
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 22, NOVEMBER 15, 2016 6017

Signal-Adapted Tight Frames on Graphs
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Abstract—The analysis of signals on complex topologies mod-
eled by graphs is a topic of increasing importance. Decompositions
play a crucial role in the representation and processing of such
information. Here, we propose a new tight frame design that is
adapted to a class of signals on a graph. The construction starts
from a prototype Meyer-type system of kernels with uniform sub-
bands. The ensemble energy spectral density is then defined for a
given set of signals defined on the graph. The prototype design is
then warped such that the resulting subbands capture the same
amount of energy for the signal class. This approach accounts at
the same time for graph topology and signal features. The pro-
posed frames are constructed for three different graph signal sets
and are compared with non-signal-adapted frames. Vertex local-
ization of a set of resulting atoms is studied. The frames are then
used to decompose a set of real graph signals and are also used in
a setting of signal denoising. The results illustrate the superiority
of the designed signal-adapted frames, over frames blind to signal
characteristics, in representing data and in denoising.

Index Terms—Spectral graph theory, filter design, tight frames,
signal processing on graphs.

I. INTRODUCTION

GRAPHS provide a flexible framework for representing
data that lie on topologically complex domains. Thus,

much attention has been given to generalizing fundamental
signal processing operations to the graph setting [1]–[3]. In
particular, many proposals relate to extending multi-resolution
transforms, filter bank designs and dictionary constructions for
signals on graphs [4]–[27]. These studies fall essentially within
two regimes: spatial (vertex) and spectral (frequency) designs.
Constructions that fall within the former regime include meth-
ods based on lifting schemes [4]–[6] and methods in designing
wavelets for hierarchical trees [7]–[9]. The latter regime can
be viewed as defining dictionaries comprised of atoms that are
constructed by translating smooth graph spectral filters to dif-
ferent vertices of the graph. The graph spectrum is defined as the
eigenspace of a graph Laplacian matrix. One of the first propos-
als of such a dictionary is the spectral graph wavelet transform
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(SGWT) frame [10] that is constructed based on a system of
spline-based spectral kernels, including a lowpass kernel and a
sequence of dilated bandpass kernels. Constructions of systems
of spectral graph kernels leading to tight frames were proposed
in [11]–[13]. Tight frames are particularly interesting because
of their property of energy conservation between the original
and transformed domain [28]. Other approaches to spectral do-
main design include diffusion wavelets [14], vertex-frequency
frames [23] and approaches to graph filter-bank design using
bipartite graph decompositions [15]–[20], graph coloring [25]
and connected sub-graph decomposition [21].

The aforementioned spectral designs are blind to the fact
that the eigenvalues of the Laplacian matrix that define the
graph spectrum are typically irregularly spaced, unlike the def-
inition of discrete frequencies for regular signals. As a step
towards adaptation to the spectral properties of the graph do-
main, the construction of spectrum-adapted tight graph wavelet
and vertex-frequency frames was recently proposed in [24]. The
spectrum-adapted spectral kernels are adapted to the distribution
of eigenvalues of the graph Laplacian matrix such that a similar
number of eigenvalues lies in the support of each spectral kernel.

Besides considering the structural characteristics of the graph,
a major improvement to the frame design would be to also con-
sider the properties of the signals realized on the graph. To this
aim, Thanou et al. [26], [27] have pursued a structured, numer-
ical dictionary learning approach in which wavelet dictionaries
are learnt based on a set of training signals. Since the graph
structure is incorporated into the learning process, the learned
kernels are indirectly adapted to the graph Laplacian spectrum
as well as to the training data. This approach is effective in
providing a sparse representation of graph signals that can be
described as combinations of overlapping local patterns. In a
more empirical approach [29]–[31], the Meyer-like frame de-
sign [11] has been tailored to fMRI signals by defining a spectral
partitioning such that a small number of narrow-support filters,
covering the lower end of the spectrum, are constructed.

In this paper, we propose an approach for constructing tight
graph frames that account not only for the intrinsic topological
structure of the underlying graph as proposed in [24], but also for
the characteristics of a given set of signals. This is accomplished
by considering a graph-based energy spectral density notion that
includes signal and topology properties and encodes the energy-
wise significance of the graph eigenvalues. A system of spectral
kernels tailored to the energy spectral density is constructed by
starting from the design of a prototype Meyer-type tight frame
with uniform spectral coverage, followed by a warping step
which incorporates the energy spectral density information to
the prototype design, resulting in a tight frame with equi-energy
subbands.

The paper is organized as follows. In Section II, definitions
related to spectral graph theory, tight frames and graph signal
decomposition are briefly reviewed. In Section III, the proce-
dure for constructing signal-adapted tight frames is introduced.
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In Section IV, insight on vertex localization of the resulting
atoms is provided. In Section V, constructions of the proposed
frame for three different graph signal sets are presented, vertex
localization of a set of resulting atoms is quantified, the co-
efficients resulting from decomposing a real graph dataset are
studied, and finally, the proposed frames are used in the setting
of signal denoising.

II. PRELIMINARIES

A. Graphs and Spectral Graph Theory

An undirected, weighted graph G = (V, E , A) consists of a
set V of Ng vertices, a set E of edges (i.e., pairs (i, j) where
i, j ∈ V) and a weighted adjacency matrix A = [ai,j ], where ai,j

denotes the weight of the edge between vertices i and j. The
degree matrix D is diagonal with elements di,i =

∑
j ai,j . The

Laplacian matrices ofG in combinatorial form L and normalized
form L are defined as

L = D − A, (1)

L = D−1/2LD−1/2 , (2)

respectively. Since both L and L are symmetric and positive
semi-definite, their eigendecompositions lead to a set of Ng

real, non-negative eigenvalues that define the graph spectrum

Λ(G) = {0 = λ1 ≤ λ2 · · · ≤ λNg
= λmax}. (3)

The corresponding set of eigenvectors {χl}
Ng

l=1 forms a com-
plete set of orthonormal vectors that span the graph spectral
domain [32]. When necessary, we use the notations ΛL (G) and
ΛL(G) to distinguish between the two definitions of the graph
Laplacian. As the eigenvalues may be repetitive, for each λl ,
we denote its algebraic multiplicity by mλl

and the index of its
first occurrence by iλl

. That is, if λl is singular, i.e. mλl
= 1,

then iλl
= l, and if λl is repetitive, then iλl

≤ l. The multiplicity
of eigenvalues equal to zero reflects the number of connected
components in the graph. In this paper, only connected graphs
are considered, and thus, mλ1 = 1.

