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Abstract—Goal: Structural brain graphs are convention-
ally limited to defining nodes as gray matter regions from
an atlas, with edges reflecting the density of axonal projec-
tions between pairs of nodes. Here we explicitly model the
entire set of voxels within a brain mask as nodes of high-
resolution, subject-specific graphs. Methods: We define the
strength of local voxel-to-voxel connections using diffusion
tensors and orientation distribution functions derived from
diffusion MRI data. We study the graphs’ Laplacian spectral
properties on data from the Human Connectome Project.
We then assess the extent of inter-subject variability of the
Laplacian eigenmodes via a procrustes validation scheme.
Finally, we demonstrate the extent to which functional MRI
data are shaped by the underlying anatomical structure
via graph signal processing. Results: The graph Laplacian
eigenmodes manifest highly resolved spatial profiles, re-
flecting distributed patterns that correspond to major white
matter pathways. We show that the intrinsic dimensionality
of the eigenspace of such high-resolution graphs is only
a mere fraction of the graph dimensions. By projecting
task and resting-state data on low-frequency graph Lapla-
cian eigenmodes, we show that brain activity can be well
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approximated by a small subset of low-frequency compo-
nents. Conclusions: The proposed graphs open new av-
enues in studying the brain, be it, by exploring their organ-
isational properties via graph or spectral graph theory, or
by treating them as the scaffold on which brain function is
observed at the individual level.

Index Terms—Brain graph, diffusion MRI, functional MRI,
graph signal processing, spectral graph theory.

Impact Statement—We propose the design of subject-
specific, whole-brain, voxel-wise brain graphs, treating
them as the scaffold on which brain function can be studied
and quantified in relation to underlying structure.

I. INTRODUCTION

MAGNETIC resonance imaging (MRI) has provided an
effective means to map the brain’s anatomical scaffold,

using diffusion MRI, and, in parallel, to track brain neural activ-
ity using functional MRI (fMRI). Extensive datasets that include
diffusion and functional data on the same set of subjects, such
as the Human Connectome Project (HCP) [2], have been made
freely available, and with such accessibility, various method-
ological developments that aim to integrate the two modalities
have emerged.

Computational neuroimaging has successfully adopted graph
theory, creating a new field of interdisciplinary research
called network neuroscience [3]. Structural and functional
connectomes are independently defined, and consequently
analyzed using graph theory measures to provide a better un-
derstanding of their organizing network principles [4]. There is
also an increasing interest in deciphering how underlying brain
anatomy supports the emergence of spatially and temporally
varying distributed patterns of functional activity [5], [6], [7].
In this perspective, it is fitting to consider advancing network
neuroscience to a more unifying analysis approach that accounts
for the interplay between brain structure and function. The
study of signal propagation on structural connectomes [8], [9]
is an example avenue of research that is gaining momentum.
Leveraging principles from the recently emerged field of graph
signal processing (GSP) [10], [11], an alternative framework is
taking form, in which functional data are interpreted as functions
defined atop of a graph that describes the morphological or
wiring structure of the brain, and, in turn, processed using
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spectral methods that are informed by the underlying brain
structure.

GSP generalizes principles from classical discrete signal pro-
cessing for time series to data defined on irregular domains. GSP
has found numerous applications across multiple domains—see
e.g. [11] for a recent review, and in particular within neuroimag-
ing, examples include: brain state decoding [12], [13], [14],
brain signal denoising [15], brain activation mapping [16], [17],
[18], source localization [19], diagnosing neuropathology [20],
tracking fast spatiotemporal cortical dynamics [21], [22], brain
fingerprinting and task decoding [23] via quantifying the de-
gree of coupling between brain function and structure [24],
identifying dynamically evolving populations of neurons [25],
deciphering signatures of attention switching [26], manifesting
white matter pathways that mediate cortical activity [27], and
elucidating perturbations of consciousness induced by brain
injury or drugs [28], [29].

The majority of existing applications of GSP in functional
brain imaging are limited to region-wise analyses, where re-
gions are defined using a priori brain atlases having 100 to
1000 regions. Motivated by the promising results from existing
region-wise GSP studies in linking brain structure and function,
and novel recent methods for high-resolution connectomics [30]
and activation mapping [31], it is fitting to further explore the
benefits of large-scale brain graphs at the resolution of voxels.
Here we present models to derive the strength of connection
between adjacent voxels using diffusion MRI data, one based on
tensors estimated from diffusion tensor imaging (DTI) [32], and
the other based on diffusion orientation distribution functions
(ODF) estimated from high angular resolution diffusion imaging
(HARDI) data [33]; we consider the two signal representation
settings to make the methodology applicable to a larger set of
available diffusion MRI data. Using data of 100 subjects from
the HCP [2], we validate the graphs via studying their nodal and
spectral measures. We then probe the intrinsic dimensionality
of their eigenspace using a Procrustes validation scheme that
characterizes inter-subject variability. Finally, we demonstrate
the relevance of such high-spatial-resolution voxel-wise graphs
within a GSP setting, particularly through studying the en-
ergy spectral density of resting-state and task fMRI data on
these graphs. We conclude the paper by discussing potential
future research avenues in using voxel-wise graphs, in partic-
ular, in studying the interaction between brain structure and
function.

