRI data of the full 1,000 subjects. A
salient feature is the separation of the early
sensory and late motor cortices (blue and
purple) from the association cortex. The asso-
ciation networks converged and extended on
networks previously described in the resting-
state literature, including the dorsal attention,
ventral attention, frontoparietal control, and
default networks.
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[McKeown, 1998; Calhoun, 2001; Beckmann 2005]
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Cole et al. Analysis and interpretation of RSNs

Accordingly, the increase in resting-state research has resulted in the 
development of a rich array of signal processing techniques. The fol-
lowing is a summary and review of the most widely applied methods, 
focussing primarily, but not exclusively, on seed-based correlation 
analysis (SCA) and independent component analysis (ICA). We 
discuss the commonalities, differences and potential interpretative 
pitfalls of these and other techniques, but begin by recapitulating the 
key characteristics and pre-processing requirements of the data.

RESTING-STATE NETWORK ACTIVITY
SPATIOTEMPORAL CHARACTERISTICS
RSNs are localised to grey matter regions (Beckmann et al., 2005; De 
Luca et al., 2006), and it is now accepted by many that they refl ect 
functional systems supporting core perceptual and cognitive proc-
esses. Figure 1 (reproduced from Beckmann et al., 2005) displays 
eight RSN maps commonly identifi ed using ICA. These patterns of 
intrinsic functional connectivity are consistent with stimulus-evoked 
co-activation patterns in e.g., sensory and motor cortices, language 
and memory systems and higher cognitive  control networks (Biswal 

et al., 1995; Lowe et al., 1998; Cordes et al., 2000; Hampson et al., 
2002; Beckmann et al., 2005; Seeley et al., 2007; Smith et al., 2009). 
Indeed, in some instances, subsets of RSNs appear to be either up-
regulated or down-regulated during specifi c cognitive tasks. Thus 
they may be described as either ‘task-positive’ or (in the case of 
the DMN) ‘task-negative,’ in terms of the direction of correlation 
between the mean network activity and the event timings during 
the task (Shulman et al., 1997; Gusnard and Raichle, 2001; Greicius 
et al., 2003; Fox et al., 2005; Kelly et al., 2008).

RSNs display reliable and consistent functional connectivity 
patterns with specifi c thalamic (Zhang et al., 2008) and cerebellar 
nuclei (Habas et al., 2009; Krienen and Buckner, 2009; O’Reilly et al., 
2009). Studies of RSNs may therefore enable investigations of both 
cortico-cerebellar and cortico-subcortical connectivity associations, 
potentially in greater detail than previously achieved with structural 
connectivity measures. In particular, due to anatomical constraints 
(resolution limitations), the relationship of the cerebellum with the 
rest of the brain is currently more measurable with functional con-
nectivity parcellation approaches than, for example, diffusion tensor 

FIGURE 1 | Eight of the most common and consistent RSNs identifi ed by 
ICA. (A) RSN located in primary visual cortex; (B) extrastriate visual cortex; 
(C) auditory and other sensory association cortices; (D) the somatomotor 
cortex; (E) the ‘default mode’ network (DMN), deactivated during demanding 
cognitive tasks and involved in episodic memory processes and self-referential 

mental representations; (F) a network implicated in executive control and 
salience processing; and (G,H) two right- and left-lateralised fronto-parietal RSNs 
spatially similar to the bilateral dorsal attention network and implicated in 
working memory and cognitive attentional processes (for further details, see 
Beckmann et al., 2005).

ICA NETWORKS
A PRIMARY VISUAL
B SECONDARY VISUAL
C AUDITORY
D MOTOR
E DEFAULT MODE
F EXECUTIVE CONTROL
G ATTENTION LEFT
H ATTENTION RIGHT

[McKeown, 1998; Calhoun, 2001; Beckmann 2005]
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Beckmann et al. 2005]
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Connectivity mapping: functional networks

[Bullmore and Sporns, Nat Rev Neurosci, 2009]
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Connectivity mapping: functional networks

Functional connectivity (FC) establishes summary 
statistic over the whole (resting-state) run

Average behavior and insensitive to temporal order
n Need to acknowledge time-varying features of FC