B. Graph Signals

LetR(V) denote a Hilbert space of real-valued signals defined
on the vertices of the graph, with the inner product defined as
∀f 1 ,f 2 ∈ R(V), 〈f 1 ,f 2〉 =

∑Ng

n=1 f 1 [n]f 2 [n], and the norm
as ∀f ∈ R(V), ||f ||22 = 〈f ,f〉 =

∑Ng

n=1 |f [n]|2 .
Graph Fourier Transform: For any f ∈ R(V), its spectral

representation f̂ ∈ R(V), known as the graph Fourier transform
of f , can be used to express f in terms of the graph Laplacian
eigenvectors

f [n] =
Ng∑

l=1

〈f ,χl〉︸ ︷︷ ︸
= f̂ [l]

χl [n]. (4)

Parseval Relation: With this definition of the Fourier trans-
form, it can be shown that the Parseval relation holds [23]

∀f 1 ,f 2 ∈ R(V), 〈f 1 ,f 2〉 = 〈f̂ 1 , f̂ 2〉. (5)

Generalized Convolution Product: For any two graph signals
f 1 ,f 2 ∈ R(V), the generalized convolution product is defined
as

(f 1 ∗ f 2)[n] =
Ng∑

l=1

f̂ 1 [l]f̂ 2 [l]χl [n]. (6)

Graph Signal Filtering: In analogy with conventional signal
processing, filtering of graph signals can be viewed as an opera-
tion in the spectral domain. For a given graph signal f ∈ R(V)
and graph filter g ∈ R(V), defined through its Fourier transform
ĝ, the filtered signal, denoted by (Fgf), can be obtained as

(Fgf)[n] = (g ∗ f)[n] (7)

(6)
=

Ng∑

l=1

ĝ[l]f̂ [l]χl [n]. (8)

The filter response of an impulse at vertex m

f = δm ↔ δ̂m [l] = 〈δm ,χl〉 = χl [m], (9)

can then be obtained as

(Fgδm )[n] =
Ng∑

l=1

ĝ[l]χl [m]χl [n], (10)

which, in general, is shift-variant; i.e, in the vertex domain, it
is not a shifted version of the same graph signal. Therefore,
for convenience, a graph filter can be defined by its spectral
kernel ĝ.

To design spectral kernels, it is often more elegant to define
an underlying smooth continuous kernel. For instance, we con-
sider K(λ) : [0, λmax] → R+ , from which we derive a discrete
version through sampling as

k[l] = K(λl), l = 1, . . . , Ng . (11)

Note that although spectral kernels (i.e.,K(λ) and k) are defined
in the spectral domain, they are not linked to any explicit vertex
representation, and thus, the Fourier symbol̂is not used for their
denotation. This notation convention will be used throughout the
paper.

C. Dictionary of Graph Atoms

As noted before, for a given kernel k associated with K, the
vertex-domain impulse responses are obtained as

ψK,m = (Fkδm ) ↔ ψ̂K,m [l] = k[l]χl [m]. (12)

The collection of impulse responses {ψK,m}Ng

m=1 are considered
graph atoms associated with the spectral kernel K(λ). Given
a set of J spectral kernels {kj}J

j=1 ∈ R(V), a dictionary DG
containing JNg atoms is obtained as

DG =
{
{ψKj ,m}J

j=1

}Ng

m=1
. (13)

The atoms of DG form a frame in �2(V) if there exist bounds
B2 ≥ B1 > 0 such that [28]

∀f ∈ R(V), B1 ||f ||22 ≤
∑

j,m

|〈f ,ψKj ,m 〉|2 ≤ B2 ||f ||22 ,

(14)
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where the frame bounds are given by

B1 = min
λ∈[0,λm a x ]

G(λ), B2 = max
λ∈[0,λm a x ]

G(λ), (15)

and G(λ) is defined as

G(λ) =
J∑

j=1

|Kj (λ)|2 . (16)

In particular, DG forms a tight frame if

∀λ ∈ [0, λmax], G(λ) = C, (17)

and a Parseval frame if C = 1.

D. Decomposition of Graph Signals

Direct Decomposition: To decompose a graph signal f onto
a set of the atoms in DG , the coefficients can be obtained as

cKj ,m = 〈f ,ψKj ,m 〉 (18)

(5)
=

Ng∑

l=1

ψ̂Kj ,m [l]f̂ [l], (19)

(12)
=

Ng∑

l=1

kj [l]f̂ [l]χl [m]. (20)

If DG forms a Parseval frame, the original signal can be recov-
ered as

f [n] =
∑

j

∑

m

cKj ,m ψKj ,m

=
∑

j

∑

m

∑

l

kj [l]f̂ [l]χl [m]
∑

l ′

kj [l
′
]χl ′ [m]χl ′ [n]

=
∑

l

∑

l ′

∑

j

kj [l]kj [l
′
]f̂ [l]χl ′ [n]

∑

m

χl [m]χl ′ [m]

︸ ︷︷ ︸
δ

l−l
′

=
∑

l

∑

j

k2
j [l]

︸ ︷︷ ︸
=1

f̂ [l]χl [n]. (21)

Decomposition Through Polynomial Approximation: The
decomposition of f on DG leads to the coefficients {cKj

=
[cKj ,1 , cKj ,2 , . . . , cKj ,Ng

]T }J
j=1 that can be interpreted as fil-

tered versions of f with different spectral kernels {kj}J
j=1 .

Due to the redundancy of such a transform, it is beneficial to
implement the transform using a fast algorithm, rather than us-
ing the explicit compution of the coefficients through (20). This
becomes even more crucial when large graphs are considered.
One such algorithm is the Chebyshev polynomial approxima-
tion method [10], which is based on considering the expansion
of the continuous spectral window functions {Kj (λ)}J

j=1 with
the Chebyshev polynomials Cp(x) = cos(p arccos(x)) as

Kj (x) =
1
2
dKj ,0 +

∞∑

p=1

dKj ,p C̄p (x) , (22)

where C̄p(x) = Cp(x−b
b ), b = λmax/2 and dKj ,p denote the

Chebyshev coefficients obtained as

dKj ,p =
2
π

∫ π

0
cos(pθ)Kj (b(cos(θ) + 1)). (23)

By truncating (22) to M terms, cKj
can then be approximated

as

c̃Kj
=

1
2
dKj ,0f +

M∑

p=1

dKj ,p C̄p(L)f . (24)

We refer to [10] for further details.

III. SIGNAL-ADAPTED FRAME CONSTRUCTION

The objective is to construct a signal-adapted tight frame
where the adaptivity is introduced by exploiting the spectral
energy content of a given graph signal set. This approach
is motivated by two observations: (i) the eigenvalues of the
graph Laplacian that define the graph’s spectrum are irregularly
spaced, and depend in a complex way on the graph topology;
(ii) the distribution of graph signals’ energy is generally non-
uniform across the spectrum. Based on these observations, the
idea is to construct an ‘adapted’ frame, such that the energy-wise
significance of the eigenvalues is taken into account, rather than
only adapting based on the distribution of the eigenvalues as
proposed in [24]. In this way, also the topological information
of the graph is implicitly incorporated in the design, since the
energy content is given in the graph spectral domain that is in
turn defined by the eigenvalues. To formulate the problem, we
first introduce a notion of energy for a given graph and a given
signal set.

