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Domain-Informed Spline Interpolation
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and Leif Sörnmo , Fellow, IEEE

Abstract—Standard interpolation techniques are implicitly
based on the assumption that the signal lies on a single homoge-
neous domain. In contrast, many naturally occurring signals lie
on an inhomogeneous domain, such as brain activity associated to
different brain tissue. We propose an interpolation method that
instead exploits prior information about domain inhomogeneity,
characterized by different, potentially overlapping, subdomains.
As proof of concept, the focus is put on extending conventional
shift-invariant B-spline interpolation. Given a known inhomoge-
neous domain, B-spline interpolation of a given order is extended
to a domain-informed, shift-variant interpolation. This is done by
constructing a domain-informed generating basis that satisfies sta-
bility properties. We illustrate example constructions of domain-
informed generating basis and show their property in increasing
the coherence between the generating basis and the given inhomo-
geneous domain. By advantageously exploiting domain knowledge,
we demonstrate the benefit of domain-informed interpolation over
standard B-spline interpolation through Monte Carlo simulations
across a range of B-spline orders. We also demonstrate the feasibil-
ity of domain-informed interpolation in a neuroimaging application
where the domain information is available by a complementary im-
age contrast. The results show the benefit of incorporating domain
knowledge so that an interpolant consistent to the anatomy of the
brain is obtained.

Index Terms—Sampling, interpolation, context-based interpola-
tion, B-splines, multi-modal image interpolation.

I. INTRODUCTION

INTERPOLATION has been extensively studied in various
settings. The main frameworks are based on concepts such as

smoothness for spline-generating spaces [1], underlying Gaus-
sian distributions for “kriging” [2], and spatial relationship
for inverse-distance-weighted interpolation [3]. Yet, while ad-
vanced concepts have been developed for describing these signal
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Z. Doğan is with the School of Engineering and Applied Sciences, Har-
vard University, Cambridge, MA 02138 USA (e-mail: zaferdogan@seas.
harvard.edu).

D. Van De Ville is with the École Polytechnique Fédérale de Lausanne,
1015 Lausanne, Switzerland, and also with the Department of Radiology and
Medical Informatics, University of Geneva, 1205 Geneva, Switzerland (e-mail:
dimitri.vandeville@epfl.ch).

Digital Object Identifier 10.1109/TSP.2019.2922154

spaces, the underlying domain is always assumed to be homoge-
neous. Here, we consider a different scenario in which signals are
sampled over a known “inhomogeneous” domain; i.e., a domain
characterized by a set of subdomains with their description avail-
able as supplementary data. In a sub-catagory of super-resolution
image processing techniques, the interpolation phase is adapted
such that the scheme becomes close to the interpolation scenario
that we consider here. In particular, information from a high res-
olution signal is exploited to enhance interpolation on a set of
samples acquired at low resolution. For example, an iterative,
patch-based non-local reconstruction scheme was introduced in
[4]; the use of inter-modality priors to regularize the similarity
between the up-sampled image and a secondary high resolution
image was proposed in [5]; a non-local means feature-based
technique that uses structural information of a high resolution
image with a different contrast was presented in [6]; sparsity
promoting priors using overcomplete dictionaries learned from
the data were exploited in [7]. Yet, such schemes do not fall
within the problem that we formulate in this paper. The low
resolution data samples and the supplementary high resolution
information considered in these proposals are both of the same
nature and, in essence, both describe the signal. In the scheme
proposed in this article, the supplementary high resolution in-
formation instead describes the domain of the signal, which has
a completely different temporal/spatial characteristic than that
of the signal (samples) defined on the domain. Moreover, rather
than being a learning scheme, our proposal is formulated as a
shift-variant extension of conventional shift-invariant interpo-
lation schemes [8], [9], such as linear, cubic or higher order
B-spline interpolations.

Problem Formulation

Assume that the following set of information is given:
1) Domain knowledge described by a set of non-negative

subdomain functions

D :

{
dj ∈ L2, j ∈ J : {1, . . . , J}

}
, (1)

which form a partition of unity as

J∑
j=1

dj(x) = 1, ∀x ∈ R. (2)

Remark: We denote a segment [a, b], a, b ∈ R, of the do-
main as homogeneous if there exists an l ∈ J such that

dl(x) = 1, ∀x ∈ [a, b], (3)

and inhomogeneous if (3) does not hold for any l ∈ J .
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2) A uniform sequence of samples s[k] taken from a contin-
uous function s(x) as

s[k] = 〈s(x), δ(x− kT )〉 , (4)

where T ∈ R+ denotes the sampling step.
The objective is to recover s(x) using the given set of samples

s[k]. The approach is to extend any conventional interpolation
method that employs a shift-invariant basis to an interpolation
that employs a shift-variant basis, such that prior information
on the domain inhomogenuity is accommodated. In particular,
consider a compactly-supported generator ϕ(x) (i.e., ϕ(x) = 0,
∀|x| ≥ Δ(ϕ) ∈ R+) of a shift-invariant space

Vϕ =

{
s̃T (x) =

∑
k∈Z

c[k] · ϕ
( x

T
− k

)
: c ∈ �2

}
. (5)

The generating functionϕ(x) can be any of the compact-support
kernels used in standard interpolation. In the presence of domain
inhomogeneity, the idea is to transformϕ(· − k) intoϕk(· − k):
a tailored version of ϕ(· − k) whose definition is based on the
domain structure in the adjacency of k. With this construction,
a shift-variant, domain-informed space

V(D)
ϕ =

{
s̃T (x) =

∑
k∈Z

c[k] · ϕk

( x

T
− k

)
: c ∈ �2

}
, (6)

is obtained.
In this article, we focus on formulating the domain-informed

interpolation theory for B-spline generating functions [1].
Different application areas can be envisioned for domain-

informed interpolation. Earth sciences is one application area,
where a spatially continuous representation of earth surface pa-
rameters, such as precipitation, land vegetation and atmospheric
methane is desired to be computed from a discrete set of rain
gauge measurements [3], [10], fossil pollen measurements [11],
[12] and satellite estimates of methane [13], [14], respectively.
In these scenarios, the well-defined geographical structure of
the earth, anthropogenic land-cover models [15] and geophys-
ical models of the earth’s surrounding atmosphere may be ex-
ploited as descriptors of the inhomogeneous domain to improve
the standard approach to interpolation.

Neuroimaging is another area where domain-informed in-
terpolation can be beneficial. In brain studies using functional
magnetic resonance imaging (fMRI), a sequence of whole-brain
brain functional data is acquired at relatively low spatial resolu-
tion to enable tracking brain function at high temporal resolu-
tion. An anatomical MRI scan is also commonly acquired, pro-
viding information about the convoluted brain tissue delineating
gray and white matter, each of which have different functional
properties [16]. Unlike functional data, anatomical data can be
recorded at high spatial resolution, with resolutions three- to
fourfold higher than the functional data. Hence, the goal would
be to exploit the richness of anatomical data to define the do-
main of the acquired functional data and, in turn, to improve the
quality of interpolation/resampling of the data [17]–[19]. In this
article, we will demonstrate the feasibility of domain-informed
interpolation in providing a high resolution representation of

brain functional data such that the representation is consistent
with the underlying brain anatomy.