Dynamic functional connectome
n Extracting and representing time-resolved information 

from fMRI activity
n Correlational measures (2nd order statistical measures)

n Sliding-window functional connectivity 
n Connectivity modes versus states (i.e., latent space versus clustering)
n Dynamic graphs

n Instantaneous measures (1st order statistical measures) 
n Point process analysis; seed-based CAPs
n Hemodynamic-informed transient activity (iCAPs)

n Summarizing time-resolved information
n Observational summary statistics

n Durations, dwell times, switchings, couplings, … 
n Temporal models

n Generative models: autoregressive models, hidden Markov models
n Information-theoretic approaches

�10[Preti*, Bolton*, VDV, Neuroimage, 2017; Karahanoglu, VDV, Current Op. Bioeng., 2017]
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Sliding-window functional connectivity

Temporally windowed FC
Straightforward to implement
One FC value per window position
Trade-off for window length: shorter = access to faster dynamics

Suffers from lower SNR and thus lower statistical significance 
Prone to aliasing without proper high-pass filtering

Side-effect: large increase in number of extracted measures

�12[Chang and Glover, NeuroImage, 2010; Sakoglu et al, MAGMA, 2010; Leonardi, VDV, NeuroImage, 2014]

time

BOLD - FC + FC

sliding-window FC



Sliding-window functional connectivity
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[Leonardi et al, NeuroImage, 2013; Hutchison et al, HBM, 2013; Allen et al, Cerebral Cortex,2014]

sliding-window FC
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[Leonardi et al, NeuroImage, 2013]
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Connectivity modes and states
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States by  
k-means clustering and variants

n winner takes it all strategy
n matching criterion is usually “shape”  

based (e.g., cosine distance)

unfolding of all connections



Connectivity modes and states
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[Leonardi et al, HBM, 2014; Miller et al, PLoS One, 2016; Grandjean et al, NeuroImage, 2017]
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Mixed mode-state by  
dictionary learning (e.g., k-SVD)

n few winners for each timepoints
n optimized for explained variance;  

other constraints can be added (non-neg.)
n explained variance increases by #flexibility 

(amount of superposition) and #states

unfolding of all connections



global fluctuations in FC (no GSR)

cingulate gyri, medial frontal gyri, 
precuneus (default-mode network)
primary sensory in red
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parietal
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[Leonardi et al, NeuroImage, 2013]



Dynamic graphs
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[Qu et al, NeuroImage, 2015; Fukushima et al, NeuroImage, 2018; Sizemore, Bassett, NeuroImage, 2018]

Time-dependent graph
n compute graph measures for 

each time frame; e.g., 
fluctuations of modularity

Multislice graph
n build multislice graph where 

nodes of subsequent time 
frames are interconnected

no unfolding needed



Dynamic functional connectome
n Extracting and representing time-resolved information 

from fMRI activity
n Correlational measures (2nd order statistical measures)

n Sliding-window functional connectivity 
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n Summarizing time-resolved information
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n Information-theoretic approaches

�19[Preti, Bolton, VDV, Neuroimage, 2017; Karahanoglu, VDV, Current Op. Bioeng., 2017]



Point process analysis

Identifying data frames that correspond to “key events”
Exceeding threshold of activity timecourse of seed region

Averaging of all selected frames leads to proxy for seed connectivity

�20[Tagliazucchi et al, Neurosci Lett, 2011 and Front Physio, 2012; Liu and Duyn, PNAS, 2013]

time

BOLD

average over all selected frames: seed-based correlation:



Point process analysis

Temporal clustering of selected frames
Spatial representatives are co-activation patterns (CAPs)

�21[Liu and Duyn, PNAS, 2013]

time

BOLD

1 12 3 2



measured BOLD signalideal BOLD signalactivity-inducing signal

Hemodynamic-informed transients

Incorporate knowledge about hemodynamic response
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filtered signal

Hemodynamic-informed transients

�23[Buxton et al, 1997; Friston et al, 1998, 2000; Iannetti and Wise, 2007]
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Hemodynamic-informed transients

�24

time

BOLD

measured BOLD signal

ideal BOLD signalactivity-inducing signal

[Karahanoglu et al, IEEE Transactions on SP, 2011; Karahanoglu et al, NeuroImage, 2013]
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Identifying data frames that correspond to “key transient events”
Amount of whole-brain innovation exceeds null hypothesis