Definition (Ensemble Energy Spectral Density): For a given
graph G, with spectrum Λ(G), and graph signal set F =
{f s}Ns

s=1 , the ensemble energy spectral density of F can be
obtained as

ēF [l] =
1

Ns

Ns∑

s=1

∣
∣
∣
∣

〈
f s

||f s ||2
,χl

〉∣
∣
∣
∣

2

, l = 1, . . . , Ng , (25)

where the normalization term ensures that each signal con-
tributes equally to the ensemble energy and

∑
l ēF [l] = 1.

Using ēF , the desired system of spectral kernels {kj}J
j=1

needs to be constructed such that each kernel captures an equal
amount of ensemble energy, i.e.,

Ng∑

l=2

kj [l]ēF [l] =
1 − ēF [1]

J
, j = 1, . . . , J (26)

subject to the Parseval frame constraint, i.e.,

J∑

j=1

|kj [l]|2 = 1, l = 1, · · · , Ng . (27)

The energy contribution from λ1 is excluded from the design as
it merely reflects the ensemble mean of the signal set.

We propose a two-step procedure to obtain such a de-
sign. First, a prototype system of continuous spectral kernels,
{K′

j (λ)}J
j=1 , is obtained such that they satisfy the following
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uniformity constraint

∃ C ∈ R+ ,

∫ λm a x

0
K′

j (λ) dλ = C, j = 1, . . . , J, (28)

subject to the tight Parseval frame constraint,

J∑

j=1

|K′

j (λ)|2 = 1, ∀λ ∈ [0, λmax]. (29)

Second, an energy-equalizing transformation TF (λ) is con-
structed and incorporated in {K′

j (λ)}J
j=1 , leading to a warped

version of the prototype design

Kj (λ) = K′

j (TF (λ)), j = 1, . . . , J. (30)

Provided that TF (λ) is designed such that it is monotonically
increasing and satisfies

bj∑

l=aj

ēF [l] =
1 − ēF [1]

J
, j = 1, . . . , J, (31)

where

aj = arg min
l∈{1,...,Ng }

{∣
∣
∣
∣TF (λl) −

j − 1
J

λmax

∣
∣
∣
∣

}

(32)

bj = arg min
l∈{1,...,Ng }

{∣
∣
∣
∣TF (λl) −

j

J
λmax

∣
∣
∣
∣

}

, (33)

the resulting {Kj (λ)}J
j=1 corresponds to the desired signal-

adapted system of spectral kernels in the continuous domain.
If a discrete representation is needed for direct decomposition
as in (20), {kj}J

j=1 can be obtained through sampling. In the
following, these two steps are explained in detail.

A. Step 1: Prototype System of Spectral Kernels Construction

While there is no unique solution that satisfies (28), prototype
systems of spectral kernels satisfying this constraint subject to
(29) can be designed. In this paper, we aim at designing spectral
kernels similar to those of the Meyer-like graph wavelet frame
[11] since they have (i) a finite support of the bandpass type,
and (ii) smooth transition bands that have an advantageous effect
on localization in the vertex domain [10], [23]. The following
proposition introduces the design of a uniform Meyer-type sys-
tem of spectral kernels.

Proposition 1: (Uniform Meyer-type (UMT) system of spec-
tral kernels) Using the auxiliary function of the Meyer wavelet,
given by [33]

ν(x) = x4(35 − 84x + 70x2 − 20x3), (34)

a set of J ≥ 2 spectral kernels defined as

K′

1(λ) =

⎧
⎪⎨

⎪⎩

1 ∀λ ∈ [0, a]
cos
(

π
2 ν
(

1
γ−1

(
λ
a − 1

)))
∀λ ∈]a, γa]

0 elsewhere
(35a)

Fig. 1. Construction of UMT system of spectral kernels.

K′

j (λ) =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sin
(

π
2 ν
(

1
γ−1

(
λ−(j−2)Δ

a − 1
)))

∀λ ∈]λI , λII ]

cos
(

π
2 ν
(

1
γ−1

(
λ−(j−1)Δ

a − 1
)))

∀λ ∈]λII , λII + Δ]
0 elsewhere

(35b)

K′

J (λ) =
⎧
⎪⎨

⎪⎩

sin
(

π
2 ν
(

1
γ−1

(
λ−(J−2)Δ

a − 1
)))

∀λ ∈]λI , λII ]
1 ∀λ ∈]λII , λII + a]
0 elsewhere

(35c)

can be constructed, where

Δ = γa − a, (36a)

λI = a + (j − 2)Δ, (36b)

λII = γa + (j − 2)Δ, (36c)

a =
λmax

Jγ − J − γ + 3
. (36d)

Fig. 1 illustrates the notations used. By setting γ = 2.73, the
set of kernels defined in (35) satisfies the uniformity constraint
given in (28). The atoms of a dictionary constructed using this
set of spectral kernels form a Parseval frame on R(V).

Proof: see Appendix A. �
Figs. 2(a) and (b) show realizations of the resulting UMT

system of spectral kernels for a fixed λmax and two different
J . For comparison, the half-cosine uniform translate (HCUT)
system of spectral kernels [24] are shown in Fig. 2(c) and (d).
There are three main differences when comparing these two
designs. First, the atoms of a dictionary constructed using the
UMT system of spectral kernels not only form a tight frame
but also a Parseval frame. Second, the UMT system of spectral
kernels has better passband characteristics compared to HCUT
system of spectral kernels as the support of each kernel is a
more strict subset of the spectrum, with less overlap of adjacent
kernels. Third, the UMT system of spectral kernels satisfies (28).
The latter two differences are in favour of the proposed UMT
design for our purpose.

B. Step 2: Energy-Equalizing Spectral Warping

Although the UMT system of filters satisfy the uniformity
constraint (28), they satisfy the equi-energy constraint (26) only
if 1) the graph’s eigenvalues are uniformly distributed across
the spectrum and 2) the ensemble energy contribution at each
eigenvalue is equal. In fact, for a given graph and signal set,
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Fig. 2. UMT system of spectral kernels as given in Proposition 1 displayed for
(a) J = 5 and (b) J = 7 spectral scales. The HCUT system of spectral kernels
[24] displayed for (c) J = 5 and (d) J = 7 spectral scales.

these two conditions do not hold in general. Using ēF , the
desired continuous energy-equalizing transformation function
TF (λ) : [0, λmax] → [0, λmax], can then be obtained through
monotonic cubic interpolation [34] of the pair of points

{⎛

⎝λl,
λmax

mλl
(1 − ēF [1])

iλl
+mλl∑

r=iλl

r∑

k=2

ēF [k]

⎞

⎠

}Ng

l=2

, (37)

together with (λ1 , 0). The resulting TF (λ) satisfies (31). Thus,
the set of spectral kernels obtained by warping the UMT system
of kernels using TF (λ), cf. (30), correspond to the desired signal-
adapted system of spectral kernels.

