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Abstract

Analysis of signals on complex topologies modeled by graphs is a topic of increasing importance. Decompositions

play a crucial role in representation and processing of such information. Here we propose a new tight frame design

that is adapted to a class of signals on a graph. The construction starts from a prototype Meyer-type system of kernels

with uniform subbands. The ensemble energy spectral density is then defined for a given set of signals defined on

the graph. The prototype design is then warped such that the resulting subbands capture the same amount of energy

for the signal class. This approach accounts at the same time for graph topology and signal features. The proposed

frames are constructed for three different graph signal sets and are compared to non signal-adapted frames. Vertex

localization of a set of resulting atoms is studied. The frames are then used to decompose a set of real graph signals,

and are also used in a setting of signal denoising. The results illustrate the superiority of the designed signal-adapted

frames, over frames blind to signal characteristics, in representing data and in denoising.

Index Terms

Spectral graph theory, filter design, tight frames, signal processing on graphs.

I. INTRODUCTION

Graphs provide a flexible framework for representing data that lie on topologically complex domains. Thus,

much attention has been given to generalizing fundamental signal processing operations to the graph setting [1]–

[3]. In particular, many proposals relate to extending multi-resolution transforms, filter bank designs and dictionary

constructions for signals on graphs [4]–[27]. These studies fall essentially within two regimes: spatial (vertex)

and spectral (frequency) designs. Constructions that fall within the former regime include methods based on lifting

schemes [4]–[6] and methods in designing wavelets for hierarchical trees [7]–[9]. The latter regime can be viewed as

defining dictionaries comprised of atoms that are constructed by translating smooth graph spectral filters to different
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vertices of the graph. The graph spectrum is defined as the eigenspace of a graph Laplacian matrix. One of the first

proposals of such a dictionary is the spectral graph wavelet transform (SGWT) frame [10] that is constructed based

on a system of spline-based spectral kernels, including a lowpass kernel and a sequence of dilated bandpass kernels.

Constructions of systems of spectral graph kernels leading to tight frames were proposed in [11]–[13]. Tight frames

are particularly interesting because of their property of energy conservation between the original and transformed

domain [28]. Other approaches to spectral domain design include diffusion wavelets [14], vertex-frequency frames

[23] and approaches to graph filter-bank design using bipartite graph decompositions [15]–[20], graph coloring [25]

and connected sub-graph decomposition [21].

The aforementioned spectral designs are blind to the fact that the eigenvalues of the Laplacian matrix that define

the graph spectrum are typically irregularly spaced, unlike the definition of discrete frequencies for regular signals.

As a step towards adaptation to the spectral properties of the graph domain, the construction of spectrum-adapted

tight graph wavelet and vertex-frequency frames was recently proposed in [24]. The spectrum-adapted spectral

kernels are adapted to the distribution of eigenvalues of the graph Laplacian matrix such that a similar number of

eigenvalues lies in the support of each spectral kernel.

Besides considering the structural characteristics of the graph, a major improvement to the frame design would

be to also consider the properties of the signals realized on the graph. To this aim, Thanou et al. [26], [27] have

pursued a structured, numerical dictionary learning approach in which wavelet dictionaries are learnt based on

a set of training signals. Since the graph structure is incorporated into the learning process, the learned kernels

are indirectly adapted to the graph Laplacian spectrum as well as to the training data. This approach is effective

in providing a sparse representation of graph signals that can be described as combinations of overlapping local

patterns. In a more empirical approach [29]–[31], the Meyer-like frame design [11] has been tailored to fMRI

signals by defining a spectral partitioning such that a small number of narrow-support filters, covering the lower

end of the spectrum, are constructed.

In this paper, we propose an approach for constructing tight graph frames that account not only for the intrinsic

topological structure of the underlying graph as proposed in [24], but also for the characteristics of a given set of

signals. This is accomplished by considering a graph-based energy spectral density notion that includes signal and

topology properties and encodes the energy-wise significance of the graph eigenvalues. A system of spectral kernels

tailored to the energy spectral density is constructed by starting from the design of a prototype Meyer-type tight

frame with uniform spectral coverage, followed by a warping step which incorporates the energy spectral density

information to the prototype design, resulting in a tight frame with equi-energy subbands.

The paper is organized as follows. In Section II, definitions related to spectral graph theory, tight frames and

graph signal decomposition are briefly reviewed. In Section III, the procedure for constructing signal-adapted tight

frames is introduced. In Section IV, insight on vertex localization of the resulting atoms is provided. In Section V,

constructions of the proposed frame for three different graph signal sets are presented, vertex localization of a set

of resulting atoms is quantified, the coefficients resulting from decomposing a real graph dataset are studied, and

finally, the proposed frames are used in the setting of signal denoising.
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II. PRELIMINARIES

A. Graphs and Spectral Graph Theory

An undirected, weighted graph G = (V, E , A) consists of a set V of Ng vertices, a set E of edges (i.e., pairs (i, j)

where i, j ∈ V) and a weighted adjacency matrix A = [ai,j ], where ai,j denotes the weight of the edge between

vertices i and j. The degree matrix D is diagonal with elements di,i =
∑
j ai,j . The Laplacian matrices of G in

combinatorial form L and normalized form L are defined as

L = D −A, (1)

L = D−1/2LD−1/2, (2)

respectively. Since both L and L are symmetric and positive semi-definite, their eigendecompositions lead to a set

of Ng real, non-negative eigenvalues that define the graph spectrum

Λ(G) = {0 = λ1 ≤ λ2 · · · ≤ λNg = λmax}. (3)

The corresponding set of eigenvectors {χl}
Ng
l=1 forms a complete set of orthonormal vectors that span the graph

spectral domain [32]. When necessary, we use the notations ΛL(G) and ΛL(G) to distinguish between the two

definitions of the graph Laplacian. As the eigenvalues may be repetitive, for each λl, we denote its algebraic

multiplicity by mλl and the index of its first occurrence by iλl . That is, if λl is singular, i.e. mλl = 1, then iλl = l,

and if λl is repetitive, then iλl ≤ l. The multiplicity of eigenvalues equal to zero reflects the number of connected

components in the graph. In this paper, only connected graphs are considered, and thus, mλ1 = 1.

B. Graph Signals

Let R(V) denote a Hilbert space of real-valued signals defined on the vertices of the graph, with the inner

product defined as ∀f1,f2 ∈ R(V), 〈f1,f2〉 =
∑Ng
n=1 f1[n]f2[n], and the norm as ∀f ∈ R(V), ||f ||22 = 〈f ,f〉 =∑Ng

n=1|f [n]|2.