Temporal clustering of selected frames from 
innovation signals

Spatial representatives are  
innovation-driven co-activation patterns (iCAPs)

Hemodynamic-informed transients

�25
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[Karahanoglu, VDV, Nat Comm, 2015]
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Hemodynamic-informed transients

�26[Karahanoglu and VDV, Nat Comm, 2015; Zöller et al, IEEE TMI, in press]
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Repertoire of functional brain networks (iCAPs)

FPN

MOTVISP DMN pDMNEXEC

SUBSAL ACC

pVIS PREsVISAUD



Observational summary statistics
durations 
fractions 
dwell times 
spectral analysis 
switchings 
couplings 
graph measures 
… 
 
 
 
 
 
 

Temporal models
autoregressive models 
hidden Markov models 
information-theoretic 
deep neural networks 
…

Summarizing time-resolved information

�28[Karahanoglu, VDV, Curr. Op. Bioengineering, 2017]

time

BOLD

 
Correlational measures
connectivity modes or states

Instantaneous measures
CAPs and iCAPs

ranked the 499 ROIs by the absolute t-values averaged within each ROI
atlas. Although the subject-specific CAPs and the t-value of each ROIwas
generated from atlas ROI499w, we argue that using clustering index de-
rived with atlas ROI90 would yield no significant difference since the
spatial patterns of the 1st/2nd CAPs were nearly identical for ROI90
and ROI499w cases.

Fig. 8B shows the statistical significance (p values) for paired t-tests
(temporal fractions of the 1st dominant CAP during rest against WM
task) as a function of ROI numbers (in descending order of absolute t
values) involved in the K-means classifications. At the beginning
stage, p value decreased as more and more ‘informative’ (high |t|-
value) ROIs were employed as features for clustering, while at the
later stage, p values started to increase as more ‘noisy’ (low |t|-value)
ROIs were included and obscured the classifications. Because the ROIs
are ranked in descending order of absolute t-value, i.e. descending im-
portance as the features to differentiate the 1st and 2nd dominant

CAPs, we therefore argue that the p values which are below 0.05 at
the beginning stage are most trustworthy, and indicate significantly
higher temporal fractions of the 1st dominant CAPs (more consistent
brain states) during WM task compared to rest in both networks.

Alternation frequencies of CAPs
A group-level paired t-test was performed to test whether the fre-

quency of alternation of the CAPs (the frequency at which the brain
state shifted from the current CAP to a different CAP) was significantly
lower during WM task than rest and contributed to the overall reduc-
tion of correlation variations. However, no results reached statistical sig-
nificance in a paired-t testwithα=0.05 for both networks, see Table 4.
Supplementary Fig. S5 shows examples of a few subjects for k = 2, in
which the alternation frequency appears to be independent from the
distribution of temporal fractions associated with different CAPs.

Table 4
Summary of CAPs at k=2. TF: temporal fractions of the 1st dominant CAP; AF: alternation frequencies between the 1st and 2nd dominant CAPs, expressed as number of switches. P values
are calculated in paired-t tests.

