
Multidimensional Texture Analysis for Improved
Prediction of Ultrasound Liver Tumor Response

to Chemotherapy Treatment

Omar S. Al-Kadi1,2, Dimitri Van De Ville2,3, and Adrien Depeursinge2,4

1 King Abdullah II School for Information Technology, University of Jordan
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Abstract. The number density of scatterers in tumor tissue contribute
to a heterogeneous ultrasound speckle pattern that can be difficult to
discern by visual observation. Such tumor stochastic behavior becomes
even more challenging if the tumor texture heterogeneity itself is in-
vestigated for changes related to response to chemotherapy treatment.
Here we define a new tumor texture heterogeneity model for evaluat-
ing response to treatment. The characterization of the speckle patterns
is performed via state-of-the-art multi-orientation and multi-scale cir-
cular harmonic wavelet (CHW) frames analysis of the envelope of the
radio-frequency signal. The lacunarity measure – corresponding to scat-
terer number density – is then derived from fractal dimension texture
maps within the CHW decomposition, leading to a localized quantita-
tive assessment of tumor texture heterogeneity. Results indicate that
evaluating tumor heterogeneity in a multidimensional texture analysis
approach could potentially impact on designing an early and effective
chemotherapy treatment.

1 Introduction

Liver tumor ultrasound scanning is recently becoming increasingly recommended
as a first diagnosis option for early prediction of response to chemotherapy treat-
ment [1]. However, visual assessment of tumor response to chemotherapy is very
challenging without monitoring longitudinally the tumor development. This is,
in part, due to the intertwined tumor speckle variations, leading to formation of
complex texture patterns. A robust approach to tackle this texture complexity
is to assess the radio-frequency (RF) echoes – instead of B-mode images – which
are not subjected to log-compression and proprietary filtering algorithms. This
original data preservation allows for better statistical modeling of backscattering
properties.

During the course of chemotherapy treatment, changes within tumor region
may occur due to progression or regression of disease. The speckle patterns vari-
ations are heterogeneous as tumor angiogenesis can affect the complexity of the



tissue spatial relationship. This heterogeneity in tumor tissue scatterers could
span different scatterer densities. Regions within the tumor tissue that respond
to treatment exhibit different statistical properties to that of the non-respondent
counterpart. Thus it is essential to improve the discriminative abilities of the
employed statistical distribution model for better characterization of tumor het-
erogeneity.

A number of contributions employed the backscattered statistics from RF
ultrasound signal for evaluating the early death of tumor cells in response to
chemotherapy treatment; such as using the scatterer spacing and diameter, and
acoustic concentration in combination with texture features from the gray-level
co-occurrence matrix [2]. Others relied on calculating the power spectrum from
the Fourier transform of raw RF data, and subsequently deriving the spectral
slope, 0-MHz intercept, and mid-band fit quantitative parameters [3]. In another
similar work, the maximum mean discrepancy features were extracted on his-
tograms of quantitative ultrasound spectroscopic parametric maps [4]. However,
analyzing tissue backscattering properties from a single resolution perspective is
limiting, as substantial information that could assist in tumor tissue characteri-
zation can be hidden at different locations, orientations and scales of resolution.
Refined statistical properties can be obtained from the RF envelope-detected
signal performed in 2D [5], where a fractal-based representation that underpins
a tumor model can be achieved [6].

For an improved ultrasound tissue characterization of tumor texture, the use
of the fractal dimension (FD) as in [6] might not capture well all relevant tissue
changes. Namely, the FD corresponds to scatterers spatial distribution and not
scatterer number density, thus it is possible to get similar FD values for tex-
tures which might not look alike. As a result, this could overlook some of the
important aspects of the statistics of the envelope detected from the RF signal.
Tissue heterogeneity property previously proved to be useful in assessing tumor
aggressiveness [7]. Therefore, the variation in scatterer number density within
the tumor focal region – which corresponds to spatial heterogeneity – would be
an interesting property to consider as well.