C. Generalization

The proposed procedure for the design of signal-adapted
frames can be generalised in two aspects. First, prototype de-
signs other than the UMT can be designed and used as the
base for the proposed frames, with a general case formulation
given in Appendix B. Second, rather than the proposed ensem-
ble energy spectral density measure given in (25), other forms
of stationary signal information can be exploited to construct
a suitable signal-adapted spectral transformation, with example
measures recently extended to the graph setting given in [35]–
[37]. Finally, we also note that, depending on the dataset, it can
be beneficial to slightly smooth TF (λ), in particular important
at spectral regions where adjacent eigenvalues are minutely dif-
ferent in value and the ensemble energy significantly changes
across them. A smooth TF (λ), in turn, comes in favour of ob-
taining smoother spectral kernels.

IV. VERTEX LOCALIZATION OF SPECTRAL KERNELS

As in classical signal processing where the uncertainty prin-
ciple determines the trade-off between fine localization in time

(spatial) and frequency domain, a similar notion naturally ex-
tends to the graph setting, with example proposals given in
[23], [38]–[41]. As the present proposal of constructing frames
is defined in the spectral domain, it is interesting to consider
the theoretical constraints in the vertex localization of the re-
sulting atoms. In particular, we first consider the bound on the
vertex localization of atoms provided through polynomial ap-
proximation [23]. For a polynomial spectral kernel of degree D,
defined as

PD (λl) =
D∑

k=0

αkλk
l (38)

for some coefficients {αk}D
k=0 , it can be shown that its associ-

ated atoms satisfy the localization constraint [23]

∀n ∈ V, ψPD ,n [m] = 0 if dG(n,m) > D, (39)

where dG(·, ·) is a distance metric. As suggested in [38], the
geodesic distance is one metric that can be used, in which case,
dG(i, j) is the length of the shortest path connecting vertices i
and j. For a generic spectral kernel K(λ), the localization of its
associated atoms can be quantified as [23]

|ψK,n [m]| ≤
√

Ng inf
P

D
′
{||K − PD ′ ||∞}, (40)

where the infimum is taken over all polynomial kernels of degree
D

′
, as defined in (38), with D

′
= dG(n,m) − 1. An upper bound

can be determined for the minimax polynomial approximation
error of the infimum term. We refer to [23] for further details
and a proof of (39) and (40).

Based on (39) and (40), if a given spectral kernel can be per-
fectly represented as a polynomial of degree M , its realization at
a given vertex n will be localized in a sphere of radius M edges
around vertex n; i.e., the lower the degree, the finer the local-
ization in the vertex domain. If the approximation is not perfect,
the vertices that fall outside the sphere will not necessarily be
zero, but constrained by the bound in (40). This can be seen
as the trade-off of vertex-spectral localization: the smoother the
given spectral kernel K(λ) and the wider its transitions bands,
the lower is its approximation error to a polynomial, and thus,
the finer is the localization of its associated atoms in the vertex
domain. Compared to the HCUT spectral kernels, the proposed
UMT spectral kernels provide narrower transition bands (cf.
Fig. 2), and therefore, the resulting atoms are expected to be
less localized. As signal-adapted kernels result from incorporat-
ing the energy-equalizing transformation into the UMT design,
cf. (30), the specific bound depends on the signal set used.

For an alternative description, the localization of realizations
of graph atoms can be quantified using the graph spread measure
[38]; the graph spread of a signal f ∈ R(V) around vertex k ∈ V
is defined as

Δ2
G,k (f) =

1
||f ||22

∑

v∈V
d2
G(k, v)f 2 [v], (41)

where dG(·, ·) is the same distance metric as that used in (39)
and (40). The smaller is Δ2

G,k (f), the more localized is f around
vertex k, and vice versa. A global spread measure can also be
obtained as

Δ2
G(f) = min

k∈V

{
Δ2

G,k (f)
}
. (42)
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Fig. 3. Sample signal realizations on the Minnesota road graph, (a) x0 .2 ,2
and (b) x0 .5 ,4 . The plots are normalized as xη ,n /||xη ,n ||∞.

By substituting an atom ψK,n for f in (41) and (42), its vertex lo-
calization can be quantified. In Section V-B, these two measures
are used to quantify vertex localization of the different frames.

V. RESULTS

A. Signal-Adapted Tight Frame Constructions

We present constructions of the proposed frames for signal
sets realized on the Minnesota road graph [42] and the Alameda
graph [26]. The Minnesota road graph is chosen as it is con-
sidered as a benchmark in many recent studies, e.g., [15]–[25].
The choice of the Alameda graph is to highlight the fact that,
although the proposed method is developed based on spectral
energy characteristics of a signal set, it is also implicitly adapted
to the graph’s spectrum.

1) Data Realized on the Minnesota Road Graph: The Min-
nesota road graph is considered as a benchmark in many recent
studies, e.g., [15]–[25]. The edges represent major roads and
the vertices their intersection points, which often correspond
to towns or cities. We consider a general model for realizing
signals on this graph as

yη ,n = xη ,n + e, (43)

where xη ,n ∈ R(V) denotes the graph signal of interest with
density η ∈]0, 1] and smoothness n ∈ Z+ , and e ∈ R(V) de-
notes additive white Gaussian noise of variance σ2

e . In particular,
xη ,n is constructed as

xη ,n = Anpη , (44)

where pη ∈ R(V) denotes a random realization of a spike sig-
nal as {pη [i] ∈ {0, 1}}i=1,...,Ng

such that
∑

i pη [i] = ηNg , A
n

incorporates the intrinsic structure of the graph into the sig-
nal, and the power n controls the extent of signal smoothness.
Fig. 3 shows two signals realized on the Minnesota road graph
using this scheme. By setting σ2

e = 0, two sets of clean graph
signals with different smoothness were constructed as F1 =
{y[i]

η ,2}η=0.2,0.5 and F2 = {y[i]
η ,4}η=0.2,0.5 , where i = 1, . . . , 10

denotes random realizations of pη , leading to 20 signals in
each set.

While the distribution of the eigenvalues of this graph is rather
uniform, see Fig. 4(a), the ensemble energy is concentrated
towards the two ends of the spectrum for both F1 and F2 ,
see Fig. 4(b). Fig. 4(c) shows the resulting energy-equalizing
transformation functions. By incorporating TF1 (λ) and TF2 (λ)

Fig. 4. (a) Histograms of the eigenvalues ΛL(G) of the Minnesota road graph.
Each bar indicates the number of eigenvalues that lie in the corresponding
spectral range. (b) Distribution of the ensemble energy spectral density ēF1
(top) and ēF2 (bottom). Each bar indicates the sum of ensemble energies of the
eigenvalues lying in the corresponding spectral range. (c) Constructed energy-
equalizing transformation functions, TF1 (λ) and TF2 (λ), and the spectrum-
adapting warping function wL(λ) [24]. (d) Signal-adapted system of spectral
kernels constructed by warping the UMT system of spectral kernels (J = 7)
using TF1 (λ) (top) and TF2 (λ) (bottom). (e) Spectrum-adapted system of
spectral kernels [24] constructed by warping the HCUT system of spectral
kernels (J = 7) using wL(λ). (f) Meyer-like wavelet frame system of spectral
kernels [11]. The dashed line in (d)–(f) corresponds to the function G(λ) in
(15).

into the UMT system of spectral kernels, the desired signal-
adapted systems of spectral kernels are obtained, see Fig. 4(d).
A comparison of Figs. 4(d) and (b) highlights the energy-wise
optimality of the proposed signal-adapted frame construction;
i.e., more filters are allocated to spectral ranges that have higher
ensemble energy. The support of the filters in the two sets vary
relative to the difference in the distribution of the ensemble
energy of the two signal sets, with more filters allocated to the
lower end of the spectrum for the F2 frame than for the F1
frame, and vice versa at the upper end of the spectrum.