The article is organized as follows. Section II defines the
properties of domain-informed generating basis. Section III in-
troduces the scheme for designing a domain-informed B-spline
generating basis, and presents an illustrative example construc-
tion of such a basis. Section IV presents domain-informed
B-spline interpolation. In Section V, we show the benefit of
domain-informed interpolation over standard B-spline interpo-
lation through Monte Carlo simulations across a range of B-
spline orders. In Section VI, we conclude by demonstrating the
feasibility of domain-informed interpolation in a neuroimaging
application.

II. DOMAIN-INFORMED GENERATING BASIS

Let L2 denote the Hilbert space of all continuous, real-valued
functions that are square integrable in Lebesgue’s sense, with
the L2 inner-product defined as

∀f, g ∈ L2, 〈f, g〉L2
=

∫ +∞

−∞
f(x)g(x) dx < ∞, (7)

and L2-norm is defined for all f ∈ L2 as ‖f‖2L2
= 〈f, f〉L2

. Let
�2 denote the Hilbert space of all discrete signals that are square
summable, with the �2 inner product defined as

∀p, q ∈ �2, 〈p, q〉�2 =
∑
k∈Z

p[k]q[k] < ∞, (8)

and the �2-norm is defined for all p ∈ �2 as ‖p‖2�2 = 〈p, p〉�2 . In
the following, we use the convention 〈·, ·〉 = 〈·, ·〉�2 and ‖ · ‖ =
‖ · ‖�2 to simplify the notation.

For a given compactly-supported generator ϕ(x), let Φ∗ =
{ϕ(x/T − k)}k∈Z denote the standard shift-invariant basis of
ϕ(x) and Φ = {ϕk(x/T − k)}k∈Z denote a shift-variant basis
of ϕ(x); i.e., for all k ∈ Z, ϕk(· − k) denotes a tailored version
of ϕ(· − k), which may be identical to ϕ(· − k) for a subset of
k ∈ Z.

Definition (Domain-Informed Generating Basis): For a given
domain definition as in (1), a basis Φ forms a domain-informed
generating basis if and only if the following three conditions are
met:

1) Φ forms a Riesz basis, which is ensured if there exists
constants 0 < A ≤ B < ∞ such that [20]

∀c ∈ �2, 0 ≤ A‖c‖2�2 ≤
∥∥∥∥∥
∑
k∈Z

c[k]ϕk

( x

T
− k

)∥∥∥∥∥
2

L2

≤ B‖c‖2�2 < ∞. (9)

This condition in necessary in order for (6) to be a stable,
unambiguous representation model.

2) Φ forms a partition of unity, i.e.,

∀x ∈ R,
∑
k∈Z

ϕk

( x

T
− k

)
= 1. (10)

This condition is necessary in order to have the approxi-
mation error vanish, see [9, Appendix B] for proof.
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3) Any element of Φ whose compact support lies en-
tirely within a homogeneous segment of the domain be-
comes identical to its corresponding element in Φ∗; i.e.,
ϕk(x/T − k) = ϕ(x/T − k) if the domain is homoge-
neous at interval [(k −Δ(ϕ))T, (k +Δ(ϕ))T ].

III. DOMAIN-INFORMED B-SPLINE GENERATING BASIS

This section presents the construction of domain-informed
generating bases using a B-spline generator function β(n)(x) of
a desired order n. The construction framework is also applicable
to alternative generating functions other than B-splines.

A. B-Spline Generating Basis

The central B-spline β(n)(x) is obtained recursively as

β(n)(x) = (β(0) ∗ β(n−1))(x), (11)

where (· ∗ ·)(x) denotes continuous-domain convolution and

β(0)(x) =

⎧⎪⎪⎨
⎪⎪⎩

1, − 1
2 < x < 1

2

1
2 , |x| = 1

2

0, otherwise.

(12)

β(n)(x) is supported in the interval [−Δ(n),Δ(n)], where
Δ(n) = (n+ 1)/2. We define Δ(n)-neighbourhood sets in the
vicinity of each point x, denoted Δ

(n)
x , as

Δ(n)
x :

{
k ∈ Z

∣∣∣
∣∣∣ x
T

− k
∣∣∣ < Δ(n)

}
; (13)

the set specifies the indices of sample points that fall within the
Δ(n)-neighbourhood of a given point x. The scaled, integer-
shifted set {β(n)(x/T − k)}k∈Z forms a B-spline generating
basis spanning the space of piecewise polynomial functions of
order n− 1.

B. Domain-Informed B-Spline Generating Basis

We construct a domain-informed B-spline associated to each
sample point as the superposition of two B-spline based kernels
as given in the following definition.

1) Definition (Domain-Informed B-Splines): For a given set
of subdomain functions (1), a set of samples s[k], k ∈ Z and
a B-spline generating function β(n)(x), a domain-informed
B-spline associated to each sample point k ∈ Z can be defined as

β
(n)
k (x) =

{
β̇
(n)
k (x) + β̈

(n)
k (x), |x| ≤ Δ(n)

0, otherwise,
(14)

where β̇(n)
k (x) denotes a dominant kernel that characterizes the

overall shape and β̈
(n)
k (x) a residual kernel that tunes the shape

to the given domain knowledge in the adjacency of sample
point k.

In the following, we formulate the construction of β̇
(n)
k (x)

and β̈
(n)
k (x). Firstly, using the subdomain functions, a set of

subdomain-informed B-splines associated to each k ∈ Z and

j ∈ J are obtained as

β
(n)
k,j (x) =

{
dj((x+ k)T )β(n)(x), |x| ≤ Δ(n)

0, otherwise.
(15)

It is straightforward to verify that subdomain-informed
B-splines satisfy∑

k∈Z
β
(n)
k,j

( x

T
− k

)
= dj(x), ∀x ∈ R, (16)

and ∑
j∈J

β
(n)
k,j (x) = β(n)(x), ∀k ∈ Z. (17)

Let Ik denote the set of indices of the subdomains maximally
associated to sample k, i.e.,

Ik :

{
i ∈ J

∣∣∣i = argmax
j∈J

{dj(kT )}
}
, (18)

and Rk denote the set of the remaining subdomain indices, i.e.,

Rk = J \ Ik, (19)

where \ denotes set difference. |Ik| > 1 infers that more than
one subdomain is maximally associated with sample point k.
The dominant kernel β̇(n)

k (x) is defined as

β̇
(n)
k (x) =

∑
i∈Ik

β
(n)
k,i (x). (20)