Graph Fourier Transform: For any f ∈ R(V), its spectral representation f̂ ∈ R(V), known as the graph Fourier

transform of f , can be used to express f in terms of the graph Laplacian eigenvectors

f [n] =

Ng∑
l=1

〈f ,χl〉︸ ︷︷ ︸
=f̂ [l]

χl[n]. (4)

Parseval Relation: With this definition of the Fourier transform, it can be shown that the Parseval relation holds

[23]

∀f1,f2 ∈ R(V), 〈f1,f2〉 = 〈f̂1, f̂2〉. (5)

Generalized Convolution Product: For any two graph signals f1,f2 ∈ R(V), the generalized convolution product

is defined as

(f1 ∗ f2)[n] =

Ng∑
l=1

f̂1[l]f̂2[l]χl[n]. (6)
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Graph Signal Filtering: In analogy with conventional signal processing, filtering of graph signals can be viewed

as an operation in the spectral domain. For a given graph signal f ∈ R(V) and graph filter g ∈ R(V), defined

through its Fourier transform ĝ, the filtered signal, denoted by (Fgf), can be obtained as

(Fgf)[n] = (g ∗ f)[n] (7)

(6)
=

Ng∑
l=1

ĝ[l]f̂ [l]χl[n]. (8)

The filter response of an impulse at vertex m

f = δm ↔ δ̂m[l] = 〈δm,χl〉 = χl[m], (9)

can then be obtained as

(Fgδm)[n] =

Ng∑
l=1

ĝ[l]χl[m]χl[n], (10)

which, in general, is shift-variant; i.e, in the vertex domain, it is not a shifted version of the same graph signal.

Therefore, for convenience, a graph filter can be defined by its spectral kernel ĝ.

To design spectral kernels, it is often more elegant to define an underlying smooth continuous kernel. For instance,

we consider K(λ) : [0, λmax]→ R+, from which we derive a discrete version through sampling as

k[l] = K(λl), l = 1, . . . , Ng. (11)

Note that although spectral kernels (i.e., K(λ) and k) are defined in the spectral domain, they are not linked to

any explicit vertex representation, and thus, the Fourier symbol ̂ is not used for their denotation. This notation

convention will be used throughout the paper.

C. Dictionary of Graph Atoms

As noted before, for a given kernel k associated with K, the vertex-domain impulse responses are obtained as

ψK,m = (Fkδm)↔ ψ̂K,m[l] = k[l]χl[m]. (12)

The collection of impulse responses {ψK,m}
Ng
m=1 are considered graph atoms associated with the spectral kernel

K(λ). Given a set of J spectral kernels {kj}Jj=1 ∈ R(V), a dictionary DG containing JNg atoms is obtained as

DG =
{
{ψKj ,m}

J
j=1

}Ng
m=1

. (13)

The atoms of DG form a frame in `2(V) if there exist bounds B2 ≥ B1 > 0 such that [28]

∀f ∈ R(V), B1||f ||22≤
∑
j,m

|〈f ,ψKj ,m〉|
2≤ B2||f ||22, (14)

where the frame bounds are given by

B1 = min
λ∈[0,λmax]

G(λ), B2 = max
λ∈[0,λmax]

G(λ), (15)
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and G(λ) is defined as

G(λ) =
J∑
j=1

|Kj(λ)|2. (16)

In particular, DG forms a tight frame if

∀λ ∈ [0, λmax], G(λ) = C, (17)

and a Parseval frame if C = 1.

D. Decomposition of Graph Signals

Direct Decomposition: To decompose a graph signal f onto a set of the atoms in DG , the coefficients can be

obtained as

cKj ,m = 〈f ,ψKj ,m〉 (18)

(5)
=

Ng∑
l=1

ψ̂Kj ,m[l]f̂ [l], (19)

(12)
=

Ng∑
l=1

kj [l]f̂ [l]χl[m]. (20)

If DG forms a Parseval frame, the original signal can be recovered as

f [n] =
∑
j

∑
m

cKj ,mψKj ,m

=
∑
j

∑
m

∑
l

kj [l]f̂ [l]χl[m]
∑
l′

kj [l
′
]χl′ [m]χl′ [n]

=
∑
l

∑
l′

∑
j

kj [l]kj [l
′
]f̂ [l]χl′ [n]

∑
m

χl[m]χl′ [m]︸ ︷︷ ︸
δ
l−l′

=
∑
l

∑
j

k2
j [l]︸ ︷︷ ︸

=1

f̂ [l]χl[n]. (21)

Decomposition Through Polynomial Approximation: The decomposition of f on DG leads to the coefficients

{cKj = [cKj ,1, cKj ,2, . . . , cKj ,Ng ]T }Jj=1 that can be interpreted as filtered versions of f with different spectral

kernels {kj}Jj=1. Due to the redundancy of such a transform, it is beneficial to implement the transform using a

fast algorithm, rather than using the explicit compution of the coefficients through (20). This becomes even more

crucial when large graphs are considered. One such algorithm is the Chebyshev polynomial approximation method

[10], which is based on considering the expansion of the continuous spectral window functions {Kj(λ)}Jj=1 with

the Chebyshev polynomials Cp(x) = cos(p arccos(x)) as

Kj(x) =
1

2
dKj ,0 +

∞∑
p=1

dKj ,p C̄p (x) , (22)
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where C̄p(x) = Cp(x−bb ), b = λmax/2 and dKj ,p denote the Chebyshev coefficients obtained as

dKj ,p =
2

π

∫ π

0

cos(pθ)Kj(b(cos(θ) + 1)). (23)

By truncating (22) to M terms, cKj can then be approximated as

c̃Kj =
1

2
dKj ,0f +

M∑
p=1

dKj ,pC̄p(L)f . (24)

We refer to [10] for further details.

III. SIGNAL-ADAPTED FRAME CONSTRUCTION

The objective is to construct a signal-adapted tight frame where the adaptivity is introduced by exploiting

the spectral energy content of a given graph signal set. This approach is motivated by two observations: (i) the

eigenvalues of the graph Laplacian that define the graph’s spectrum are irregularly spaced, and depend in a complex

way on the graph topology; (ii) the distribution of graph signals’ energy is generally non-uniform across the spectrum.

Based on these observations, the idea is to construct an ‘adapted’ frame, such that the energy-wise significance

of the eigenvalues is taken into account, rather than only adapting based on the distribution of the eigenvalues

as proposed in [24]. In this way, also the topological information of the graph is implicitly incorporated in the

design, since the energy content is given in the graph spectral domain that is in turn defined by the eigenvalues.

To formulate the problem, we first introduce a notion of energy for a given graph and a given signal set.

Definition (ensemble energy spectral density): For a given graph G, with spectrum Λ(G), and graph signal set

F = {fs}
Ns
s=1, the ensemble energy spectral density of F can be obtained as

ēF [l] =
1

Ns

Ns∑
s=1

∣∣∣∣〈 fs
||fs||2

,χl〉
∣∣∣∣2, l = 1, . . . , Ng, (25)

where the normalization term ensures that each signal contributes equally to the ensemble energy and
∑
l ēF [l] = 1.