For comparison, Fig. 4(e) shows the corresponding spectrum-
adapted system of spectral kernels for the Minnesota road graph,
where the HCUT system of spectral kernels [24], shown in
Fig. 2(d), are warped using a spectrum-adapting warping func-
tion wL(λ), shown in Fig. 4(c). wL(λ) is constructed such that
the distribution of eigenvalues is equalized [24]. As the dis-
tribution of the eigenvalues of this graph is almost uniform,
the spectrum-adapted filters almost resemble the non-warped
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Fig. 5. Illustration of the Alameda graph.

HCUT filters. Comparing Figs. 4(d) and (e), it can be observed
that the proposed method optimizes the construction of the fil-
ters such that the energy-wise significance of the eigenvalues is
taken into account, rather than only considering the distribution
of the eigenvalues as in the spectrum-adapted frame.

Fig. 4(f) shows the Meyer-like wavelet frame system of spec-
tral kernels [11], in which the kernels have the classical dyadic
dilation of the wavelet scheme. The frame is neither adapted
to the distribution of the eigenvalues nor to the distribution of
the ensemble energy. By comparing Figs. 4(d) and (f), it is ob-
served that the partitioning of the kernels at the lower end of the
spectrum are similar, whereas a major difference is seen at the
remainder of the spectrum. The similarity is more pronounced
for kernels of the signal-adapted frame associated with F1 , due
to the particular initial decay pattern observed in the ensemble
energy ofF1 , see Fig. 4(b), top. The benefit of the signal-adapted
frame is observed when comparing the spread of the kernels in
the spectral interval [0.2, 2]: the signal-adapted design approach
allocates more subbands to the spectral interval where signal
energy is expected, whereas the wavelet frame design approach,
cannot allocate more subbands to spectral intervals other than
the lower end.

2) Traffic Data on the Alameda Graph: The data are part of
the Caltrans Performance Measurement System dataset.1 The
monthly bottlenecks occurring across 17 freeways in Alameda
county between January 2010 and December 2015 are con-
sidered. A bottleneck could be any location where there is a
persistent drop in speed, such as merges, large on-ramps and
incidents. The vertices of the graph represent detector stations
where bottlenecks were identified over the mentioned period,
see Fig. 5. Two stations i and j are considered as connected
through an edge if either 1) they are adjacent across a freeway,
or 2) there is a connection at a crossing between freeways near
the two stations. The latter type of edges were defined based on
satellite maps of the county available on Google Maps [43]. The
signal on the graph is the average duration of bottlenecks for
each specific month during three shifts (AM shift: 5 am–10 am,
noon shift: 10 am–3 pm, and PM shift: 3 pm–8 pm), resulting
in 180 signals in total.

1The data are publicly available at http://pems.dot.ca.gov.

Fig. 6. (a) Histogram of the eigenvalues ΛL (G) of the Alameda graph.
(b) Distribution of the ensemble energy spectral density ēF of the traffic
dataset. (c) Constructed energy-equalizingtransformation functions TF (λ) and
the spectrum-adapting warping function wL (λ) [24]. (d) Signal-adapted sys-
tem of spectral kernels. (e) Spectrum-adapted system of spectral kernels [24].
(f) Meyer-like wavelet frame system of spectral kernels [11].

The spectral characteristics of this signal set deviate consid-
erably from that of the Minnesota graph. The total ensemble
energy is almost uniformly spread across the eigenvalues, as
observed by comparing the histogram of the eigenvalues ΛL (G)
in Fig. 6(a) and the distribution of the ensemble energy spectral
density in Fig. 6(b). As a result, the warping function defined
for equalizing the distribution of energy across the spectrum,
i.e., TF (λ), closely resembles that defined for equalizing the
distribution of eigenvalues; i.e., wL (λ), see Fig. 6(c). Conse-
quently, almost an equal number of kernels span each part of
the spectrum, with more kernels allocated to the lower half of
the spectrum and vice versa, see Figs. 6(d) and (e). On the other
hand, the non-adapted, Meyer-like wavelet frame has a kernel at
the far end of the spectrum where there is very few eigenvalues
and almost no energy, see Fig. 6(f).

Although the kernels of the proposed frame have narrower
passband characteristics compared to those of the spectrum-
adapted frame due to the different base set of kernels used
(compare Figs. 6(d) and (e)), this example demonstrates where
the proposed frame design approach and the spectrum-adapted
approach coincide in terms of their respective approach to adap-
tivity: if the spectral energy is equally spread across the eigenval-
ues, the energy-equalizing transformation function TF (λ) and
the spectrum-adapting warping function wL (λ) become almost
identical. Thus, although the proposed method is developed
based on spectral energy characteristics of a signal set, it is
optimal in the sense that it will indirectly adapt based on the
graph’s spectrum in the event of uniformly spread energy across
the eigenvalues.
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Fig. 7. Global graph spread of the atoms associated with (a) K1 (λ) and
(b) K4 (λ) of the signal-adapted frame (black curves) and spectrum-adapted
frame (gray curves). (c) Ensemble graph spread measure for the seven subbands
of the signal-adapted and spectrum-adapted frames.

B. Vertex Localization

Vertex localization of atoms realized using the frames con-
structed on the Minnesota road graph are quantified by com-
puting the graph spread around all graph vertices, cf. (41), for
{{ψKj ,l}j=1,...,J }l=1,...,Ng

. The atoms were then sorted based
on their global graph spread measure, cf. (42), leading to a set of
sorted indices {ik}Ng

k=1 , such that Δ2
G(ψKj ,i1

) ≤ Δ2
G(ψKj ,i2

) ≤
· · · ≤ Δ2

G(ψKj ,iN g
). Figs. 7(a) and (b) show the global graph

spread of the atoms associated to K1 and K4 , respectively, for
both the signal-adapted and spectrum-adapted frames of the
Minnesota road graph. ForK1 , the global graph spread is greater
for the atoms of the signal-adapted frame. This can be associated
with the narrower spectral spread of K1 of the signal adapted
frame compared to that of the spectrum-adapted frame, see blue
kernel in Fig. 4(d), top, and that in Fig. 4(e). On the other hand,
for K4 , the global graph spread of the atoms of the two frames
become almost identical, which can be linked to the fact that
K4 is approximately equally spread for both the signal-adapted
and the spectrum-adapted frames, see purple kernel in Fig. 4(d),
top, and that in Fig. 4(e).