By cumulating the non-dominant subdomain-informed B-
splines, a residual function Ω(x) : x ∈ R → [0, 1] can be de-
fined as

Ω(x) =
∑

l∈Δ(n)
x

∑
j∈Rl

β
(n)
l,j

( x

T
− l

)
(21)

= 1−
∑

l∈Δ(n)
x

β̇
(n)
l

( x

T
− l

)
. (22)

In particular, Ω(x) = 0 at any homogeneous part of the domain.
Using Ω(x), the residual kernel β̈(n)

k (x) is defined as

β̈
(n)
k (x) =

{
θk(x) · Ω((x+ k)T ), |x| ≤ Δ(n)

0, otherwise,
(23)

where θk(x), in its simplest form, equals a weighting function
wk(x) defined as

wk(x) =

⎧⎪⎪⎨
⎪⎪⎩

β̇
(n)
k (x)∑

l∈Δ(n)
xkT

β̇
(n)
l (xk − l)

, |x| ≤ Δ(n)

0, otherwise,

(24)

where xk = x+ k. The values of {dj(x)}j∈J are incorporated

in β̇
(n)
k (x) and thus implicitly reflected in wk(x). To control

changes in β̈
(n)
k (x) relative to changes in the subdomains, θk(x)

can be adaptively defined as

θk(x) :=
Θ (wk(x))∑

l∈Δ(n)
xkT

Θ(wl(xk − l))
∈ [0, 1], (25)

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on July 26,2020 at 14:49:08 UTC from IEEE Xplore.  Restrictions apply. 



3912 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 15, AUGUST 1, 2019

Fig. 1. (a) A Meyer-type system of kernels; K = 9, L = 1 and U = 30.
(b) A warped version of the system of kernels in (a).

where Θ(·) : [0, 1] → [0, 1] denotes a desired smooth,
monotonically increasing function satisfying Θ(x) = x for
x ∈ {0, 0.5, 1}, Θ(x) ≤ x for x < 0.5 and Θ(x) ≥ x for
x > 0.5. Note that by settingΘ(x) = x, we have θk(x) = wk(x)
since

∑
l∈Δ(n)

xkT

wl(xk − l) = 1.

Proposition 1: (Domain-Informed B-spline Generating Ba-
sis) For a given sequence of samples {s[k]}k∈Z as in (4), a given
set of subdomain functions as in (1) and a given B-spline generat-
ing function β(n)(x), the set of functions {β(n)

k (x/T − k)}k∈Z
form a domain-informed generating basis, satisfying the three
properties of a domain-informed generating basis.

Proof: See Appendix I. �

C. Illustrative Example Realization of Domain-Informed
B-Spline Generating Bases

Two example realizations of domain-informed B-spline gen-
erating bases are presented to illustrate the construction scheme.
Before presenting the constructions, a scheme is defined to ran-
domly realize inhomogeneous domains that satisfy (2), consist-
ing of a desired number of subbands with varying patterns of
transition between subbands. A tunable Θ(x), cf. (25), is also
defined to enable varying the extent of adaptation of the bases
to the domain knowledge.

Realization of Inhomogeneous Domains

An inhomogeneous domain consisting of J subdomains can
be realized through the following scheme. Let L ∈ R+ and
U ∈ R+ denote the domain’s lower and upper range, respec-
tively. A system of K ∈ Z

+ Meyer-type kernels {mk(x), ∀x ∈
[L,U ]}k=1,...,K is constructed, see Fig. 1(a). The details of the
construction are given in Appendix II. The benefit of using
a Meyer-type system of kernels is that they provide smooth,
compactly-supported kernels with overlap only between ad-
jacent kernels. A random, monotonically increasing function
w(x) : [L,U ] → [L,U ] is then constructed. By incorporating
w(x) in {mk(x)}k=1,...,K , a warped version of the Meyer-
type system is obtained as: {m′

k(x) = mk(w(x))}k=1,...,K ,
see Fig. 1(b). The warped kernels exhibit varying patterns of
transition between adjacent kernels, with different orders of
smoothness.

A set of J subdomain functions satisfying (1) are then
realized as

∀x ∈ [L,U ], dj(x) =
∑
k∈Kj

mk(x), j = 1, . . . , J,

where Kj ⊂ {1, . . . ,K} such that ∪J
j=1Kj = {1, . . . ,K} and

∩J
j=1Kj = ∅. Fig. 2(a) illustrates an inhomogeneous domain,

consisting of two subdomains, constructed using this scheme.
The domain has several homogeneous intervals, such as [1, 6]
and [19, 21], as well as varying inhomogeneous intervals
present at the transition regions between the two subdomains.

Defining a Tunable Θ(·) Function

By incorporating a suitable Θ(·) in (25), the extent of adap-
tation to variation in proximity of subdomain transitions can be
increased in the design of domain-informed B-splines. In par-
ticular, we exploit the logistic function to define Θ(·) as

Θ(x) = (1 + e−γ/2)/(1 + e−γ(x−1/2)), (26)

where γ ≥ 1 is a free parameter.

Realizations of B-Spline Generating Bases

In Fig. 2, sections A and B show constructions of domain-
informed B-spline generating bases using first and third order B-
spline kernels, respectively. Domain-informed B-splines whose
support lie at a homogeneous part of the domain are identical
to their standard counterpart; for example, see domain-informed
B-splines centered at sample points 5, 15 and 20 in Figs. 2(e)
and (i). On the other hand, domain-informed B-splines that re-
side in the adjacency of domain transition boundaries deviate
from their standard counterpart. Domain-informed B-splines
have their peak amplitude close to the sample point where they
are localized and have declining tails as in standard B-splines.
This property is due to the employed construction scheme that
enables adaptation to domain inhomogeneities relative to the
amplitude of the generating function along its support; i.e., the
central parts of the kernels are more affected by domain inho-
mogeneities than their tails.

D. Domain-Basis Coherence

It is insightful to quantify the coherence between a given in-
homogeneous domain and a basis defined on the domain. To this
aim, we first define a domain similarity metric.

1) Definition (Domain Similarity Metric): Given a descrip-
tion of an inhomogeneous domain as in (1), a domain similarity
metric can be defined in the Δ-neighborhood of each k ∈ Z as

ξk(x) =

⎧⎪⎪⎨
⎪⎪⎩
Θ

⎛
⎝1− 1

J

J∑
j=1

|dj(xkT )− dj(kT )|
⎞
⎠ , |x| < Δ

0, |x| ≥ Δ,

(27)

where xk = x+ k, Θ(·) is defined as in (25); ξk(x) ∈ [0, 1].
The domain similarity metric can be used to quantify the rel-

ative difference in coherence between a domain and a domain-
informed generating basis relative to that between the domain
and the corresponding shift-invariant, generating basis.