Using ēF , the desired system of spectral kernels {kj}Jj=1 needs to be constructed such that each kernel captures

an equal amount of ensemble energy, i.e.,
Ng∑
l=2

kj [l]ēF [l] =
1− ēF [1]

J
, j = 1, . . . , J (26)

subject to the Parseval frame constraint, i.e.,
J∑
j=1

|kj [l]|2= 1, l = 1, · · · , Ng. (27)

The energy contribution from λ1 is excluded from the design as it merely reflects the ensemble mean of the signal

set.

We propose a two-step procedure to obtain such a design. First, a prototype system of continuous spectral kernels,

{K′j(λ)}Jj=1, is obtained such that they satisfy the following uniformity constraint

∃ C ∈ R+,

∫ λmax

0

K
′

j(λ) dλ = C, j = 1, . . . , J, (28)
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subject to the tight Parseval frame constraint,
J∑
j=1

|K
′

j(λ)|2= 1, ∀λ ∈ [0, λmax]. (29)

Second, an energy-equalizing transformation TF (λ) is constructed and incorporated in {K′j(λ)}Jj=1, leading to a

warped version of the prototype design

Kj(λ) = K
′

j(TF (λ)), j = 1, . . . , J. (30)

Provided that TF (λ) is designed such that it is monotonically increasing and satisfies

bj∑
l=aj

ēF [l] =
1− ēF [1]

J
, j = 1, . . . , J, (31)

where

aj = arg min
l∈{1,...,Ng}

{∣∣∣∣TF (λl)−
j − 1

J
λmax

∣∣∣∣} (32)

bj = arg min
l∈{1,...,Ng}

{∣∣∣∣TF (λl)−
j

J
λmax

∣∣∣∣}, (33)

the resulting {Kj(λ)}Jj=1 corresponds to the desired signal-adapted system of spectral kernels in the continuous

domain. If a discrete representation is needed for direct decomposition as in (20), {kj}Jj=1 can be obtained through

sampling. In the following, these two steps are explained in detail.

A. Step 1: Prototype System of Spectral Kernels Construction

While there is no unique solution that satisfies (28), prototype systems of spectral kernels satisfying this constraint

subject to (29) can be designed. In this paper, we aim at designing spectral kernels similar to those of the Meyer-

like graph wavelet frame [11] since they have (i) a finite support of the bandpass type, and (ii) smooth transition

bands that have an advantageous effect on localization in the vertex domain [10], [23]. The following proposition

introduces the design of a uniform Meyer-type system of spectral kernels.

Proposition 1. (uniform Meyer-type (UMT) system of spectral kernels) Using the auxiliary function of the Meyer

wavelet, given by [33]

ν(x) = x4(35− 84x+ 70x2 − 20x3), (34)
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Fig. 1. Construction of UMT system of spectral kernels.

a set of J ≥ 2 spectral kernels defined as

K
′

1(λ) =


1 ∀λ ∈ [0, a]

cos(π2 ν( 1
γ−1 (λa − 1))) ∀λ ∈]a, γa]

0 elsewhere

(35a)

K
′

j(λ) =


sin(π2 ν( 1

γ−1 (λ−(j−2)∆
a − 1))) ∀λ ∈]λI, λII]

cos(π2 ν( 1
γ−1 (λ−(j−1)∆

a − 1))) ∀λ ∈]λII, λII + ∆]

0 elsewhere

(35b)

K
′

J(λ) =


sin(π2 ν( 1

γ−1 (λ−(J−2)∆
a − 1))) ∀λ ∈]λI, λII]

1 ∀λ ∈]λII, λII + a]

0 elsewhere

(35c)

can be constructed, where

∆ = γa− a, (36a)

λI = a+ (j − 2)∆, (36b)

λII = γa+ (j − 2)∆, (36c)

a =
λmax

Jγ − J − γ + 3
. (36d)

Fig. 1 illustrates the notations used. By setting γ = 2.73, the set of kernels defined in (35) satisfies the uniformity

constraint given in (28). The atoms of a dictionary constructed using this set of spectral kernels form a Parseval

frame on R(V).

Proof. see Appendix A.

Figs. 2(a) and (b) show realizations of the resulting UMT system of spectral kernels for a fixed λmax and two

different J . For comparison, the half-cosine uniform translate (HCUT) system of spectral kernels [24] are shown

in Fig. 2(c) and (d). There are three main differences when comparing these two designs. First, the atoms of a

dictionary constructed using the UMT system of spectral kernels not only form a tight frame but also a Parseval

frame. Second, the UMT system of spectral kernels has better passband characteristics compared to HCUT system
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of spectral kernels as the support of each kernel is a more strict subset of the spectrum, with less overlap of adjacent

kernels. Third, the UMT system of spectral kernels satisfies (28). The latter two differences are in favour of the

proposed UMT design for our purpose.

B. Step 2: Energy-Equalizing Spectral Warping

Although the UMT system of filters satisfy the uniformity constraint (28), they satisfy the equi-energy constraint

(26) only if 1) the graph’s eigenvalues are uniformly distributed across the spectrum and 2) the ensemble energy

contribution at each eigenvalue is equal. In fact, for a given graph and signal set, these two conditions do not hold in

general. Using ēF , the desired continuous energy-equalizing transformation function TF (λ) : [0, λmax]→ [0, λmax],

can then be obtained through monotonic cubic interpolation [34] of the pair of points{λl , λmax

mλl(1− ēF [1])

iλl+mλl∑
r=iλl

r∑
k=2

ēF [k]

}Ng
l=2

, (37)

together with (λ1, 0). The resulting TF (λ) satisfies (31). Thus, the set of spectral kernels obtained by warping the

UMT system of kernels using TF (λ), cf. (30), correspond to the desired signal-adapted system of spectral kernels.

C. Generalization

The proposed procedure for the design of signal-adapted frames can be generalised in two aspects. First, prototype

designs other than the UMT can be designed and used as the base for the proposed frames, with a general case

formulation given in Appendix B. Second, rather than the proposed ensemble energy spectral density measure given

in (25), other forms of stationary signal information can be exploited to construct a suitable signal-adapted spectral

transformation, with example measures recently extended to the graph setting given in [35]–[37]. Finally, we also

0
0

1

¸
max¸

(a)

¸

(b)

0
0

1

¸
max

0
0

1

¸
max

0
0

1

¸
max

¸

(c)

¸

(d)

Fig. 2. UMT system of spectral kernels as given in Proposition 1 displayed for (a) J = 5 and (b) J = 7 spectral scales. The HCUT system

of spectral kernels [24] displayed for (c) J = 5 and (d) J = 7 spectral scales.
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note that, depending on the dataset, it can be beneficial to slightly smooth TF (λ), in particular important at spectral

regions where adjacent eigenvalues are minutely different in value and the ensemble energy significantly changes

across them. A smooth TF (λ), in turn, comes in favour of obtaining smoother spectral kernels.