To express the behaviour of the atoms in the vicinity of their
central vertex, an ensemble measure of the change in graph
spread as a function of geodesic distance from their central
vertex can be obtained as

Δ̄ψKj
[k] =

1
Ng

Ng∑

l=1

Δ2
G,v

( l )
k

(ψKj ,l), k = 1, . . . , Ng . (45)

where v
(l)
k ∈ {1, . . . , Ng} denotes the index of the kth closest

vertex to the vertex where atom ψKj , l
is centered at, based on

the the geodesic distance measure; i.e., dG(l, v(l)
1 = l) = 0 <

dG(l, v(l)
2 ) ≤ · · · ≤ dG(l, v(l)

Ng
). Fig. 7(c) shows {Δ̄ψj

}7
j=1 as-

sociated with the spectral kernels of the signal-adapted and
spectrum-adapted frames of the Minnesota road graph, for

Fig. 8. Illustration of the cerebellum graph.

geodesic distances of up to 100 vertices. For all subbands, and
for both frames, the ensemble graph spread monotonically in-
creases as the geodesic distance increases. As expected, for
subbands j = {1,2,3,6,7}, where the kernels of the spectrum-
adapted frame are more spectrally spread compared to that of
the signal-adapted frame (see Fig. 4(d), top, and Fig. 4(e)),
Δ̄ψj

[k] is lower, whereas for subbands j = {4,5} the values are
almost identical since the corresponding kernels of both frames
are widely spread across the spectrum. These results are in line
with the theoretical insight provided by (39) and (40).

C. Efficient Decomposition of Brain fMRI Data

Functional magnetic resonance imaging (fMRI) is a key
bioimaging modality used for performing non-invasive stud-
ies of the brain. The principle behind fMRI is the detection of a
signal known as the blood-oxygen-level-dependent (BOLD) sig-
nal, which arises as a result of increased blood flow to activated
regions of the brain. As high temporal resolution data is required
to correlate brain activity with the experimental paradigm, the
resulting fMRI data are generally corrupted with an extensive
amount of noise, requiring denoising.

Filters and wavelets in the most classical form used in image
processing share several basic properties: they are (i) defined
within Euclidean spaces (a square in 2-D or a cube in 3-D),
(ii) isotropic in structure and (iii) stationary and quasi shift-
invariant, meaning that their structure does not vary when ap-
plied to different regions within a volume. However, the BOLD
signal is expected only within the thin convoluted layer of gray
matter of the brain, but not within the white matter or cere-
brospinal fluid [44]. At the spatial resolution of fMRI, isotropi-
cally shaped basis functions will cross boundaries of gray matter,
even at the finest scale. Thus, it is advantageous to construct fil-
ters that adapt to this intricately convoluted domain rather than
to assume that the spatial characteristics of the underlying sig-
nal is independent of its location. To this aim, many approaches
have been proposed (see for example, [45]–[48]), in particular,
the construction of anatomically-adapted graph wavelets [31].
The deficiency of a fixed graph frame design and the lack of
a systematic approach in determining the spectral coverage of
spectral bands for analyzing fMRI data have been pointed out
in [29]–[31]. In fact, these findings motivated us to pursue the
idea of designing the proposed signal-adapted frames.

Here, we consider the cerebellum region of the brain. The
graph, as designed in [31], encodes the 3-D geometry of the
cerebellar gray matter, and its construction is based on an at-
las template of the cerebellum [49]. The vertices of the graph
represent voxels within the cerebellar structure that correspond
to gray matter, and the edges are assigned by computing con-
nections between adjacent voxels in 3-D neighbourhood, see
Fig. 8. The fMRI data were acquired from 26 healthy subjects
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Fig. 9. (a) Histogram of the eigenvalues ΛL(G) of the cerebellum graph. (b)
Distribution of the ensemble energy spectral density ēF of F . (c) Constructed
energy-equalizing transformation functions {TFk

(λ)}26
k=1 , TF (λ) and the

spectrum-adapting warping function wL(λ) [24]. Note that the black curves
correspond to the transformation for each subjects signal set, with the transfor-
mation at the two extremes presented as dashed curves. (d)–(f) Signal-adapted
system of spectral kernels based on F1 , F2 and F , respectively. (g) Spectrum-
adapted system of spectral kernels [24]. (h) Meyer-like wavelet frame system
of spectral kernels [11].

while performing a slow event-related Eriksen flanker task [50].2

Whole-brain functional volumes were acquired throughout the
task, one every two seconds, with a total of 292 volumes per
subject. An anatomical scan of each subject’s brain was also
collected. By registering each subject’s anatomical scan to the
template cerebellum, and accordingly mapping the functional
volumes, cerebellar graph signals were constructed by extract-
ing functional voxels matching the defined graph vertices. This
resulted in one signal set for each subject, {Fk}26

k=1 , each in-
cluding 292 signals. A set including the signals from all subjects
was also constructed as F = F1 ∪ F2 ∪ · · · ∪ F26 .

The histogram of the eigenvalues ΛL(G) of the cerebellum
gray matter graph and the distribution of the ensemble
energy spectral density of F are shown in Figs. 9(a) and (b),
respectively. Unlike the Alameda traffic graph and data, a
major difference is observed between the two distributions:
most eigenvalues are located at the upper end of the spectrum,

2The data are publicly available at https://openfmri.org/dataset/ds000102.

Fig. 10. (a)–(d) The mean distribution of coefficients resulting from decom-
posing the set of signal in Fnoise using the system of spectral kernels shown
in Figs. 9(e)–(h), respectively. Each plot shows the mean distribution of coef-
ficients in one subband, with the order from left to right corresponding to the
blue, red, yellow, purple and green spectral kernels, respectively. Note that the
distributions are shown for the same range of coefficient values for each subband
across the frames, whereas the counts (y axis) are adjusted for each distribution.

Fig. 11. (a)–(e) The same as in Fig. 10 but for F2 . For clarity, the lower end
of the distributions in the second subbands are vertically magnified.

whereas the ensemble energy is significantly concentrated at
the lower end of the spectrum. This leads to a major discrepancy
between TF (λ) and wL(λ), see Fig. 9(c), and consequently,
the resulting spectral kernels, see Figs. 9(d)–(g): the kernels
of the signal-adapted frames are localized at the lower end of
the spectrum, whereas those of the spectrum-adapted frame
are localized at the higher end of the spectrum. As a result, the
signal-adapting scheme leads to an optimal configuration of fil-
ters in the sense that more filters are allocated to spectral regions
where higher ensemble signal energy is present rather than be-
ing allocated to part of the spectrum where more eigenvalues are
located.