Here we propose a novel ultrasound texture analysis approach for tissue char-
acterization. The assumption is made that quantifying tumor spatial heterogene-
ity could assist in revealing subtle cues (i.e., small changes in tissue texture) for
tumors that responded to chemotherapy administration. A Nakagami statisti-
cal distribution is fitted locally to the envelope RF signal for estimating the
backscattering parameters. Subsequently, circular harmonic wavelets frames are
used to decompose the backscattered shape statistics into different spatial scales
and local circular frequencies. Finally, a heterogeneity feature descriptor is suc-
cessively constructed by mapping the circular harmonic wavelets frames on the
fractal dimension space, and then quantitatively estimating tissue sparsity from
the constructed fractal texture maps.



2 Material and Methods

Although the backscattered signal from tumor tissue tends to show a stochastic
pattern, the local concentration and spatial arrangement of progressive tumor
tissue scatterers may follow a distribution different from regressive ones. To
maximize the difference between the two conditions, the fractal signatures are
derived from multi-scale circular frequency analysis of the acoustic properties of
the envelope RF signal for assessing tissue heterogeneity.

2.1 Ultrasound RF Data Analysis

The amplitudes of the individual backscattered signals are assumed to be ran-
domly distributed due to the random backscatter coefficient of each individual
scatterer. The interference signals from the large number of randomly distributed
scatterers give the echo signal its statistical nature. Many statistical models exist
for the purpose of characterizing randomness in soft tissue; however, very few
can estimate the model parameters with analytical simplicity and computational
ease. The Nakagami distribution is an example of a simple bi-parametric model
which can characterize tissue in various scattering conditions and scatterer den-
sities [8]. The Nakagami density function is defined as

Pn (x|m,Γ ) =
2mm

Γ (m)Ωm
x2m−1e−mx

2/Ω , (1)

for x ≥ 0, where Γ is the Euler gamma function. The real numbersm > 0 (related
to the local backscattered energy) and Ω > 0 (related to the local concentration
of scatterers) are called the shape and scaling parameters, respectively. Similarly
to the Rayleigh distribution, the envelope of the RF signal x2 follows a gamma
distribution. By fine-tuning the shape of the distribution parameter m, other
statistical distributions can be modeled, such as, an approximation of the Ri-
cian distribution (i.e., post-Rayleigh) for m > 1, a Rayleigh distribution for the
special case when m = 1, and when m < 1 a K-distribution (i.e., pre-Rayleigh).
The envelope-detected RF signal based on the Nakagami m parameter was used
subsequently for investigating tissue heterogeneity.

2.2 Circular Harmonic Wavelets

A natural way of assessing the echo signal f(x, y) is to analyse its statistical
properties at different spatial scales. An efficient way to systematically decom-
pose f(x, y) into successive dyadic scales is to use a redundant isotropic wavelet
transform. The recursive projection of f on Simoncelli’s isotropic wavelet pro-
vides such a frame representation [9]. The radial profile of the wavelet function
is defined in polar coordinates in the Fourier domain as

ĥ(ρ) =

{
cos
(
π
2 log2

(
2ρ
π

))
, π4 < ρ ≤ π

0, otherwise.
(2)



The scaling function is not used to ensure illumination invariance. The local
structural properties of f(x, y) can be well described in terms of the local circular
frequencies, which was at the origin of the success of methods such as local binary
patterns (LBP) [10]. In this work, local circular harmonics are computed on top
of the wavelet frames to characterize circular frequencies at multiple scales [11],
which is an extension of steerable Riesz wavelets [12]. Circular harmonic wavelets
(CHW) of order n are constructed in the Fourier domain as

φ̂(n)(ρ, ϕ) = ĥ(ρ)ejnϕ. (3)

The representation obtained from the collection of the complex magnitudes of the
scalar products |〈f, φ(n)〉| characterizes the local circular frequencies in f(x, y)
up to an order n = 1 : N and is rotation invariant [13].