IV. VERTEX LOCALIZATION OF SPECTRAL KERNELS

As in classical signal processing where the uncertainty principle determines the trade-off between fine localization

in time (spatial) and frequency domain, a similar notion naturally extends to the graph setting, with example

proposals given in [23], [38]–[41]. As the present proposal of constructing frames is defined in the spectral domain,

it is interesting to consider the theoretical constraints in the vertex localization of the resulting atoms. In particular,

we first consider the bound on the vertex localization of atoms provided through polynomial approximation [23].

For a polynomial spectral kernel of degree D, defined as

PD(λl) =
D∑
k=0

αkλ
k
l (38)

for some coefficients {αk}Dk=0, it can be shown that its associated atoms satisfy the localization constraint [23]

∀n ∈ V, ψPD,n[m] = 0 if dG(n,m) > D, (39)

where dG(·, ·) is a distance metric. As suggested in [38], the geodesic distance is one metric that can be used, in

which case, dG(i, j) is the length of the shortest path connecting vertices i and j. For a generic spectral kernel

K(λ), the localization of its associated atoms can be quantified as [23]

|ψK,n[m]|≤
√
Ng inf

P
D
′
{||K − PD′ ||∞}, (40)

where the infimum is taken over all polynomial kernels of degree D
′
, as defined in (38), with D

′
= dG(n,m)− 1.

An upper bound can be determined for the minimax polynomial approximation error of the infimum term. We refer

to [23] for further details and a proof of (39) and (40).

Based on (39) and (40), if a given spectral kernel can be perfectly represented as a polynomial of degree M ,

its realization at a given vertex n will be localized in a sphere of radius M edges around vertex n; i.e., the lower

the degree, the finer the localization in the vertex domain. If the approximation is not perfect, the vertices that fall

outside the sphere will not necessarily be zero, but constrained by the bound in (40). This can be seen as the trade-

off of vertex-spectral localization: the smoother the given spectral kernel K(λ) and the wider its transitions bands,

the lower is its approximation error to a polynomial, and thus, the finer is the localization of its associated atoms in

the vertex domain. Compared to the HCUT spectral kernels, the proposed UMT spectral kernels provide narrower

transition bands (cf. Fig. 2), and therefore, the resulting atoms are expected to be less localized. As signal-adapted

kernels result from incorporating the energy-equalizing transformation into the UMT design, cf. (30), the specific

bound depends on the signal set used.
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For an alternative description, the localization of realizations of graph atoms can be quantified using the graph

spread measure [38]; the graph spread of a signal f ∈ R(V) around vertex k ∈ V is defined as

∆2
G,k(f) =

1

||f ||22

∑
v∈V

d2
G(k, v)f2[v], (41)

where dG(·, ·) is the same distance metric as that used in (39) and (40). The smaller is ∆2
G,k(f), the more localized

is f around vertex k, and vice versa. A global spread measure can also be obtained as

∆2
G(f) = min

k∈V
{∆2
G,k(f)}. (42)

By substituting an atom ψK,n for f in (41) and (42), its vertex localization can be quantified. In Section V-B, these

two measures are used to quantify vertex localization of the different frames.

V. RESULTS

A. Signal-Adapted Tight Frame Constructions

We present constructions of the proposed frames for signal sets realized on the Minnesota road graph [42] and

the Alameda graph [26]. The Minnesota road graph is chosen as it is considered as a benchmark in many recent

studies, e.g., [15]–[25]. The choice of the Alameda graph is to highlight the fact that, although the proposed method

is developed based on spectral energy characteristics of a signal set, it is also implicitly adapted to the graph’s

spectrum.

1) Data Realized on the Minnesota Road Graph: The Minnesota road graph is considered as a benchmark in

many recent studies, e.g., [15]–[25]. The edges represent major roads and the vertices their intersection points,

which often correspond to towns or cities. We consider a general model for realizing signals on this graph as

yη,n = xη,n + e, (43)

where xη,n ∈ R(V) denotes the graph signal of interest with density η ∈]0, 1] and smoothness n ∈ Z+, and

e ∈ R(V) denotes additive white Gaussian noise of variance σ2
e . In particular, xη,n is constructed as

xη,n = Anpη, (44)

(a)

1

0

(b)

1

0

Fig. 3. Sample signal realizations on the Minnesota road graph, (a) x0.2,2 and (b) x0.5,4. The plots are normalized as xη,n/||xη,n||∞.
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Fig. 4. (a) Histograms of the eigenvalues ΛL(G) of the Minnesota road graph. Each bar indicates the number of eigenvalues that lie in the

corresponding spectral range. (b) Distribution of the ensemble energy spectral density ēF1
(top) and ēF2

(bottom). Each bar indicates the sum

of ensemble energies of the eigenvalues lying in the corresponding spectral range. (c) Constructed energy-equalizing transformation functions,

TF1
(λ) and TF2

(λ), and the spectrum-adapting warping function wL(λ) [24]. (d) Signal-adapted system of spectral kernels constructed by

warping the UMT system of spectral kernels (J = 7) using TF1
(λ) (top) and TF2

(λ) (bottom). (e) Spectrum-adapted system of spectral

kernels [24] constructed by warping the HCUT system of spectral kernels (J = 7) using wL(λ). (f) Meyer-like wavelet frame system of

spectral kernels [11]. The dashed line in (d)–(f) corresponds to the function G(λ) in (15).

where pη ∈ R(V) denotes a random realization of a spike signal as {pη[i] ∈ {0, 1}}i=1,...,Ng such that
∑
i pη[i] =

ηNg , An incorporates the intrinsic structure of the graph into the signal, and the power n controls the extent of signal

smoothness. Fig. 3 shows two signals realized on the Minnesota road graph using this scheme. By setting σ2
e = 0,

two sets of clean graph signals with different smoothness were constructed as F1 =
{
y

[i]
η,2

}
η=0.2,0.5

and F2 ={
y

[i]
η,4

}
η=0.2,0.5

, where i = 1, . . . , 10 denotes random realizations of pη , leading to 20 signals in each set.

While the distribution of the eigenvalues of this graph is rather uniform, see Fig. 4(a), the ensemble energy is

concentrated towards the two ends of the spectrum for both F1 and F2, see Fig. 4(b). Fig. 4(c) shows the resulting

energy-equalizing transformation functions. By incorporating TF1
(λ) and TF2

(λ) into the UMT system of spectral

kernels, the desired signal-adapted systems of spectral kernels are obtained, see Fig. 4(d). A comparison of Figs. 4(d)

and (b) highlights the energy-wise optimality of the proposed signal-adapted frame construction; i.e., more filters

are allocated to spectral ranges that have higher ensemble energy. The support of the filters in the two sets vary
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relative to the difference in the distribution of the ensemble energy of the two signal sets, with more filters allocated

to the lower end of the spectrum for the F2 frame than for the F1 frame, and vice versa at the upper end of the

spectrum.