II. MATERIALS AND METHODS

A. Datasets

We used MRI data from the publicly available HCP dataset—
the 100 unrelated subjects, WU-Minn Consortium [2]. MRI
acquisition protocols of the dataset and preprocessing guidelines
for diffusion MRI are extensively described elsewhere [34]. We
used the minimally preprocessed diffusion and anatomical data.
The resting-state and task fMRI scans of each subject were re-
aligned to their mean images, and were registered and resampled
onto the diffusion data through rigid-body registration using

SPM.1 Two signal reconstruction methods were applied to the
diffusion data: (1) DTI tensor fitting using FSL,2 and (2) ODF
estimations using DSI Studio.3

B. Graphs and Their Spectra

Let G := (N,A) denote an undirected, single-connected,
weighted graph, consisting of a node set N, where |N| = N , and
a symmetricN ×N weighted adjacency matrixA, wherein any
of its nonzero elements aij represent the weight of an edge (i, j)
in the graph. The normalized graph Laplacian [35] is defined as

L = I−D−1/2AD−1/2, (1)

where I denotes the identity matrix, and D denotes the
graph degree matrix, which is diagonal with elements di,i =∑N

j=1 aij . L can be diagonalized as L = UΛU�, where U =
[u1,u2, . . .,uN ] is an orthonormal matrix stacking the eigen-
vectors ui, i = 1, . . . , N , and Λ is a diagonal matrix stacking
the corresponding eigenvalues Λi,i = λi, which are real and
non-negative due to symmetry and positive semi-definiteness
of L. Without loss of generality, we assume that the diago-
nal elements in Λ, and the corresponding columns in U, are
sorted based on the magnitude of the eigenvalues, i.e., ∀i, j if
i < j then Λi,i ≤ Λj,j . As such, the graph Laplacian eigenvalue
set satisfies {0 = λ1 ≤ λ2 · · · ≤ λN := λmax ≤ 2}, where the
upper bound is guaranteed due to the use of the normalized
Laplacian matrix [35]. This set defines the Laplacian spectrum
of the graph, and the eigenvector set {ui}i=1,...,N defines an
orthonormal basis that spans the RN space of vectors defined on
the nodes of the graph; in the following, we occasionally refer to
the Laplacian eigenvectors also as eigenmodes, a nomenclature
commonly used in the neuroimaging community.

The eigenvalues of a graph Laplacian carry a notion of fre-
quency, which is directly linked to the extent of spatial saliency
manifested by their corresponding eigenvectors. To understand
this link, a metric known as total variation (TV) [36] can be
computed for each eigenvector, or more precisely, for any given
graph signal. A graph signal defined on the nodes of a graph
can be represented as a vector x ∈ RN , where the i-th element,
x[i], is the signal value at the i-th node of the graph. For a given
graph signal x, the TV of x is defined as TV (x) = x�Lx, a
measure that quantifies the extent of variation observed in x
relative to the underlying graph structure. Given that the eigen-
vectors are orthonormal, i.e., u�i ui = 1, and that Lui = λiui,
it follows that the TV of Laplacian eigenvectors reduces to
TV (ui) = u�i Lui = λi, showing that the variability of each
Laplacian eigenvector is reflected by the associated eigenvalue,
or in other words, that Laplacian eigenvectors associated to
larger eigenvalues reflect a greater extent of spatial variability.
Alternatively, spatial variability of graph signals/eigenmodes
can be quantified via a measure of zero-crossings [37], [38]. In

1https://www.fil.ion.ucl.ac.uk/spm/software/spm12
2https://fsl.fmrib.ox.ac.uk
3https://dsi-studio.labsolver.org

https://www.fil.ion.ucl.ac.uk/spm/software/spm12
https://fsl.fmrib.ox.ac.uk
https://dsi-studio.labsolver.org
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particular, we define a weighted zero-crossing measure as [17]

ZC(uk) =
1

2

∑
i �=j

aijH(−uk[i]uk[j]), (2)

where H(·) is the Heaviside step function and aij is the edge
weight that connects voxels vi and vj . The higher the zero-
crossing metric, the greater the associated variability in the
eigenvectors’ spatial patterns.