Subject PCC-ROI90 PCC-ROI499w ECN-ROI90 ECN-ROI499w

TF(%)
(rest/WM)
p = 0.013

AF
(rest/WM)
p = 0.13

TF(%)
(rest/WM)
p = 0.76

AF
(rest/WM)
p = 0.065

TF(%)
(rest/WM)
p = 3.5e-5

AF
(rest/WM)
p = 0.52

TF(%)
(rest/WM)
p = 0.074

AF
(rest/WM)
p = 0.88

1 39/69 15/11 64/67 12/15 39/46 18/19 57/56 20/13
2 49/65 18/21 58/56 18/23 26/28 13/17 76/71 14/19
3 42/74 16/12 65/56 17/23 39/38 19/14 68/49 19/21
4 51/64 16/15 56/68 16/13 39/32 18/18 63/68 18/21
5 53/56 18/17 51/50 21/17 47/28 15/14 61/60 17/16
6 58/47 17/18 54/40 19/24 46/44 15/18 57/44 13/20
7 49/57 15/20 60/54 18/24 58/44 15/18 39/46 15/19
8 50/71 17/17 58/63 16/21 58/32 12/13 56/56 18/17
9 67/76 19/13 39/74 20/17 38/36 16/14 49/47 20/16
10 72/76 10/15 28/69 14/19 65/39 20/18 40/63 22/16
11 47/39 15/15 53/36 19/13 46/57 15/10 64/42 17/12
12 46/75 15/15 56/72 17/17 71/22 12/18 36/69 14/22
13 53/67 17/22 50/67 16/22 60/29 18/19 50/53 22/18
14 63/58 20/17 35/57 20/20 44/29 21/16 72/79 19/10
15 50/51 13/22 64/47 16/21 49/33 21/17 49/69 15/14
16 71/51 10/17 38/40 16/16 54/17 17/13 53/86 21/13
17 25/38 11/14 81/38 16/14 36/29 17/18 64/58 18/20
18 47/64 15/15 64/58 19/17 58/35 16/22 40/50 16/25
19 63/46 16/19 49/40 16/23 51/26 18/20 46/68 21/24
20 46/56 17/27 65/43 15/19 63/31 12/21 47/69 14/23
21 53/76 16/15 49/68 14/13 65/38 15/18 39/58 20/18

Fig. 8. (A) Temporal fractions of the 1st dominant CAPs during sustainedWM task compared to rest (p b 0.05 *, p b 0.00005 ***); (B) P values (group paired t-test, the temporal fraction of
the 1st dominant CAP duringWM task compared to rest) as a function of number of ROIs (in descending order of importance in differentiating two CAPs, see the Temporal fractions of the
1st dominant CAP section) included in the initial K-means clustering, where ‘−1000’ indicates the mean and standard deviation of t values associated with the 1000 K-means clustering
results, and ‘combined’ indicates the t value of the synthesized clustering result from the 1000 K-means trials (see the CAP analysis section).
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nificance in a paired-t testwithα=0.05 for both networks, see Table 4.
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Fig. 8. (A) Temporal fractions of the 1st dominant CAPs during sustainedWM task compared to rest (p b 0.05 *, p b 0.00005 ***); (B) P values (group paired t-test, the temporal fraction of
the 1st dominant CAP duringWM task compared to rest) as a function of number of ROIs (in descending order of importance in differentiating two CAPs, see the Temporal fractions of the
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results, and ‘combined’ indicates the t value of the synthesized clustering result from the 1000 K-means trials (see the CAP analysis section).
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Rest
Working Memory

In the results of DMN-CAPs derived from ROI90, sub-patterns of the
“overall dominant CAP-sets” (31%) were observable for the majority of
k s at threshold 21%/42%. Moreover, the dominant CAP-set itself as an
entirety also persisted in certain k s (see Supplementary Table S1),
and dominant CAPs associatedwith other k s did not resemble the dom-
inant CAP-set (31%): they generally varied inways of either (one cluster
split into two clusterswith high spatial similarity) or (index reallocation
within clusters), thus posing no violation to the conclusions drawn from
threshold 31% (as will be discussed later in the Information in the
“overall dominant CAP-sets” section). Furthermore, 31% gave the most
consistent dominant CAPs across different cluster numbers, as reflected
in supplementary Table S1 for our datasets. These observations, togeth-
er with the comparison of ROI90 and ROI499w suggest that the CAPs may
possess a very skewed distribution, with a portion of subsetsmuch clos-
er in similarity to one another than the others, which makes it hard to
find a clear division between different clusters (Liu et al., 2013).

Temporal fractions of the 1st dominant CAP
As shown in Fig. 7, for both states (rest andWM task) and both net-

works (DMN and ECN), k=2gave the highest clustering score, which is
consistent with the observations reported by Liu and Duyn (2013) that
the REST-CAPs can generally be divided into twomain categories based
on their spatial resemblance.