For comparison, Fig. 4(e) shows the corresponding spectrum-adapted system of spectral kernels for the Minnesota

road graph, where the HCUT system of spectral kernels [24], shown in Fig. 2(d), are warped using a spectrum-

adapting warping function wL(λ), shown in Fig. 4(c). wL(λ) is constructed such that the distribution of eigenvalues

is equalized [24]. As the distribution of the eigenvalues of this graph is almost uniform, the spectrum-adapted filters

almost resemble the non-warped HCUT filters. Comparing Figs. 4(d) and (e), it can be observed that the proposed

method optimizes the construction of the filters such that the energy-wise significance of the eigenvalues is taken

into account, rather than only considering the distribution of the eigenvalues as in the spectrum-adapted frame.

Fig. 4(f) shows the Meyer-like wavelet frame system of spectral kernels [11], in which the kernels have the

classical dyadic dilation of the wavelet scheme. The frame is neither adapted to the distribution of the eigenvalues

nor to the distribution of the ensemble energy. By comparing Figs. 4(d) and (f), it is observed that the partitioning

of the kernels at the lower end of the spectrum are similar, whereas a major difference is seen at the remainder

of the spectrum. The similarity is more pronounced for kernels of the signal-adapted frame associated with F1,

due to the particular initial decay pattern observed in the ensemble energy of F1, see Fig. 4(b), top. The benefit of

the signal-adapted frame is observed when comparing the spread of the kernels in the spectral interval [0.2, 2]: the

signal-adapted design approach allocates more subbands to the spectral interval where signal energy is expected,

whereas the wavelet frame design approach, cannot allocate more subbands to spectral intervals other than the lower

end.

2) Traffic Data on the Alameda Graph: The data are part of the Caltrans Performance Measurement System

dataset1. The monthly bottlenecks occurring across 17 freeways in Alameda county between January 2010 and

December 2015 are considered. A bottleneck could be any location where there is a persistent drop in speed, such

as merges, large on-ramps and incidents. The vertices of the graph represent detector stations where bottlenecks

1The data are publicly available at http://pems.dot.ca.gov.

Fig. 5. Illustration of the Alameda graph.
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Fig. 6. (a) Histogram of the eigenvalues ΛL(G) of the Alameda graph. (b) Distribution of the ensemble energy spectral density ēF of the

traffic dataset. (c) Constructed energy-equalizingtransformation functions TF (λ) and the spectrum-adapting warping function wL(λ) [24]. (d)

Signal-adapted system of spectral kernels. (e) Spectrum-adapted system of spectral kernels [24]. (f) Meyer-like wavelet frame system of spectral

kernels [11].

were identified over the mentioned period, see Fig. 5. Two stations i and j are considered as connected through an

edge if either 1) they are adjacent across a freeway, or 2) there is a connection at a crossing between freeways near

the two stations. The latter type of edges were defined based on satellite maps of the county available on Google

Maps [43]. The signal on the graph is the average duration of bottlenecks for each specific month during three

shifts (AM shift: 5am-10am, noon shift: 10am-3pm, and PM shift: 3pm-8pm), resulting in 180 signals in total.

The spectral characteristics of this signal set deviate considerably from that of the Minnesota graph. The total

ensemble energy is almost uniformly spread across the eigenvalues, as observed by comparing the histogram of

the eigenvalues ΛL(G) in Fig. 6(a) and the distribution of the ensemble energy spectral density in Fig. 6(b). As

a result, the warping function defined for equalizing the distribution of energy across the spectrum, i.e., TF (λ),

closely resembles that defined for equalizing the distribution of eigenvalues; i.e., wL(λ), see Fig. 6(c). Consequently,

almost an equal number of kernels span each part of the spectrum, with more kernels allocated to the lower half of

the spectrum and vice versa, see Figs. 6(d) and (e). On the other hand, the non-adapted, Meyer-like wavelet frame

has a kernel at the far end of the spectrum where there is very few eigenvalues and almost no energy, see Fig. 6(f).

Although the kernels of the proposed frame have narrower passband characteristics compared to those of the

spectrum-adapted frame due to the different base set of kernels used (compare Figs. 6(d) and (e)), this example

demonstrates where the proposed frame design approach and the spectrum-adapted approach coincide in terms

of their respective approach to adaptivity: if the spectral energy is equally spread across the eigenvalues, the
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Fig. 7. Global graph spread of the atoms associated with (a) K1(λ) and (b) K4(λ) of the signal-adapted frame (black curves) and spectrum-

adapted frame (gray curves). (c) Ensemble graph spread measure for the seven subbands of the signal-adapted and spectrum-adapted frames.

energy-equalizing transformation function TF (λ) and the spectrum-adapting warping function wL(λ) become almost

identical. Thus, although the proposed method is developed based on spectral energy characteristics of a signal set,

it is optimal in the sense that it will indirectly adapt based on the graph’s spectrum in the event of uniformly spread

energy across the eigenvalues.

B. Vertex Localization

Vertex localization of atoms realized using the frames constructed on the Minnesota road graph are quantified by

computing the graph spread around all graph vertices, cf. (41), for {{ψKj ,l}j=1,...,J}l=1,...,Ng . The atoms were then

sorted based on their global graph spread measure, cf. (42), leading to a set of sorted indices {ik}
Ng
k=1, such that

∆2
G(ψKj ,i1) ≤ ∆2

G(ψKj ,i2) ≤ · · · ≤ ∆2
G(ψKj ,iNg ). Figs. 7(a) and (b) show the global graph spread of the atoms

associated to K1 and K4, respectively, for both the signal-adapted and spectrum-adapted frames of the Minnesota

road graph. For K1, the global graph spread is greater for the atoms of the signal-adapted frame. This can be

associated with the narrower spectral spread of K1 of the signal adapted frame compared to that of the spectrum-

adapted frame, see blue kernel in Fig. 4(d), top, and that in Fig. 4(e). On the other hand, for K4, the global

graph spread of the atoms of the two frames become almost identical, which can be linked to the fact that K4 is

approximately equally spread for both the signal-adapted and the spectrum-adapted frames, see purple kernel in

Fig. 4(d), top, and that in Fig. 4(e).