The concentration of the ensemble energy at the lower end of
the spectrum makes the non-adapted tight Meyer-like wavelet
design a relatively suitable design, see Fig. 9(h). However, com-
paring Figs. 9(f) and (h) demonstrates the efficiency of the pro-
posed construction: the spectral range lying in the support of
the first kernel of the Meyer-like wavelet frame (blue kernel) is
spanned by approximately three kernels in the signal-adapted
frame (blue, red and orange kernels). This suggests the superi-
ority of the signal-adapted frame in providing a more efficient
multi-scale representation of the data compared to the dyadically
scaled wavelet design. Interestingly, the narrowband configura-
tion of the proposed signal-adapted frame closely resembles that
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found to be optimal for analyzing cerebellar data by tunning the
Meyer-like wavelet frame in [30], [31].3

To provide further insight than that provided by visual com-
parison of the frames, the set of cerebellar signals in F2 as
well as a set of 292 white Gaussian noise signals (σ2 = 1),
denoted Fnoise , were decomposed using the frames shown in
Figs. 9(e)–(h). The resulting coefficients cKj ,m (cf. (18)) were
normalized as cKj ,m /||ψKj ,m ||

2
to account for the difference in

the norm of their associated atoms. Figs. 10 and 11 show the
mean distribution of the normalized decomposition coefficients
of Fnoise and F , respectively. For Fnoise , the distributions of the
coefficients in all five subbands of all four frames are Gaussian-
like as expected, see Fig. 10. For F2 , the distributions of the co-
efficients of the last subband of all four frames closely resembles
a Gaussian (see the 4 plots at the right end of Figs. 11(a)–(d)),
similar to the distributions obtained on Fnoise , cf. Figs. 11. This
suggests that the corresponding atoms of this subband have cap-
tured noise. A similar observation is made for the distributions
associated with the third and fourth subbands of the spectrum-
adapted and Meyer-like wavelet frame (Figs. 11(c)–(d)) as well
as the fourth subband of the signal-adapted frame constructed
based on F (Fig. 11(b)). On the other hand, the coefficients of
the first four subbands of the signal-adapted frame constructed
based on F2 significantly deviate from zero, cf. first four plots
in Fig. 11(a), and have distributions unlike that expected to re-
sult from decomposing noise (cf. Fig. 10). This suggests the
efficiency of the signal-adapted frame in resulting in atoms that
capture signal components.

Although the coefficients of the first three subbands of the
signal-adapted frame constructed based on F (Fig. 11(b)) also
provide more information than those of the spectrum-adapted
and Meyer-like wavelet frame (Figs. 11(c)–(d)), the coefficients
of the signal-adapted frame constructed based onF2 (Fig. 11(a))
show yet greater significance. This suggestes the superiority of
the subject-based frame, shown in Fig. 9(e), over the frame
constructed based on the energy content of the signals from
the group of subjects, shown in Fig. 9(f), for decomposing F2 .
Despite this fact, if a comparison between decomposition of
the signals from different subjects is required, as for instance
performed in [31], the group-based frame constructed based on
F is the suitable choice.

D. Signal Denoising

To illustrate one application of the proposed frames, we de-
noise a set of signals realized on the Minnesota road graph. For
different σ2

e , noise corrupted signal sets were created using (43)
as Fσe

= {y[i]
η ,2}η=0.2,0.5 , where i = 1, . . . , 10 denotes differ-

ent random realizations of pη and e. Denoising was performed
through soft thresholding of the decomposition coefficients. In
particular, the denoised signal x̃(ϑ) , where ϑ denotes the global
threshold, were obtained from the coefficients cK,m (cf. (18)) as

x̃(ϑ) =
∑

j,m

H
(
|cKj

,m | − τ
(ϑ)
Kj ,m

)
cKj

,m ψKj ,m , (46)

where H(·) denotes the Heaviside step function and τ
(ϑ)
Kj ,m de-

note element-adapted thresholds. In order to account for that the

3The similarity can be observed by comparing the spectral coverage of the
first two kernels in Fig. 9(f) with that in Fig. 3(d) in [31] and Fig. 1(b) in [30].

Fig. 12. Systems of spectral kernels of the (a) SGWT frame [10], (b) spectrum-
adapted frame and (c) the signal-adapted frame, used for denoising.

frame elements generally have different norms, element-adapted
thresholds of the form [12]

τ
(ϑ)
Kj ,m = σe ||ψKj ,m ||

2
ϑ, (47)

were used that are also adjusted with respect to the noise level.
To evaluate performance, the average mean square error re-

duction (ΔMSE) was computed for each ϑ as

ΔMSE(ϑ) =
1
|F|

|F|∑

k=1

10 log10

(
||xk − x̃

(ϑ)
k ||22

||xk − yk ||22

)

, (48)

where k runs over the signals in the signal set, and |F| denotes
the cardinality of the set. To compare the denoising performance
across different σ2

e and J , the minimum MSE reduction is con-
sidered

ΔMSE(min) = min
ϑ

ΔMSE(ϑ) , (49)

where ϑ is varied within the interval [1,5] with a step size of
0.25.

The signals in the setsFσe
were denoised using: 1) the SGWT

frame [10], neither adapted to the spectrum nor to the graph sig-
nals, 2) the spectrum-adapted frame [24] and 3) the proposed
frame, using up to 10 spectral scales. Fig. 12 illustrates an ex-
ample of the used frames for J = 7 scales and σ2

e = σ2
x . By

comparing the signal-adapted frame constructed based on the
noisy signals, shown in Fig. 12(c), with its respective counter-
part constructed based on the clean signals, shown in the top of
Fig. 4(d), it is observed that although the addition of noise has
affected the support of the filters, the overall distribution of the
support of the kernels across the spectrum is still consistent be-
tween the two cases. As white Gaussian noise exhibits a uniform
energy spectral density, its influence on the overall distribution
of ensemble energy is negligable.

Fig. 13 presents a comparison of denoising performances
of the different types of frames. Fig. 13(a) presents ΔMSE
measures when using J = 7 scales. Compared to the spectrum-
adapted frame, the proposed frames show better performance
across ϑ. Compared to the SGWT frame, the difference in per-
formance is generally better for ϑ values close to the mini-
mum ΔMSE. Fig. 13(b) presents the ΔMSE(min) measures
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Fig. 13. Comparison of denoising performance using different frames on
signal setFσ e . (a) ΔMSE as a function of threshold level ϑ using J = 7 spectral
scales, where σ2

e = σ2
x in signal realization for all cases. (b) ΔMSE(m in) as a

function of noise level, SNR = σ2
x /σ2

e , using frames with (b) J = 7 spectral
scales. (c) ΔMSE(m in) as a function of the number of scales J , where σ2

e = σ2
x

in signal realization for all cases. Note that in (c) some sample points are not
displayed for the spectrum-adated and the SGWT frame; this is due to that the
former is only defined for J ≥ 3, and that the latter is not optimally designed
for small J and leads to ΔMSE(m in) > 0.

as a function of the SNR = σ2
x/σ2

e , when using J = 7. The
relative performance of the signal-adapted frame and SGWT
frame is consistent across different SNRs, with the proposed
frame offering, in general, better noise reduction. However, the
spectrum-adapted frame shows better noise reduction at higher
SNRs.