2) Definition (Domain-Basis Coherence Factor): Given a
description of an inhomogeneous domain as in (1), a domain-
basis coherence factor associated to domain-informed basis Φ
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Fig. 2. Construction of domain-informed B-splines of order one (box A) and three (box B). (a) Realization of an inhomogeneous domain consisting of two

subdomains, satisfying (1). (b) Subdomain-informed B-splines β(1)
k,1

(x− k). (c) Subdomain-informed B-splines β(1)
k,2

(x− k). (d) Dominant kernels β̇(1)
k

(x− k).

(e) Residual kernels β̈(1)
k

(x− k). (f) Domain-informed B-splines of order one β
(1)
k

(x− k), constructed as the superposition of β̇(1)
k

(x− k) and β̈
(1)
k

(x− k).

β
(1)
k

(x− k) (solid lines) are overlaid on their corresponding standard first order B-splines β(1)(x− k) (dashed lines). The dotted line shows the partition of unity
property of the basis, cf. (10). (g)–(k) The same as (b)–(f), but for B-splines of order three. γ = 10 in both the first order and third order designs.

can be defined as

RΦ =

∑
k∈Z〈ξk(x), ϕk(x)〉L2∑
k∈Z〈ξk(x), ϕ(x)〉L2

. (28)

In Fig. 3, the dashed curves show the change in RΦ for the
domain shown in Fig. 2(a) as a function of the free parameter
γ in constructing domain-informed B-spline basis; the two
marked positions on the dashed curves show RΦ associated
to the domain-informed B-spline basis shown in Figs. 2(e)

and (i). RΦ is greater than one across γ, ranging from 1 to 50
with steps of 1, reflecting a greater domain-basis coherence
of the domain-informed B-spline basis relative to the standard
B-spline basis. The coherence factor is greater for the third
order domain-informed B-spline basis than that of the first
order domain-informed B-spline basis. Moreover, RΦ increases
with γ, up to a point where it almost saturates. Thus, γ can be
used to tune the level of adaptation of the design to the domain
information relative to the extent of certainty associated with
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Fig. 3. Domain-basis coherence factor, for domain-informed B-splines of or-
ders 1–7. The solid lines show ensemble values over 1000 inhomogeneous do-
main realizations. The dashed lines show the domain-basis coherence factor as-
sociated to the domain shown in Fig. 2; the two marked points show the domain-
basis coherence factor for the particular domain-informed B-spline generating
basis shown in Figs. 2(e) and (i), i.e., using γ = 10.

the domain data. The lower the adopted value of γ, the lower is
the domain adaptation.

To provide a more general picture of the coherence behavior,
we generated 1000 realizations of inhomogeneous domains us-
ing the same scheme as that used to construct the domain shown
in Fig. 2(a). Domain-informed B-spline basis of orders from 1
to 7 were constructed for each realization of inhomogeneous do-
main, over the range of γ. Fig. 3 shows the resulting ensemble
RΦ, i.e., each point being the average of 1000RΦ values, one as-
sociated to each domain realization. For each domain-informed
B-spline basis order n, the ensemble coherence factor increases
with the increase in γ, and gradually saturates. Moreover, for a
given γ, the ensemble coherence factor associated to a higher
order basis is greater than that associated to a lower order basis.
In the following, all domain-informed B splines are generated
with γ = 10, which is the same as that used for the constructions
shown in Fig. 2.

IV. DOMAIN-INFORMED B-SPLINE INTERPOLATION

We propose domain-informed B-spline interpolation (DIBSI)
with the following assumption about the underlying signal: at
inhomogeneous intervals of the domain, the signal is expected
to be consistent with the given domain description, whereas at
homogeneous intervals of the domain, the signal is expected to
have smoothness characteristics provided by the chosen spline
order n.

Proposition 2. (Domain-Informed B-Spline Interpolation):
For a given domain description as in (1)–(2), a sequence of
samples {s[k]}k∈Z as in (4) and a B-spline generating function
β(n)(x), the n-th order domain-informed B-spline interpolant
of the set of samples is obtained as

∀x ∈ R, s̃(x) =
∑
k∈Z

c[k]β
(n)
k

( x

T
− k

)
, (29)

where β
(n)
k (·) is given as in (14) and the coefficients c[k] are

obtained through solving the set of equations

∀k ∈ Z,

k+�n/2�∑
l=k−�n/2�

c[l]β
(n)
l (k − l) = s[k]. (30)

The resulting interpolant s̃(x) has the following properties:
1) s̃(x) satisfies the consistency principle [21]

s̃T (kT ) = s[k], ∀k ∈ Z. (31)

2) At homogeneous parts of the domain, s̃(x) is equal to
the n-th order spline interpolant obtained using standard
spline interpolation, i.e., a piecewise polynomial of order
n− 1.

Proof: (Property 1) Domain-informed B-spline interpolation
leads to perfect fit at sample points k ∈ Z since

s̃(k) = 〈s̃(x), δ(x− kT )〉
(29)
=

∑
l∈K

c[k]
〈
β
(n)
l

( x

T
− l

)
, δ(x− kT )

〉
︸ ︷︷ ︸

β
(n)
l (k−l)

(14)
=

k+�n/2�∑
l=k−�n/2�

c[k]β
(n)
l (k − l)

(30)
= s[k]. (32)

(Property 2) In any homogeneous domain interval [a, b],
domain-informed B-spline basis functions are identical to their
standard B-spline basis function (Property 3 of domain-informed
B-spline generating basis). Therefore, the domain-informed and
standard B-spline interpolants become identical within the in-
terval [a, b]. �

Remark: For domain-informed B-splines of order n = 0 and
1, the coefficients c[k] are identical to the signal samples,
i.e., ∀k ∈ K, c[k] = s[k]. For higher order domain-informed
B-splines, using matrix formulation, the solution to (30) is ob-
tained by solving a 2�n/2�+ 1 band-diagonal matrix of linear
equations; for cubic B-splines, i.e., n = 3, the formulation leads
to solving a tridiagonal matrix equation.