Given the results in Fig. 7, further comparisons of temporal fractions
therefore concentrated on the case when k=2. The CAP with temporal
fraction (TF) larger than 50% was defined as the 1st dominant CAP, and
the other was defined as the 2nd dominant CAP. The spatial patterns of
CAPs derived using ROI90 and ROI499w were remarkably consistent
(spatial similarity higher than 0.95 for both networks and both 1st/
2nd CAPs), while the corresponding temporal fractions were signifi-
cantly ROI-dependent: The ROI90 yielded significantly higher TF of the
1st dominant CAP during sustained WM task compared to rest for
both networks (DMN p = 0.013, ECN p = 3.5 × 10−5); the ROI499w
yielded no statistically significant differences in TF for either network
(DMN p = 0.763, ECN p = 0.074) in paired t-test, α = 0.05
(see Table 4, Fig. 8A).

Given the distinct results regarding statistical significance described
above, a post-hoc examinationwas performed to assess the potential ef-
fects that the number of ROIs (or involved cortical areas) utilized might
exert on the resulting statistical significance. We first ranked all the 499
ROIs by their importance as features to differentiate the 1st and 2nd
dominant CAPs as follows: (1)we derived subject-specific 1st dominant
CAPs by projecting the ROI499w clustering indexes back to each subject's
native temporal regime and averaging frames assigned to the 1st dom-
inant CAPs; (2) we then used a group-level paired-t test to compare dif-
ferences between the spatial patterns of the 1st and 2nd dominant CAPs
(as shown in Fig. 7B, correspondingdominant CAPs in both states exhib-
ited very high spatial similarity, the spatial patterns of both states were
hence combined and entered into a single paired-t test), and further

Table 3
Summary of k s (K-means clustering numbers, within 2–16) that yield the “overall
dominant CAP-sets” (see Figs. 5A, 6A) associated with different brain states/networks.
To alleviate the dependence of the results on the spatial similarity threshold 0.95
(see the CAP analysis section), clustering numbers, of which the corresponding dominant
CAP-set contains the “overall dominant CAP-set” as the leading subsets butwith extended
quantity of CAPs, are also listed (in parentheses, NA means ‘not found’). Using the CAP
results of PCC-ROI90 at rest as an illustration (Supplementary Fig. S6), k = 9 gives the
identical CAP-set as the “overall dominant CAP-set”, while k = 10 contains 5 CAPs, and
the leading 4 CAPs are the same as the “overall dominant CAP-set”.

Dominant CAPs rest WM task

PCC-ROI90 6,7,8,9,11, (10,14) 5,6,8,9, (NA)
PCC-ROI499w 5,6,7,9,13,14,15, (10) 7,8,9,10,11, (5,6)
ECN-ROI90 5,6,8, (11,13) 5,6,7,9,10,11, (8,12,13,14)
ECN-ROI499w 5,6,7, (11) 5,7,9, (8,12,13,15)

Fig. 7. (A) Silhouette scores as a function of cluster numbers. Higher silhouette scores correspond to higher similarity between cluster members, i.e. more appropriate clustering. Results
indicate k = 2 is best for both DMN and ECN. (B) The spatial patterns of the 1st/2nd dominant CAPs derived from ROI90.
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are arranged into groups of subcortical (SC), auditory (AUD),
somatomotor (SM), visual (VIS), cognitive control (CC; refer-
ring loosely to the planning, monitoring, and adapting one’s
behavior), default-mode (DM), and cerebellar (CB)

components. The manual arrangement of ICNs is very similar
to various orderings provided by empirical methods, includ-
ing spectral clustering and algorithms based on the optimiz-
ation of modularity and diagonal structure as implemented in

Figure 3. Examples of FC dynamics for subject 124 (A), subject 267 (B) and subject 360 (C). (A1–C1) FC for each subject, averaged over all windows. (A2–C2) FC time series
for connections between select pairs of ICNs. Correlation coefficients are plotted at the time point corresponding to the center of the window. Top panels show ∑i

L1(w) for
select windows. Highlighted connections are PreCG [2] to Thalamus [15] (light blue), L MOG [89] to R PoCG [10] (red), L IPL [76] to MOG [80] (orange), ACC [26] to R IPL [67]
(dark blue), and MiFG + SFG [48] to L AG [75] (green). Highlighted windows are a subsample of the exemplars used in the clustering analysis (see Fig. 5A). (A3–C3) FC spectra
for the time series in (A2–C2). Filled colored arrows marking the FC element locations in (A1–C1) correspond to the colored lines in (A2–C2) and (A3–C3).
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Fig 1. Scheme of HMM working on rest (a) and rest (b). In both cases, the HMM estimates several 
brain networks (or states) that are common to all subjects or trials, together with a specific state time 
courses for each subject which indicates when each state is active. In task, we can compute the state 
mean activation locked to the behavioural event, producing a state evoked response, which 
corresponds to a time-course of the proportion of trials for which subjects are in each state.  
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Fig SI-2. Mean activation for the twelve HMM states obtained from the fMRI resting-state HCP data 
set.  
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[Chen et al, 2015, 2017; Allen et al, 2014, Vidaurre et al. 2017; 
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Image by M. Leonardi