To express the behaviour of the atoms in the vicinity of their central vertex, an ensemble measure of the change

in graph spread as a function of geodesic distance from their central vertex can be obtained as

∆̄ψKj
[k] =

1

Ng

Ng∑
l=1

∆2

G,v(l)k
(ψKj ,l), k = 1, . . . , Ng. (45)

where v(l)
k ∈ {1, . . . , Ng} denotes the index of the kth closest vertex to the vertex where atom ψKj,l is centered

at, based on the the geodesic distance measure; i.e., dG(l, v
(l)
1 = l) = 0 < dG(l, v

(l)
2 ) ≤ · · · ≤ dG(l, v

(l)
Ng

). Fig. 7(c)
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shows {∆̄ψj}7j=1 associated with the spectral kernels of the signal-adapted and spectrum-adapted frames of the

Minnesota road graph, for geodesic distances of up to 100 vertices. For all subbands, and for both frames, the

ensemble graph spread monotonically increases as the geodesic distance increases. As expected, for subbands

j = {1, 2, 3, 6, 7}, where the kernels of the spectrum-adapted frame are more spectrally spread compared to that of

the signal-adapted frame (see Fig. 4(d), top, and Fig. 4(e)), ∆̄ψj [k] is lower, whereas for subbands j = {4, 5} the

values are almost identical since the corresponding kernels of both frames are widely spread across the spectrum.

These results are in line with the theoretical insight provided by (39) and (40).

C. Efficient Decomposition of Brain fMRI Data

Functional magnetic resonance imaging (fMRI) is a key bioimaging modality used for performing non-invasive

studies of the brain. The principle behind fMRI is the detection of a signal known as the blood-oxygen-level-

dependent (BOLD) signal, which arises as a result of increased blood flow to activated regions of the brain. As

high temporal resolution data is required to correlate brain activity with the experimental paradigm, the resulting

fMRI data are generally corrupted with an extensive amount of noise, requiring denoising.

Filters and wavelets in the most classical form used in image processing share several basic properties: they are

(i) defined within Euclidean spaces (a square in 2-D or a cube in 3-D), (ii) isotropic in structure and (iii) stationary

and quasi shift-invariant, meaning that their structure does not vary when applied to different regions within a

volume. However, the BOLD signal is expected only within the thin convoluted layer of gray matter of the brain,

but not within the white matter or cerebrospinal fluid [44]. At the spatial resolution of fMRI, isotropically shaped

basis functions will cross boundaries of gray matter, even at the finest scale. Thus, it is advantageous to construct

filters that adapt to this intricately convoluted domain rather than to assume that the spatial characteristics of the

underlying signal is independent of its location. To this aim, many approaches have been proposed (see for example,

[45]–[48]), in particular, the construction of anatomically-adapted graph wavelets [31]. The deficiency of a fixed

graph frame design and the lack of a systematic approach in determining the spectral coverage of spectral bands

for analyzing fMRI data have been pointed out in [29]–[31]. In fact, these findings motivated us to pursue the idea

of designing the proposed signal-adapted frames.

Here, we consider the cerebellum region of the brain. The graph, as designed in [31], encodes the 3-D geometry

of the cerebellar gray matter, and its construction is based on an atlas template of the cerebellum [49]. The vertices

of the graph represent voxels within the cerebellar structure that correspond to gray matter, and the edges are

assigned by computing connections between adjacent voxels in 3-D neighbourhood, see Fig. 8. The fMRI data

Fig. 8. Illustration of the cerebellum graph.

July 5, 2016 DRAFT



1053-587X (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2016.2591513, IEEE
Transactions on Signal Processing

IEEE TRANSACTIONS ON SIGNAL PROCESSING, IN PRESS 17

0

1

0

1

0

1

(b)

(c)

(a)

0

1

¸

¸

(g)

0 0 .2 0.4 0.6 0.8 1 1.2 1.4 

0

1

¸

0 0 .2 0.4 0.6 0.8 1 1.2 1.4 

(h)

¸

(d)

(e)

(f)

¸
0.8 1 1.2 1.40.60.40.20

0.8

1

1.2

1.4

0.6

0.4

0.2

0

none

T
   

      
(¸)F

w
   

  
(¸)L

0 0 .2 0.4 0.6 0.8 1 1.2 1.4 

0 0 .2 0.4 0.6 0.8 1 1.2 1.4 

0 0 .2 0.4 0.6 0.8 1 1.2 1.4 

0

1

2
× 10

3

0.8 1 1.2 1.40.60.40.20

0.8 1 1.2 1.40.60.40.2

0

2

4

× 10
-2

T
   

      
(¸)F

2

T
   

      
(¸)F

1

¸

¸

T
   

      
(¸)F
k

Fig. 9. (a) Histogram of the eigenvalues ΛL(G) of the cerebellum graph. (b) Distribution of the ensemble energy spectral density ēF of F . (c)

Constructed energy-equalizing transformation functions {TFk (λ)}26k=1, TF (λ) and the spectrum-adapting warping function wL(λ) [24]. Note

that the black curves correspond to the transformation for each subjects signal set, with the transformation at the two extremes presented as

dashed curves. (d)-(f) Signal-adapted system of spectral kernels based on F1, F2 and F , respectively. (g) Spectrum-adapted system of spectral

kernels [24]. (h) Meyer-like wavelet frame system of spectral kernels [11].

were acquired from 26 healthy subjects while performing a slow event-related Eriksen flanker task [50].2 Whole-

brain functional volumes were acquired throughout the task, one every two seconds, with a total of 292 volumes

per subject. An anatomical scan of each subject’s brain was also collected. By registering each subject’s anatomical

scan to the template cerebellum, and accordingly mapping the functional volumes, cerebellar graph signals were

constructed by extracting functional voxels matching the defined graph vertices. This resulted in one signal set for

each subject, {Fk}26
k=1, each including 292 signals. A set including the signals from all subjects was also constructed

as F = F1 ∪ F2 ∪ · · · ∪ F26.

The histogram of the eigenvalues ΛL(G) of the cerebellum gray matter graph and the distribution of the ensemble

energy spectral density of F are shown in Figs. 9(a) and (b), respectively. Unlike the Alameda traffic graph and

data, a major difference is observed between the two distributions: most eigenvalues are located at the upper end of

2The data are publicly available at https://openfmri.org/dataset/ds000102.
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of coefficient values for each subband across the frames, whereas the counts (y axis) are adjusted for each distribution.
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Fig. 11. (a)-(e) The same as in Fig. 10 but for F2. For clarity, the lower end of the distributions in the second subbands are vertically magnified.

the spectrum, whereas the ensemble energy is significantly concentrated at the lower end of the spectrum. This leads

to a major discrepancy between TF (λ) and wL(λ), see Fig. 9(c), and consequently, the resulting spectral kernels,

see Figs. 9(d)-(g): the kernels of the signal-adapted frames are localized at the lower end of the spectrum, whereas

those of the spectrum-adapted frame are localized at the higher end of the spectrum. As a result, the signal-adapting

scheme leads to an optimal configuration of filters in the sense that more filters are allocated to spectral regions

where higher ensemble signal energy is present rather than being allocated to part of the spectrum where more

eigenvalues are located.