V. DIBSI VS BSI ON SIMULATED DATA

A set of synthetic random signals is required to evaluate the
proposed interpolation scheme. Due to the assumption of inho-
mogeneity of the signal domain, realizing such signals is not
straightforward. We present a scheme for realizing random sig-
nals of a desired piecewise smoothness characteristic on an in-
homogeneous domain where the signals respect the inhomo-
geneity of the domain. Assume that an inhomogeneous domain
is given as in (1), consisting of J subdomains. First, a set of
J signals of a desired smoothness characteristic are realized;
in particular, each of the J signals are constructed by realizing
(i) a randomly jittered, uniform knot sequence t[k] = k + εk,
where k ∈ Z, εk ∈ [−α, α] and α ∈ [0, 0.5), and (ii) J random
sequences of control values {vj [k] ∈ [0, 1]}Jj=1. Using (i) and
(ii), J random spline signals of order n, denoted ft,vj

(x), are
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Fig. 4. (a) Realizations of three inhomogeneous domains, each consisting of two subdomains; the construction is done using the scheme given in Section III-C.
(b) Realizations of pairs of random spline signals, cf. (33). (c) Realizations of inhomogeneous signals obtained through integrating the random spline signals given
in (b), cf. (34), and interpolants obtained through interpolating the signals’ samples using BSI and DIBSI of order three.

constructed such that [22]

∀k ∈ Z, ft,vj
(t[k]) = vj [k], j = 1, . . . , J. (33)

The signals {ft,vj
(x)}Jj=1 are then transformed to signals asso-

ciated to each subdomain as

sj(x) = H

(
dj(x)− 1

J

)
ft,vj

(x), j = 1, . . . , J,

where H(·) denotes the Heaviside step function. With this
model, we make a minimal assumption on the nature of the sig-
nals at the transition between subdomains. By superimposing
the subdomain signals, a signal defined on the given inhomoge-
neous domain is obtained as

s(x) =
∑
j∈J

sj(x). (34)

Using this signal construction scheme and the domain con-
struction scheme presented in Section III-C, a set of D domains,
and on each domain a set of S signals were randomly realized.
B-spline interpolation (BSI) and DIBSI were then implemented
on samples derived from each signal across a range of sam-
pling steps T ∈ [0.1, 1] (step size = 0.1) and B-spline orders
n = 1, . . . , 6. Fig. 4 presents realizations of segments of three
inhomogeneous domains, synthetic signals, and associated BSI
and DIBSI interpolants, for T = 1 and n = 3. DIBSI generally
better recovers the signal at inhomogeneous segments of the
domain, through minimizing the contribution of signal samples
that are not linked to the major subdomain at the interpolation
point. For example, in the second domain realization, consider
interval (6, 7), where the domain is dominantly associated to the
first subdomain, i.e., d1(x). The BSI interpolant at this interval
is heavily dependent on both adjacent samples, i.e., samples 6
and 7, whereas the DIBSI interpolant is mainly dependent on
the value of sample 7, which is associated to d1(x). As another
example, in the third domain realization, consider interval (3,4),
where the two subdomains transition almost at the center of the
interval; BSI and DIBSI exhibit a similar behaviour in that they
dominantly rely on sample 5 and sample 6 for obtaining the

Fig. 5. (a) Interval (4,7) of the third domain realization shown in Fig. 4 and
(b) the associated synthetic signal, BSI and DIBSI interpolants of order three.
DIBSI interpolants using three different γ are illustrated.

interpolant at the lower half and the upper half of the interval,
respectively. In particular, BSI exhibits a balanced dependence
on the sample value and the distance from the sample, whereas
DIBSI exhibits a greater dependence on the sample value. More-
over, when subdomains transition at a point almost in between
two samples, the DIBSI interpolant exhibits a pattern that reflects
the underlying logistic function, cf. (26), used in constructing
domain-informed B-splines. Fig. 5 illustrates how variation in
the logistic function’s γ parameter is reflected in the DIBSI in-
terpolant at transition bands. Finally, it is worth noting that if the
signal exhibits a large variation in amplitude in the interval pre-
ceding the transition between subdomains, being inconsistent to
the trend observed along the previous signal samples, neither
BSI nor DIBSI can appropriately recover the signal; an example
can be seen in interval (2.5,3) in the third realization in Fig. 4

For s̃T (x) to be a good approximation of s(x), the quality of
interpolation needs to improve proportionally to the decrease in
T . The interpolation error can be quantified using the distance
metric ‖s̃T (x)− s(x)‖L2

. The ensemble interpolation error as-
sociated with DIBSI can be quantified as

εV(D)
ϕ

(T ) =
1

DS

D∑
i=1

S∑
j=1

‖s̃(i,j)T (x)− s(i,j)(x)‖L2

‖s(i,j)(x)‖L2

, (35)
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Fig. 6. (a)–(f) Ensemble interpolation errors of BSI and DIBSI, with generat-
ing basis constructed using β(n)(x) for n = 1, . . . , 6, respectively.

where s(i,j)(x) denotes the j-th realized signal on the i-th real-
ized domain and s̃

(i,j)
T (x) ∈ V(D)

ϕ denotes the domain-informed
B-spline interpolant obtained based on samples extracted from
s(i,j)(x) at a sampling stepT . For BSI where s̃(i,j)T (x) ∈ Vϕ, the
ensemble interpolation error, denoted εVϕ

(T ), can be quantified
in the same way as in (35).

Fig. 6 shows ensemble interpolation errors εVϕ
(T ) and

εVD
ϕ
(T ) for ϕ = {β(n)(x)}n=1,...,6, on a randomly realized set

of 10,000 signals (D = 100 and S = 100). DIBSI outperforms
BSI across the range of B-spline orders. For each B-spline order,
both εVϕ

(T ) and εVD
ϕ
(T ) decrease proportional to the decrease

in T . The difference between εVϕ
(T ) and εVD

ϕ
(T ) increases with

the increase in the order of the B-splines.
Aside from the comparisons showing the enhanced perfor-

mance of DIBSI over BSI across the range of B-spline orders, it
is insightful to compare the performance of DIBSI itself across
different B-spline orders to that of BSI. Figs. 7(a) and (b) show
the approximation errors of BSI and DIBSI, respectively; the
signal set used is the same as the one used for Fig. 6, and thus,
the plots are essentially a rearrangement of those shown in Fig. 6.
BSI using higher order B-splines does not consistently lead to
greater reduction in the interpolation error, see Fig. 7(a), whereas
DIBSI shows better consistency, see Fig. 7(b).

Fig. 7. Ensemble interpolation errors over signals realized on inhomogeneous
domains (D = 100, S = 100) using (a) BSI and (b) DIBSI.

VI. DIBSI VS BSI ON NEUROIMAGING DATA

To show the practical significance of the proposed approach,
we present interpolation results using the proposed scheme on an
fMRI dataset. In brain studies using fMRI, a sequence of whole-
brain functional data is acquired. To track brain activity at high
temporal resolution, fMRI data are recorded at a relatively low
spatial resolution. The data is commonly accompanied with a
three- to fourfold higher resolution anatomical MRI scan, which
provides information about the convoluted brain tissue delineat-
ing gray matter (GM) and white matter (WM), each of which
have different functional properties [16], and cerebrospinal fluid
(CSF). The topology of GM and WM varies across the brain as
well as across subjects [23]. The goal is to exploit the richness
of subject-specific anatomical data, which define the domain
of the acquired fMRI data, for the purpose of improving the
quality of interpolation and resampling of fMRI data. Such an
interpolation scheme has an aim similar to signal processing
techniques that enhance linear [24] and non-linear [25], [26] de-
noising, deconvolution [27] and multi-scale decomposition [28]
of fMRI data through exploiting anatomical constraints. Inter-
polation approaches that aim to map volumetric fMRI data on
to the cortical surface [29], [30] are also related in the sense
that they aim to enhance surface interpolation by accounting for
the irregularity of the domain. Yet, such interpolation schemes
are different from that we propose here since they adapt to the
irregularity of the domain rather than to its inhomogeneity; i.e.,
they obtain an interpolant on a homogenous, irregular domain
rather than one on an inhomogeneous domain.