2.3 Heterogeneity Quantification

After the projection of f on CHW frames, the self-similarity of each voxel from its
surrounding neighborhood is determined via estimating its localized FD. This
would serve as an estimated array of localized FD values (i.e. fractal texture
map) for a multi-dimensional representation of tissue heterogeneity.

Fractal Texture Map Estimation there are several methods to estimate
the FD, however multiplicative speckle scale changes can effect the stability of
parameter estimation. The fractal Brownian motion (fBm), which is known for its
capability for describing random phenomena [14], can work well with ultrasound
tissue characterization [6]. Both scale- and rotation-invariance properties of the
non-stationary fBm model makes it a perfect candidate to be integrated with the
Nakagami modeling and CHW decomposition. The fBm can be characterized by

E (∆v) = K∆rH , (4)

where E (∆v) = |qi − pj | , j = 1, . . . , k is the mean absolute difference of voxel

pairs ∆v; ∆r =
√∑s

i=1 (qi − pi)2 (s = 3 for texture surface) is the voxel pair

distances; H is the Hurst exponent; and K > 0 is a constant.
Given a volume set V of constructed envelope-detected RF tumor regions

fµi (x, y), where µ stands for the Nakagami shape parameter and i is a certain
slice in the acquired volume, tissue fractal characteristics from the backscattered
envelope are investigated. A fractal texture map F , having a size m × n and
for k dimensions, can be defined as in (5) based on the CHW frames for all
corresponding voxels vxy of fµi (x, y), f ∈ V . The k value empirically specifies
the maximum convolution kernel size used in estimating ∆v of (4). The slope of
linear regression line of the log-log plot of (4) gives H from which the localized
fractal dimension is estimated (FD = 3−H). This procedure is iterated covering
all vxy which yields a set of multi-dimensional fractal texture maps Mf to be
constructed for each V , where Mf = {F1,F2, . . . ,Fz}.



F (N,J) {f} (x, y) =



vk11 vk12 · · · vk1y · · · vk1n
vk21 vk22 · · · vk2y · · · vk2n
...

...
. . .

...
...

vkx1 vkx2 · · · vkxy · · · vkxn
...

...
...

. . .
...

vkm1 vkm2 · · · vkmy · · · vkmn


(5)

The integration of the fBm model at different CHW orders N and scales J can
contribute towards a better separability between the mixtures of speckle patterns
within tissue. Such that ∆v and ∆r locally estimate the FD of each vxy up to the
resolution limits of fµi specified by k that best characterizes the speckle patterns
for different scales and circular frequencies. This approach enables for further
probing the resolution of CHW frames, and hence facilitates for assessing the
speckle pattern heterogeneity.

Lacunarity Analysis To further differentiate between textures having similar
FD values, the lacunarity (L) – which is a measure of deviation from scale
translation invariance of the fractal texture – can assist in quantifying aspects
of patterns that exhibit scale-dependent changes in structure [15]. Namely, it
measures the heterogeneity of the fractal pattern, providing meta-information
about the dimension of F . The lower the L value, the more heterogeneous the
examined tumor region fµi represented by F , and vice versa. L can be defined
in terms of the relative variance of the size distribution in F as

L =

1
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∑
x

∑
y F2 −

(
1
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∑
x

∑
y F
)2

(
1
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∑
x

∑
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)2 =

E[F2]− E [F ]
2

E [F ]
2 =

V ar [F ]

E [F ]
2 . (6)