Meaning of iCAPs’ temporal overlap

2098 iCAPs combinations

• Significant overlap at any point 
in time
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on average 3.6 iCAPs active



Meaning of iCAPs’ temporal overlap
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• Significant overlap at any point 
in time

• Highest level of hierarchy 
according to temporal overlap:  
sensory / default / attention

• Behavioral profiles of iCAPs’ 
spatial maps form are 
consistent with the their “usage”

[Karahanoglu and VDV, Nat Comm, 2015;  
Lancaster et al, Frontiers Neuroinformatics, 2012]



Default mode  
network

Rethink models extrapolated from conventional FC

Fronto-parietal / 
executive networks

[Menon, Uddin, Brain Struct Func, 2010; Menon, TICS, 2011; Nekovarova et al, Frontiers, 2014]

anticorrelation

Salience network

psychomotor activity 
goal-directed action 
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Default mode  
network

Salience network

Rethink models with iCAPs opposite signs
same signs

mixed signs

Fronto-parietal / 
executive networks

[Karahanoglu and VDV, Nat Comm, 2015]



Rethink models with iCAPs down-regulation
up-regulation

[Bolton et al, IEEE TMI, 2017; Vidaurre et al, PNAS, 2017]

Define states of each iCAP and model transition 
probabilities
Model interactions  
by sparsely coupled  
hidden Markov  
models
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It’s all about time(scale)

10 min

1 min

1 sec

100 ms

10 ms

1 ms

time

scale

fMRI

EEG

neural  
recordings

whole run

sliding-window measures

instantaneous measures

alpha oscillations

gamma oscillations

neural spikes

MEG

topographical switching

bridging gaps between 
complementary imaging methods

cross-frequency coupling

temporal integration of information

power-law behavior
informed regression

…

[Buzsaki et al, Nat Rev Neurosci, 2012; Britz et al, NeuroImage, 2010; VDV et al, PNAS, 2010; Chang et al, NeuroImage, 2013; Keilholz, Brain Conn, 2014]
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Integration of function and structure

[Sporns et al, 2005; Hagmann et al, 2005; Deco, Jirsa, McIntosh, TiN, 2013;  
Atasoy et al, Nat Comm, 2016; Huang*, Bolton* et al, Proceedings of the IEEE, 2017]
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n How is function using underlying structure?
n simulation perspective: The Virtual Brain 
n graph signal processing perspective: 

fMRI data constitute graph signals on structural backbone
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Take home messages
fMRI captures rich spatiotemporal structure of brain activity

Dynamics are useful to study resting state, naturalistic conditions, and task
Minimal compliance of resting state for patient populations

Time-resolved measures as new tools for connectivity mapping
Different measures reveal different features

Dynamic FC shows fragmentation of large-scale functional networks
iCAPs reveal extensive spatial and temporal overlap between (sub-)networks

Many other variations have been proposed
Dynamic connectivity regression [Cribben et al, NeuroImage, 2012]; Independent vector analysis [Ma et al, 
NeuroImage, 2014]; Multiplication of temporal derivatives [Shine et al, NeuroImage, 2015]; Dynamic 
connectivity detection [Xu and Lindquist, Front Neurosci, 2015]; Dynamic coherence analysis [Yaesoubi et al, 
NeuroImage, 2015];…

Summarize into (mechanistic) models of brain (dys)function
How brain dynamics support coordinated cognition by linking perception, attention, 
goal-directed thought?
What are neural correlates of behavioral and clinical measures?

Ongoing challenges
Multimodal imaging to access different timescales and underlying anatomy
Impact of neurostimulation and -modulation
Biomarkers: precision psychiatry,…
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