Fig. 8 illustrates the setting for applying domain-informed
B-spline interpolation on an fMRI dataset. We use data of a sub-
ject from the Human Connectome Project [31]. Fig. 8(a) shows
a 2-D slice of fMRI data, extracted from a 3D fMRI volume of
the subject. The resolution of the image is 2 × 2 mm2. Fig. 8(b)
shows the structural scan of the brain of the same subject, which
has an almost threefold higher resolution, 0.7 × 0.7 mm2. Both
slices are extracted such that they are aligned to the same neu-
rological coordinate. By segmenting the anatomical scan, gray
matter, white matter and cerebrospinal fluid probability maps,
which determine the probability of each voxel being of either
tissue, are obtained; Figs. 8(b)–(d) show these probability maps,
upsampled to a resolution of 0.2 × 0.2 mm2. We also treat the
region outside the brain mask as part of the cerebrospinal fluid
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Fig. 8. (a) A slice of fMRI data of a subject, including a close-up of an ROI. (b) The subject’s brain anatomy at the same neurological coordinate as in (a). (c)
Gray matter, (d) white matter and (e) cerebrospinal fluid segmented probability maps of the ROI shown in (b). (f) Description of the inhomogeneous domain along
the marked line within the ROI in (b), from top to bottom. (g) DIBSI basis, of order three, associated to the domain shown in (f). (h) B-spline interpolation and
domain-informed B-spline interpolation of the functional samples along the marked line within the ROI in (a).

map. Bilinear interpolation of these maps are used to define
normalized subdomain functions that satisfy (1) along any col-
umn/row in the plane. Fig. 8(f) shows the subdomain function
set along the marked line shown in Figs. 8(b)–(e). The domain
is inhomogeneous, build of a convoluted mix of the two tissue
types and CSF.

Fig. 8(g) shows DIBSI basis of order three constructed for the
inhomogeneous domain given in Fig. 8(f). DIBSI outperforms
BSI across the range of B-spline orders. The basis is adapted
to the convoluted description of the domain, and is robust to
complex delineation patterns between subdomains, for instance
see interval [14, 17]. Fig. 8(h) shows the fMRI samples along
the marked line shown in Figs. 8(a), as well as the resulting
BSI and DIBSI interpolants. At any homogeneous parts of the
domain DIBSI results in an interpolant that is identical to BSI;
for instance see the DIBSI and BSI interpolants within the in-
terval [24, 27] in Fig. 8(g). At the inhomogeneous parts of the
domain, DIBSI exhibits finer details than the BSI image, for in-
stance, see the domain description within the interval [7, 15], cf.
Fig. 8(f). Within this interval, samples from gray matter (samples
8 and 10), white matter (samples 7 and 11) and cerebrospinal
fluid (sample 9) are given, cf. Fig. 8(h). On the one hand, both
BSI and DIBSI satisfy the consistency principle at the sample
points. On the other hand, in between the samples, BSI main-
tains the smoothness characteristic enforced by using third order
B-splines whereas DIBSI leads to a signal that is consistent with
the description of the domain. For example, consider sample
point 3 that is purely associated to CSF. Its adjacent samples,
i.e., sample points 2 and 4, are both associated to gray matter.
In such cases, the domain-informed B-splines realized at the
sample point extensively adapt to the associated domain, and as

such, minimize the mixing of sample points associated to dif-
ferent subdomains. In other words, the best sample to use to
obtain the interpolant within the range [2.5, 4] is sample point 3,
and therefore, the contribution of β(3)

2 (x− 2) and β
(3)
4 (x− 4)

is minimized within this range. Similar scenarios are observed at
sample points 8 and 13. As another example, consider samples
6 and 7 that are both purely associated to white matter. Their
adjacent samples, i.e., samples 5 and 8, lie within gray matter.
In such a scenario, domain-informed B-splines exhibit a ‘cross-
ing’ behavior. Although both β

(3)
6 (x− 6) and β

(3)
8 (x− 8) have

part of their support within the interval [5.5,7.5], their amplitude
within this interval is significantly suppressed to prevent mixing
of gray matter samples with white matter samples in obtain-
ing an interpolant within white matter. Similar scenarios can be
observed along the domain.

A direct, separable extension of DIBSI to Euclidean m-D
space can be formulated. We present results on interpolating
the entire functional image shown in Fig. 8(a). In particular,
we upsample the image by a factor of 10. For simplicity, the
partial volume effect was disregarded and the value associated
to each functional pixel was assigned to the center of the
pixel. DIBSI was then performed along one dimension. The
resulting upsampled values were then used for a second round
of DIBSI along the second dimension. Figs. 9(a) and (b) show
upsampled versions of the functional slice using BSI and DIBSI,
respectively; anatomical information associated to the ROI are
shown in Figs. 9(c)–(e). Overall, the upsampled image using
DIBSI, cf. Fig. 9(b), presents more details than that obtained
using BSI, cf. Fig. 9(a). For homogeneous parts of the domain,
i.e., regions that fall purely within gray matter or white matter,
BSI and DIBSI result in identical upsampled profiles. On the
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Fig. 9. (a) Upsampled slice of fMRI data using (a) BSI and (b) DIBSI; a close
up of an ROI is displayed. (c) Gray matter, (d) white matter and (e) cerebrospinal
fluid segmented probability maps of the anatomy associated to the ROI shown
in (a) and (b).

other hand, DIBSI results in finer detailed functional maps at
inhomogeneous regions; for instance, see the maps along the
sulcus (groove) shown in the ROI.

It should be noted that the brain is intrinsically a 3-D struc-
ture, and that functional data are also acquired in 3-D. Therefore,
extending the interpolation to 3-D and incorporating the asso-
ciation of the samples to the 3-D subdomain description can
further enhance the results. Moreover, the exploited interpola-
tion in Fig. 9 is a straightforward extension of DIBSI into 2-D
to illustrate the use of such available domain information. A
non-separable higher dimensional extension can provide more
realistic encoding of convoluted domain descriptions such as that
presented here for the fMRI setting. Such higher order exten-
sions of DIBSI for neuroimaging applications will be explored
in our future work. Finally, it is worth noting that the compu-
tational burden of DIBSI is extensive compared to BSI since it
requires a domain-informed B-spline to be computed per sam-
ple point; in particular, the computational cost grows directly
proportional to the number of samples that lie within or in adja-
cency of inhomogeneous intervals of the domain. Optimization
of the implementation will be considered in future work.