3 Results and Discussion

3.1 Clinical Tumor Cross-sectional Dataset

The approach has been validated on RF ultrasound data acquired using a diag-
nostic ultrasound system (Zonare Medical Systems, Mountain View, CA, USA)
4 MHz curvilinear transducer and 11 MHz sampling. The output 2-D image size
was 65× 160 mm with a resolution of 225× 968 pixels. A total of 287 cross sec-
tional images of 33 volumetric liver tumors manually segmented were obtained
from the stacks of 2-D images, 117 were responsive and 170 did not responded
to chemotherapy treatment. Response to treatment was determined based on
conventional computed tomography follow up imaging as part of the patient
standard clinical care based on the response evaluation criteria in solid tumors
(RECIST) [16]. The baseline cross-sectional imaging was compared against those
performed at the end of treatment according to the RECIST criteria to deter-
mine response to treatment for each target tumor. A tumor was classified as
responsive if categorized as partial response and non-responsive if no change or
disease demonstrated progression.



3.2 Statistical Analysis

To quantitatively assess the robustness of our approach, (2N !× J) features were
fed into a support vector machine classifier to compare the overall modeling per-
formance of classifying responsive versus non-responsive cases. Cross-validation
was performed based on a leave-one-out approach, and further validated on
independent test-set of 107 cross sectional images (69 responsive versus 38 non-
responsive images). The convolution kernel size I used in estimating the localized
FD of F was initially optimized while having N and J fixed, see Fig.1. Then the
classification performance for different N and J values of the CHW representa-
tion was investigated in order to quantify L extracted from F . Hence, when the
optimized values of N , J and I are employed, 97.91% (97.2% for unseen data)
best classification accuracy is achieved as compared to 92.1% in the work of [6],
and similarly applies to the 5- and 10-folds cross validation results (indicated
in terms of mean ± standard deviation of the performance over 60 runs). Fig.2
shows the F and corresponding L for a non-responsive vs responsive case. A
less heterogeneous texture (i.e. higher L values colored in red in Fig.2) is wit-
nessed in the responsive case. This indicates tumor tissue texture is becoming
more sparse, which could be signs of necrotic regions, and hence responding to
treatment.

Fig. 1: Classification accuracies for varying convolution kernel size (I) with
fixed order (N = 2) and scale (J = 6)

Characterizing the speckle patterns in terms of multi-scale circular harmonics
representation could assist in better characterization of the backscattered signal,
which adapts according to the varying nature of tissue structure. As changes in
the scatterers’ spatial distribution and number density reflect in the ultrasound
backscattering, the sensitivity of response to treatment of the envelope RF signal
is implicitly linked to changes in FD and associated L on the CHW frames.
Finally, the reported improved performance comes at the expense of increasing
computational processing time, which would call for a parallel or distributed
computational solution for real-time clinical applications.



Table 1: Classification performance for the multidimensional heterogeneity
analysis of clinical liver tumor dataset

Cross-validation

Statistical
measures loo 5-fold 10-fold

Accuracy 97.91 93.30± 0.017 95.70± 0.009
Sensitivity 98.80 96.40± 0.888 97.50± 0.931
Specificity 96.60 88.80± 0.964 93.10± 0.975
ROC-AUC 97.70 92.60± 0.020 95.30± 0.009

Fig. 2: (Left column) Fractal texture maps and (right column) corresponding
tissue heterogeneity representation for a (1st row) non-responsive vs (2nd row)
responsive case, respectively. Red regions in the 2nd column indicate response

to chemotherapy treatment according to RECIST criteria [16]. CHW
decomposition was based on a 2nd order and up to the 8-th scale.

4 Conclusion

A novel approach has been presented for quantifying liver tumor response to
chemotherapy treatment with three main contributions: a) ultrasound tumor
texture analysis based on a Nakagami distribution model for analyzing the enve-
lope RF data is important to retain enough information; b) a set of CHW frames
are used to define a new tumor heterogeneity characterizing multi-scale circular
harmonics of the ultrasound RF envelope data; c) the heterogeneity is specified
by the lacunarity measure, which is viewed as the size distribution of gaps on the
fractal texture of the decomposed CHW coefficients. Finally the measurement
of heterogeneity for the proposed representation model is realized by means of
support vector machines.
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