The concentration of the ensemble energy at the lower end of the spectrum makes the non-adapted tight Meyer-

like wavelet design a relatively suitable design, see Fig. 9(h). However, comparing Figs. 9(f) and (h) demonstrates

the efficiency of the proposed construction: the spectral range lying in the support of the first kernel of the

Meyer-like wavelet frame (blue kernel) is spanned by approximately three kernels in the signal-adapted frame

(blue, red and orange kernels). This suggests the superiority of the signal-adapted frame in providing a more

efficient multi-scale representation of the data compared to the dyadically scaled wavelet design. Interestingly, the

narrowband configuration of the proposed signal-adapted frame closely resembles that found to be optimal for
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analyzing cerebellar data by tunning the Meyer-like wavelet frame in [30], [31].3

To provide further insight than that provided by visual comparison of the frames, the set of cerebellar signals

in F2 as well as a set of 292 white Gaussian noise signals (σ2 = 1), denoted Fnoise, were decomposed using the

frames shown in Figs. 9(e)-(h). The resulting coefficients cKj ,m (cf. (18)) were normalized as cKj ,m/||ψKj ,m||2 to

account for the difference in the norm of their associated atoms. Figs. 10 and 11 show the mean distribution of the

normalized decomposition coefficients of Fnoise and F , respectively. For Fnoise, the distributions of the coefficients

in all five subbands of all four frames are Gaussian-like as expected, see Fig. 10. For F2, the distributions of the

coefficients of the last subband of all four frames closely resembles a Gaussian (see the 4 plots at the right end of

Figs. 11(a)-(d)), similar to the distributions obtained on Fnoise, cf. Figs. 11. This suggests that the corresponding

atoms of this subband have captured noise. A similar observation is made for the distributions associated with the

third and fourth subbands of the spectrum-adapted and Meyer-like wavelet frame (Figs. 11(c)-(d)) as well as the

fourth subband of the signal-adapted frame constructed based on F (Fig. 11(b)). On the other hand, the coefficients

of the first four subbands of the signal-adapted frame constructed based on F2 significantly deviate from zero,

cf. first four plots in Fig. 11(a), and have distributions unlike that expected to result from decomposing noise

(cf. Fig. 10). This suggests the efficiency of the signal-adapted frame in resulting in atoms that capture signal

components.

Although the coefficients of the first three subbands of the signal-adapted frame constructed based on F (Fig. 11(b))

also provide more information than those of the spectrum-adapted and Meyer-like wavelet frame (Figs. 11(c)-(d)),

the coefficients of the signal-adapted frame constructed based on F2 (Fig. 11(a)) show yet greater significance. This

suggestes the superiority of the subject-based frame, shown in Fig. 9(e), over the frame constructed based on the

energy content of the signals from the group of subjects, shown in Fig. 9(f), for decomposing F2. Despite this fact,

if a comparison between decomposition of the signals from different subjects is required, as for instance performed

in [31], the group-based frame constructed based on F is the suitable choice.

D. Signal Denoising

To illustrate one application of the proposed frames, we denoise a set of signals realized on the Minnesota

road graph. For different σ2
e , noise corrupted signal sets were created using (43) as Fσe =

{
y

[i]
η,2

}
η=0.2,0.5

, where

i = 1, . . . , 10 denotes different random realizations of pη and e. Denoising was performed through soft thresholding

of the decomposition coefficients. In particular, the denoised signal x̃(ϑ), where ϑ denotes the global threshold,

were obtained from the coefficients cK,m (cf. (18)) as

x̃(ϑ) =
∑
j,m

H(|cKj ,m|−τ
(ϑ)
Kj ,m)cKj ,mψKj ,m, (46)

3The similarity can be observed by comparing the spectral coverage of the first two kernels in Fig. 9(f) with that in figure 3(d) in [31] and

figure 1(b) in [30].
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Fig. 12. Systems of spectral kernels of the (a) SGWT frame [10], (b) spectrum-adapted frame and (c) the signal-adapted frame, used for

denoising.

where H(·) denotes the Heaviside step function and τ (ϑ)
Kj ,m denote element-adapted thresholds. In order to account

for that the frame elements generally have different norms, element-adapted thresholds of the form [12]

τ
(ϑ)
Kj ,m = σe||ψKj ,m||2ϑ, (47)

were used that are also adjusted with respect to the noise level.

To evaluate performance, the average mean square error reduction (∆MSE) was computed for each ϑ as

∆MSE(ϑ) =
1

|F|

|F|∑
k=1

10 log10(
||xk − x̃(ϑ)

k ||22
||xk − yk||22

), (48)

where k runs over the signals in the signal set, and |F| denotes the cardinality of the set. To compare the denoising

performance across different σ2
e and J , the minimum MSE reduction is considered

∆MSE(min) = min
ϑ

∆MSE(ϑ), (49)

where ϑ is varied within the interval [1, 5] with a step size of 0.25.

The signals in the sets Fσe were denoised using: 1) the SGWT frame [10], neither adapted to the spectrum nor

to the graph signals, 2) the spectrum-adapted frame [24] and 3) the proposed frame, using up to 10 spectral scales.

Fig. 12 illustrates an example of the used frames for J = 7 scales and σ2
e = σ2

x. By comparing the signal-adapted

frame constructed based on the noisy signals, shown in Fig. 12(c), with its respective counterpart constructed based

on the clean signals, shown in the top of Fig. 4(d), it is observed that although the addition of noise has affected

the support of the filters, the overall distribution of the support of the kernels across the spectrum is still consistent

between the two cases. As white Gaussian noise exhibits a uniform energy spectral density, its influence on the

overall distribution of ensemble energy is negligable.

Fig. 13 presents a comparison of denoising performances of the different types of frames. Fig. 13(a) presents

∆MSE measures when using J = 7 scales. Compared to the spectrum-adapted frame, the proposed frames show

better performance across ϑ. Compared to the SGWT frame, the difference in performance is generally better

for ϑ values close to the minimum ∆MSE. Fig. 13(b) presents the ∆MSE(min) measures as a function of the

SNR = σ2
x/σ

2
e , when using J = 7. The relative performance of the signal-adapted frame and SGWT frame is
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Fig. 13. Comparison of denoising performance using different frames on signal set Fσe . (a) ∆MSE as a function of threshold level ϑ using

J = 7 spectral scales, where σ2
e = σ2

x in signal realization for all cases. (b) ∆MSE(min) as a function of noise level, SNR = σ2
x/σ

2
e , using

frames with (b) J = 7 spectral scales. (c) ∆MSE(min) as a function of the number of scales J , where σ2
e = σ2

x in signal realization for all

cases. Note that in (c) some sample points are not displayed for the spectrum-adated and the SGWT frame; this is due to that the former is

only defined for J ≥ 3, and that the latter is not optimally designed for small J and leads to ∆MSE(min) > 0.

consistent across different SNRs, with the proposed frame offering, in general, better noise reduction. However, the

spectrum-adapted frame shows better noise reduction at higher SNRs.