VII. CONCLUSION

We have proposed an interpolation scheme that incorporates a
priori knowledge of the signal domain, such that the interpolant
is consistent not only at sample points, with respect to the given
samples, but also at intermediate points between samples, with
respect to the given domain knowledge. The interpolation is for-
mulated as an extension of B-spline interpolation. Shift invariant
interpolation approaches that use generating functions other than
B-splines may also be extended based on the scheme presented
here. Results on simulated data showed reduced interpolation
errors compared to using standard B-spline interpolation, on a
range of B-spline orders and sampling steps. Results from ap-
plying the proposed approach on fMRI data demonstrated the
potential of domain-informed interpolation in up-sampling low
resolution functional brain data to obtain subtle activation pat-
terns consistent to the anatomy of the brain.

APPENDIX I

In the following, we prove that the proposed domain-informed
B-spline basis satisfies the three properties of a domain-informed
generating basis.

Proof of property 1: Let ĉ(ejΩ) denote the discrete-domain
Fourier transform of c ∈ �2, i.e., ĉ(ejΩ) =

∑
k∈Z c[k]e

−jΩk with
the inverse transform given as

c[k] =
1

2π

∫ 2π

0

ĉ(ejΩ)ejΩkdΩ. (36)

Let ϕk(x) = β
(n)
k (x), and ϕ̂k(ω) denote its continuous-domain

Fourier transform given as

ϕ̂k(ω) =

∫ ∞

−∞
ϕk(x)e

−jωx dx. (37)

The objective is to derive bounds on the central term in (9),
which within this proof we denote by s(x), i.e.,

s(x) =
∑
k∈Z

c[k]ϕk(x− k). (38)

The continuous-domain Fourier transform of s(x) is given as

ŝ(ω)
(38)
=

∫ +∞

−∞

∑
k∈Z

c[k]ϕk(x− k)e−jωxdx

(36)
=

∑
k∈Z

∫ 2π

0

ĉ(ejΩ)ejΩk dΩ

2π

∫ ∞

−∞
ϕk(x− k)e−jωxdx

=

∫ 2π

0

ĉ(ejΩ)
∑
k∈Z

(∫ ∞

−∞
ϕk(x− k)e−jωxdx

)
ejΩk dΩ

2π
,

which can be further reformulated by incorporating the change
of variable l = x− k and dl = dx to

ŝ(ω) =

∫ 2π

0

ĉ(ejΩ)
∑
k∈Z

(∫ ∞

−∞
ϕk(l)e

−jωldl

)
e−jωkejΩk dΩ

2π

(37)
=

1

2π

∫ 2π

0

ĉ(ejΩ)
∑
k∈Z

ϕ̂k(ω)e
−jωkejΩk dΩ

=
1

2π

∫ 2π

0

ĉ(ejΩ)Φ̂(ω, ejΩ)dΩ, (39)

where

Φ̂(ω, ejΩ) =
∑
k∈Z

ϕ̂k(ω) e
−jωk ejΩk. (40)

Invoking the L2 space Parseval identity ‖s‖2L2
=

1
2π

∫∞
−∞ |ŝ(ω)|2dω on (39) gives

‖s‖2L2

(39)
=

1

(2π)3

∫ ∞

−∞

∣∣∣∣
∫ 2π

0

ĉ(ejΩ)Φ̂(ω, ejΩ)dΩ

∣∣∣∣
2

dω. (41)
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Using the Cauchy-Schwarz inequality, the integrand of the
outer integral in (41) can be upper bounded as

∣∣∣∣
∫ 2π

0

ĉ(ejΩ)Φ̂(ω, ejΩ)dΩ

∣∣∣∣
2

≤
∫ 2π

0

|ĉ(ejΩ)|2dΩ
∫ 2π

0

|Φ̂∗(ω, ejΩ)|2dΩ,

= 2π‖c‖2�2
∫ 2π

0

|Φ̂∗(ω, ejΩ)|2dΩ, (42)

where the equality follows from invoking the �2 space Parseval
identity ‖c‖2�2 = 1

2π

∫ 2π

0 |ĉ(ejΩ)|2dΩ.
Incorporating the outer integration and the constant factor in

(41) on (42) gives

1

(2π)3

∫ ∞

−∞

∣∣∣∣
∫ 2π

0

ĉ(ejΩ)Φ̂(ω, ejΩ)dΩ

∣∣∣∣
2

dω

≤ 1

(2π)2
‖c‖2�2

∫ ∞

−∞

∫ 2π

0

|Φ̂∗(ω, ejΩ)|2dΩ dω

=
1

(2π)2
‖c‖2�2

∫ 2π

0

∫ ∞

−∞
|Φ̂∗(ω, ejΩ)|2dω

︸ ︷︷ ︸
=‖̂ΦΩ(ω)‖2L2

dΩ (43)

where ‖Φ̂Ω(ω)‖2L2
denotes the L2 norm of Φ̂(ω, ejΩ) over ω for

a given fixed Ω; note that ∀Ω ∈ [0, 2π], ‖Φ̂Ω(ω)‖2L2
is bounded

as

‖Φ̂Ω(ω)‖2L2

(40)
=

∫ ∞

−∞

∣∣∣∣∣
∑
k∈Z

ϕ̂k(ω) e
jωk e−jΩk

∣∣∣∣∣
2

dω

≤
∫ ∞

−∞

∑
k∈Z

|ϕ̂k(ω) e
jωk e−jΩk|2dω

=
∑
k∈Z

∫ ∞

−∞
|ϕ̂k(ω)|2dω = 2π

∑
k∈Z

‖ϕk(x)‖2L2
,

(44)

where the summation runs over indices of the given finite set
of signal samples; note that the norms ‖ϕk(x)‖L2

exist since
ϕk(x) ∈ L2, which can be traced as follows

β(n)(x) ∈ L2
(1),(15)
=⇒ β

(n)
k,j (x) ∈ L2

(20),(21)
=⇒ β̇

(n)
k (x) ∈ L2,Ω(x) ∈ L2

(23),(25)
=⇒ β̈

(n)
k (x) ∈ L2

(14)
=⇒ ϕk(x) = β

(n)
k (x) ∈ L2.