It is advantageous to also compare the denoising performance
for frames with different number of subbands. Fig. 13(c) shows
plots of the ΔMSE(min) in denoising the signals using the differ-
ent frames as a function of J . Using the signal-adapted frames
leads to a lower ΔMSE(min) than for the SGWT and spectrum-
adapted frames. It is also observed that the difference in perfor-
mance between the proposed frame and the spectrum-adapted
frame is more pronounced when using up to eight scales. In
recent studies that use the SGWT [31], [51]–[55], typically, up
to six scales are used, which can be explained by observing that
the performance for this frame saturates at J = 5. In contrast,
the proposed frames show a monotonic increase in performance
also for larger number of scales. This suggests that the pro-
posed signal-adapted frames have the potential to provide a
more meaningful multi-scale representation of graph signals.

VI. CONCLUSION

We have presented a construction of signal-adapted tight
frames for graph signals. The adaptivity of the approach is intro-
duced by exploiting the ensemble energy spectral density, which
describes the second-order statistics of the signal class at hand.
It should be noted that wavelet-type decompositions are optimal
for non-stationary signals, such as the ones considered in our
experimental results. From this point-of-view, the design only
uses the stationary information, and its flexibility to represent
non-stationary features comes with the width and smoothness
of the bandpass characteristics. Conceptually, this approach is
similar to optimal pyramid designs that were proposed for im-
age processing in the 90’s [56]. A MATLAB implementation of
the proposed approach and the datasets used in this paper are
available online at miplab.epfl.ch/software/.

APPENDIX A
PROOF OF PROPOSITION 1

In order to ensure that the spectral kernels cover the full
spectrum, a must be chosen such that

λmax
(35c)
= λII + a

(j=J )
= γa + (J − 2)Δ + a,

which using (36a) leads to a = λm a x
J γ−J−γ+3 .

To prove that the UMT system of spectral kernels form a tight
frame, (17) needs to be fulfilled. Since, for all j, the supports of
K′

j−1(λ) and K′
j+1(λ) are disjoint, G(λ) can be determined as

G(λ) =
J∑

j=1

|K′

j (λ)|2

(35)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

|K′
1(λ)|2 (35a)

= 1 ∀λ ∈ [0, a]

|K′
1(λ)|2 + |K′

2(λ)|2 ∀λ ∈]a, γa]

|K′
2(λ)|2 + |K′

3(λ)|2 ∀λ ∈]γa, γa + Δ]
...

...

|K′
J (λ)|2 (35c)

= 1 ∀λ ∈]λmax − a, λmax]

(35b)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 ∀λ ∈ [0, a]

cos2(xI) + sin2(xI) ∀λ ∈]a, γa]

cos2(xII) + sin2(xII) ∀λ ∈]γa, γa + Δ]
...

...
1 ∀λ ∈]λmax − a, λmax]

= 1 ∀λ ∈ [0, λmax] (50)

where xI = π
2 ν( 1

γ−1 (λ
a − 1)) and xII = π

2 ν( 1
γ−1 (λ−Δ

a − 1)).
For any given γ, the constructed set of spectral kernels form

a tight frame. However, in order for the frame to satisfy the
uniformity constraint given in (28), the appropriate γ needs to
be determined. From (35b), we have ∀j ∈ {2, . . . , J − 2}

K′

j (λ) = K′

j+1(λ + Δ) ∀λ ∈]λI , λII + Δ]. (51)

By considering an inverse linear mapping of the spectral sup-
port where K′

1(λ) �= 0, i.e. [0, γa], to the spectral support where
K′

J (λ) �= 0, i.e. [λmax − γa, λmax], we have

K′

1(λ) = K′

J (−λ + 2a + JΔ) ∀λ ∈ [0, γa]. (52)

Thus, from (51) and (52) we have

∫ λm a x

0
K′

j (λ) dλ = C2 , j = 2, . . . , J − 1 (53a)

∫ λm a x

0
K′

1(λ) dλ =
∫ λm a x

0
K′

J (λ) dλ = C1 , (53b)
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Fig. 14. Design of a uniform system of spectral kernels satisfying (28) and
(29). The displayed function h(λ) and g(λ) correspond to the ones used in the
UMT design. However, any two functions passing through (α + Δ1 /2, C3 )
and satisfying (56) and (57) can be used to design a desired prototype system
of uniform spectral kernels.

respectively, where C1 , C2 ∈ R+ . Thus, in order to satisfy (28),
γ should be chosen such that

C1 = C2

∫ λm a x

0
K′

1(λ) dλ =
∫ λm a x

0
K′

2(λ) dλ

a +
∫ γa

a

K′

1(λ) dλ =
∫ γa

a

sin
(

π

2
ν

(
1

γ − 1

(
λ

a
− 1
)))

dλ

+
∫ γa+Δ

γa

K′

2(λ) dλ

a
(51)
=
∫ γa

a

sin
(

π

2
ν

(
1

γ − 1

(
λ

a
− 1
)))

dλ.

(54)

The optimal γ that satisfies (54) was obtained numerically by
defining

Q(γ) =
∫ γa

a

sin
(

π

2
ν

(
1

γ − 1

(
λ

a
− 1
)))

dλ − a, (55)

and discretizing Q(γ) within the range (a, γa], with a sampling
factor of 1 × 10−4 . Testing for γ ≥ 1, with a step size of 1 ×
10−2 , the optimal value, which is independent of λmax and J ,
was found to be γ = 2.73.

APPENDIX B
UNIFORM SYSTEM OF KERNELS—GENERAL CASE

The UMT system of spectral kernels (cf. Proposition 1) is one
prototype design that can be used as the basis for the proposed
frame design approach. For the general case, other prototype
system of kernels can be designed, with their design essentially
breaking down to (see Fig. 14 for notations):

1) the proper design of the pair of functions h(λ) and g(λ)
such that they lead to smooth quadrature mirror style filters
that satisfy

|h(λ)|2 + |g(λ)|2 = C1 ∈ R+ , ∀λ ∈ [α, α + Δ1],
(56)

where α,Δ1 ∈] 0, λmax[, C2 =
√

C1 , C3 =
√

C1/2,
2) determination of α, Δ1 and Δ2 such that

αC2 = Δ2C2 +
∫ α+Δ1

α

h(λ) dλ. (57)

Observe that α, Δ1 , Δ2 , h(λ) and g(λ) all depend on J and
λmax . Fig. 14 shows an illustration of the non-zero segments of
the resulting K′

1(λ) and K′
2(λ). {K′

j (λ)}J−1
j=3 can be obtained

by translating the non-zero segments of K′
2(λ) by (j − 2)Δ3 ,

and K′
J (λ) by mirroring the non-zero segment of K′

1(λ) and
translating it such that it spans the upper end of the spectrum.
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