It is advantageous to also compare the denoising performance for frames with different number of subbands.

Fig. 13(c) shows plots of the ∆MSE(min) in denoising the signals using the different frames as a function of J .

Using the signal-adapted frames leads to a lower ∆MSE(min) than for the SGWT and spectrum-adapted frames. It

is also observed that the difference in performance between the proposed frame and the spectrum-adapted frame

is more pronounced when using up to eight scales. In recent studies that use the SGWT [31], [51]–[55], typically,

up to six scales are used, which can be explained by observing that the performance for this frame saturates at

J = 5. In contrast, the proposed frames show a monotonic increase in performance also for larger number of scales.

This suggests that the proposed signal-adapted frames have the potential to provide a more meaningful multi-scale

representation of graph signals.

VI. CONCLUSION

We have presented a construction of signal-adapted tight frames for graph signals. The adaptivity of the approach

is introduced by exploiting the ensemble energy spectral density, which describes the second-order statistics of the

signal class at hand. It should be noted that wavelet-type decompositions are optimal for non-stationary signals,

such as the ones considered in our experimental results. From this point-of-view, the design only uses the stationary

information, and its flexibility to represent non-stationary features comes with the width and smoothness of the

bandpass characteristics. Conceptually, this approach is similar to optimal pyramid designs that were proposed for

image processing in the 90’s [56]. A MATLAB implementation of the proposed approach and the datasets used in

this paper are available online at miplab.epfl.ch/software/.
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APPENDIX A

PROOF OF PROPOSITION 1

In order to ensure that the spectral kernels cover the full spectrum, a must be chosen such that

λmax
(35c)
= λII + a

(j=J)
= γa+ (J − 2)∆ + a,

which using (36a) leads to a = λmax
Jγ−J−γ+3 .

To prove that the UMT system of spectral kernels form a tight frame, (17) needs to be fulfilled. Since, for all j,

the supports of K′j−1(λ) and K′j+1(λ) are disjoint, G(λ) can be determined as

G(λ) =
J∑
j=1

|K
′

j(λ)|2

(35)
=



|K′1(λ)|2 (35a)
= 1 ∀λ ∈ [0, a]

|K′1(λ)|2+|K′2(λ)|2 ∀λ ∈]a, γa]

|K′2(λ)|2+|K′3(λ)|2 ∀λ ∈]γa, γa+ ∆]

...
...

|K′J(λ)|2 (35c)
= 1 ∀λ ∈]λmax − a, λmax]

(35b)
=



1 ∀λ ∈ [0, a]

cos2(xI) + sin2(xI) ∀λ ∈]a, γa]

cos2(xII) + sin2(xII) ∀λ ∈]γa, γa+ ∆]

...
...

1 ∀λ ∈]λmax − a, λmax]

= 1 ∀λ ∈ [0, λmax] (50)

where xI = π
2 ν( 1

γ−1 (λa − 1)) and xII = π
2 ν( 1

γ−1 (λ−∆
a − 1)).

For any given γ, the constructed set of spectral kernels form a tight frame. However, in order for the frame

to satisfy the uniformity constraint given in (28), the appropriate γ needs to be determined. From (35b), we have

∀j ∈ {2, . . . , J − 2}

K
′

j(λ) = K
′

j+1(λ+ ∆) ∀λ ∈]λI, λII + ∆]. (51)

By considering an inverse linear mapping of the spectral support where K′1(λ) 6= 0, i.e. [0, γa], to the spectral

support where K′J(λ) 6= 0, i.e. [λmax − γa, λmax], we have

K
′

1(λ) = K
′

J(−λ+ 2a+ J∆) ∀λ ∈ [0, γa]. (52)
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Fig. 14. Design of a uniform system of spectral kernels satisfying (28) and (29). The displayed function h(λ) and g(λ) correspond to the ones

used in the UMT design. However, any two functions passing through (α + ∆1/2, C3) and satisfying (56) and (57) can be used to design a

desired prototype system of uniform spectral kernels.

Thus, from (51) and (52) we have ∫ λmax

0

K
′

j(λ) dλ = C2, j = 2, . . . , J − 1 (53a)∫ λmax

0

K
′

1(λ) dλ =

∫ λmax

0

K
′

J(λ) dλ = C1, (53b)

respectively, where C1, C2 ∈ R+. Thus, in order to satisfy (28), γ should be chosen such that

C1 = C2∫ λmax

0

K
′

1(λ) dλ =

∫ λmax

0

K
′

2(λ) dλ

a+

∫ γa

a

K
′

1(λ) dλ =

∫ γa

a

sin(
π

2
ν(

1

γ − 1
(
λ

a
− 1))) dλ

+

∫ γa+∆

γa

K
′

2(λ) dλ

a
(51)
=

∫ γa

a

sin(
π

2
ν(

1

γ − 1
(
λ

a
− 1))) dλ. (54)

The optimal γ that satisfies (54) was obtained numerically by defining

Q(γ) =

∫ γa

a

sin(
π

2
ν(

1

γ − 1
(
λ

a
− 1))) dλ− a, (55)

and discretizing Q(γ) within the range (a, γa], with a sampling factor of 1× 10−4. Testing for γ ≥ 1, with a step

size of 1× 10−2, the optimal value, which is independent of λmax and J , was found to be γ = 2.73.

APPENDIX B

UNIFORM SYSTEM OF KERNELS – GENERAL CASE

The UMT system of spectral kernels (cf. Proposition 1) is one prototype design that can be used as the basis

for the proposed frame design approach. For the general case, other prototype system of kernels can be designed,

with their design essentially breaking down to (see Fig. 14 for notations):

1) the proper design of the pair of functions h(λ) and g(λ) such that they lead to smooth quadrature mirror

style filters that satisfy

|h(λ)|2+|g(λ)|2= C1 ∈ R+, ∀λ ∈ [α, α+ ∆1], (56)
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where α,∆1 ∈]0, λmax[, C2 =
√
C1, C3 =

√
C1/2,

2) determination of α, ∆1 and ∆2 such that

αC2 = ∆2C2 +

∫ α+∆1

α

h(λ) dλ. (57)

Observe that α, ∆1, ∆2, h(λ) and g(λ) all depend on J and λmax. Fig. 14 shows an illustration of the non-zero

segments of the resulting K′1(λ) and K′2(λ). {K′j(λ)}J−1
j=3 can be obtained by translating the non-zero segments of

K′2(λ) by (j − 2)∆3, and K′J(λ) by mirroring the non-zero segment of K′1(λ) and translating it such that it spans

the upper end of the spectrum.
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