Interpreting ‖Φ̂Ω(ω)‖2L2
as function over Ω ∈ [0, 2π], which

is bounded and also nonnegative, its integral can be bounded by
invoking the mean value theorem as

2π inf
Ω∈[0,2π]

‖Φ̂Ω(ω)‖2L2
≤

∫ 2π

0

‖Φ̂Ω(ω)‖2L2
dΩ

≤ 2π sup
Ω∈[0,2π]

‖Φ̂Ω(ω)‖2L2
. (45)

Incorporating (41) and the upper bound of (45) into (43) gives

‖s‖2L2
≤ 1

2π
sup

Ω∈[0,2π]
‖Φ̂Ω(ω)‖2L2

︸ ︷︷ ︸
B

‖c‖2�2 , (46)

whereB denotes the required upper bound constant for declaring
that {ϕk(x− k)}k∈Z forms a Riesz basis, cf. (9) and (38). On
the other hand, incorporating (41) and the lower bound of (45)
into (43) leads to one of the following to hold

A′︷ ︸︸ ︷
1

2π
inf

Ω∈[0,2π]
‖Φ̂Ω(ω)‖2L2

‖c‖2�2 ≤ ‖s‖2L2
≤ B‖c‖2�2 , (47)

‖s‖2L2
< A′‖c‖2�2 ≤ B‖c‖2�2 . (48)

If (47) holds, then A = A′ is the required lower bound con-
stant for declaring that {ϕk(x− k)}k∈Z forms a Riesz basis. On
the other hand, if (48) holds, since A′, ‖c‖2�2 and ‖s‖2L2

are all
strictly positive,1 it can be stated that ∃A ∈ (0, A′) such that
A‖c‖2�2 ≤ ‖s‖2L2

< A′‖c‖2�2 ≤ B‖c‖2�2 , thus, implicitly prov-
ing the existence of the lower bound constant A and also provid-
ing an upper bound on A that is lower than B, i.e., A < A

′ ≤ B.
Proof of property 2: We have, for all x ∈ R∑

k∈Z
β
(n)
k (x− k)

(14),(23)
=

∑
k∈Δ(n)

x

β̇
(n)
k (x− k) +

∑
k∈Δ(n)

x

θk(x− k)Ω(x)

(21)
=

∑
k∈Δ(n)

x

∑
i∈Ik

β
(n)
k,i (x− k)

+
∑

k∈Δ(n)
x

θk(x− k)
∑

l∈Δ(n)
x

∑
i∈Rk

β
(n)
l,i (x− l)

=
∑

k∈Δ(n)
x

∑
i∈Ik

β
(n)
k,i (x− k)

+
∑

k∈Δ(n)
x

∑
i∈Rk

β
(n)
k,i (x− k)

∑
k∈Δ(n)

x

θk(x− k)

︸ ︷︷ ︸
=1

, (49)

=
∑

k∈Δ(n)
x

∑
i∈J

β
(n)
k,i (x− k)

(16),(17)
= 1, (50)

where the partition of unity in (49) follows from
∑

k∈Δ(n)
x

θk(x− k) =
∑

k∈Δ(n)
x

Θ(wk(x− k))∑
l∈Δ(n)

k+x−k

Θ(wl(k + x− k − l))

= 1.

Proof of property 3: For any k ∈ Z, if the domain is homoge-
neous within the support [k −Δ(n), k +Δ(n)], i.e., there exists

1We disregard the case where ||c||2�2 = 0, since if ||c||2�2 = 0, then ∀k ∈
Z, c[k] = 0, then ‖s‖2L2

= 0, cf. (38), and thus, the Riesz basis condition is

satisfied ∀A,B ∈ R+, A < B.
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an l ∈ J such that for all |x− k| ≤ Δ(n) we have dl(x) = 1
and {dj(x) = 0}j∈J \l, then

β
(n)
k (x) = β̇

(n)
k (x) + β̈

(n)
k (x)

=

=1︷ ︸︸ ︷
dl((x+ k)T ) ·β(n)(x) + θk(x) · Ω(

:=xk︷ ︸︸ ︷
(x+ k)T ),

(22)
= β(n)(x) + θk(x)

⎛
⎜⎝1−

∑
i∈Δ(n)

xkT

β̇
(n)
i (xk − i)

⎞
⎟⎠

= β(n)(x) + θk(x)

⎛
⎜⎝1−

=1︷ ︸︸ ︷∑
i∈Δ(n)

xkT

β(n)(xk − i)

⎞
⎟⎠

= β(n)(x)

(51)

APPENDIX II

We define a Meyer-type system of K ∈ Z
+ kernels {m′

k(x) :
[L,U ] → [0, 1]}Kk=1, where L,U ∈ R+ and L < U/(2K), in a
way similar to that given in [28], with the difference that i) we
enforce the kernels to form a partition of unity as

K∑
k=1

|m′
k(x)| = 1, ∀x ∈ [L,U ], (52)

as opposed to over their second power as in [28], and ii) we skip
enforcing the first and last kernels having L2 norms equal to that
of {m′

k(x)}K−1
k=2 .

Using the auxiliary function of the Meyer wavelet [32]
ν(x) = x4(35− 84x+ 70x2 − 20x3), a system K ≥ 2 kernels
{m′

k(x)}Kk=1 that span the range [0, U ] can be defined as

m
′
1(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 ∀x ∈ [L,Δ/2]

cos2(π2 ν(
x
Δ − 1

2 ))) ∀x ∈ (Δ/2, 3Δ/2]

0 elsewhere
(53a)

m
′
k(x) =

⎧⎪⎪⎨
⎪⎪⎩

sin2(π2 ν(
x
Δ − k + 3

2 )) ∀x ∈ (α, α+Δ]

cos2(π2 ν(
x
Δ − k + 1

2 )) ∀x ∈ (α+Δ, α+ 2Δ]

0 elsewhere
(53b)

m
′
K(x) =

⎧⎪⎪⎨
⎪⎪⎩

sin2(π2 ν(
x
Δ −K + 3

2 )) ∀x ∈ (κ, κ+Δ]

1 ∀x ∈ (κ+Δ, U ]

0 elsewhere
(53c)

Fig. 10. Meyer-type system of spectral kernels.

where Δ = U/K (see Fig. 10 for notation), α = (k − 3/2)Δ
and κ = (K − 3/2)Δ. The set of kernels (53) satisfy (52) since

K∑
k=1

|m′
k(λ)| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m
′
1(x)

(53a)
= 1 ∀x ∈ [L,Δ/2]

m
′
1(x) +m

′
2(x) ∀x ∈ (Δ/2, 3Δ/2]

m
′
2(x) +m

′
3(x) ∀x ∈ (3Δ/2, 5Δ/2]

...
...

m
′
J(x)

(53c)
= 1 ∀x ∈ (U −Δ/2, U ]

(53b)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ∀x ∈ [L,Δ/2]

cos2(xI) + sin2(xI) ∀x ∈ (Δ/2, 3Δ/2]

cos2(xII) + sin2(xII) ∀x ∈ (3Δ/2, 5Δ/2]

...
...

1 ∀x ∈ (U −Δ/2, U ]

= 1 ∀x ∈ [0, U ]

where xI =
π
2 ν(

x
Δ − 1/2) and xII =

π
2 ν(

x
Δ − 3/2); in the first

equality we use the property that for all k ∈ {2, . . . ,K − 1} the
supports of m

′
k−1(x) and m

′
k+1(x) are disjoint.
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