C. Spectral Decomposition of Graph Signals

For a given graph signal x, its spectral representation, com-
monly referred to as the graph Fourier transform (GFT) of x, is
given as

x̃ = U�x. (3)

The signal can be perfectly recovered through the inverse GFT
operation as,x = Ux̃ =

∑N
i=1 x̃[i]ui. As such, any given graph

signal can be seen as a linear combination of the orthonormal set
of Laplacian eigenvectors. In particular, |x̃[i]|2 gives the energy
spectral density of the signal associated to the i-th eigenmode.
Given a set of graph signals X = {xk}k=1,...,S (e.g. graph signals
derived from individual time frames of a given fMRI session)
we compute the ensemble energy spectral density (EESD) of the
lower end of the spectrum of X as

EESD(i) =
1

S

S∑
k=1

x̃k[i], i = 1, . . . , C, (4)

where C denotes a desired cutoff index specifying the number
of lower end spectral indices to be studied (C = 1000 in this
study), and xk denotes the demeaned and normalized version of
xk obatined as

xk = (xk − u�1 xku1)/||xk − u�1 xku1||2, (5)

which ensures |x̃k[1]|2 = 0 and
∑N

i=1 |x̃k[i]|2 = 1.

D. Brain Graph Design

For each subject, we define a weighted brain graph char-
acterized by a node set N = {1, . . . , N} defined based on the
set of voxels that fall within the subject’s brain mask, covering
gray matter (GM), white matter (WM) and cerebrospinal fluid
(CSF), representing a 3D mesh arrangement. In particular, each
node i is associated to a voxel, denoted vi, with coordinates
(xi, yi, zi). The graph edges are defined based on the adjacency
of voxels within the Moore neighborhood cubic lattice of size
3× 3× 3 and 5× 5× 5, where the latter size is only used in
the ODF-based design. For the 5× 5× 5 design, voxels in the
outer layer that fall in parallel to the voxels within the inner layer
were excluded, enabling encoding of connections to a maximum
of 98 voxels/directions in the neighborhood of each focal voxel,
whereas the 3× 3× 3 design enables encoding connections to a
maximum of 26 different directions. As such, the 5-connectivity
design trades localization for better angular resolutions. With
this definition of edges, each node i entails a neighborhood set
of the indices of nodes in N that are adjacent to it, denoted Ni,

where |Ni| ≤ 26 and≤ 98 for the 3- and 5-connectivity designs,
respectively.

We define the edge weights based on a measure of inter-voxel
fiber coherence across all pairs of adjacent voxels. In particular,
to make the presented method applicable to a wider range of
available diffusion MRI data, we present two edge weighting
schemes using two signal representation models, one using
diffusion tensors and one using diffusion ODFs; we denote
the resulting edge weighting schemes as the DTI-based and
ODF-based methods, respectively. The tensor and ODF models
both aim to represent structural information on the intra-voxel
axon fiber arrangement. The diffusion tensor model can be seen
as a multivariate Gaussian describing the distribution of fiber
bundle alignment, whereas the diffusion ODF model defines the
radial projection of the diffusion function, providing an estimate
of the empirical distribution of water diffusion.

Let rij denote the vector pointing from the center of the
voxel vi to the center of the voxel vj . Let {p(i, rij)}j∈Ni

denote
estimates of the extent of diffusion at voxel vi in directions
{rij}j∈Ni

. In the following, we first present a DTI-based and
an ODF-based approach to estimate {{p(i, rij)}j∈Ni

}Ni=1. We
then use these estimates to define the graph edge weights.

1) DTI-Based Quantification of Diffusion Orientation:
DTI is a model-based method for reconstructing the diffusion
signal from diffusion MRI. The assumption in DTI is that
the diffusion pattern follows the shape of a 3D ellipsoid. The
molecular displacement of water at voxel i in the direction rij
can be approximated by a 3D Gaussian distribution with real
symmetric diffusion tensor T as the covariance matrix:

p(i, rij) =
1√

(2π)3|T| exp
(
−1

2
r�ijT

−1rij

)
, (6)

where |T| is the determinant of the diffusion tensor. The calcu-
lation of p(i, rij) requires a discretization step that guarantees
a one-to-one mapping between the (continuous) multivariate
Gaussian model and the (discrete) weighting of nodes in the
brain graph. For the 3× 3× 3 neighborhood encoding scheme,
for a given voxel vi, the set of values {p(i, rij)}j∈Ni

can be
arranged into 3× 3× 3 discrete representation, which mimics
the structure of a 3D finite impulse response (FIR) filter. As
such, the problem of obtaining {p(i, rij)}j∈Ni

can be alterna-
tively seen as that of obtaining the coefficients of an FIR filter.
We provide the details of this procedure in the Supplementary
Materials.

2) ODF-Based Quantification of Diffusion Orientation:
Unlike diffusion tensors, ODFs do not follow a specific model
and shape. Thus, a one-to-one discretization of a continuous
function similar to that presented for the DTI model cannot be
applied. Here we build on the construction previously presented
by Iturria-Medina [39]. Within standard spherical coordinates,
parametrized by (r, θ, φ, ), let Oi(û) denote the ODF associated
to voxel vi with its center of coordinate being the voxel’s
center, with û(θ, φ) = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ))�

denoting the unit direction vector. Given Oi(û), a measure of
the extent of diffusion at voxel vi along direction rij can be
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obtained as

p(i, rij) =
1

Ωij

∫
Ωij

On
i (û)dΩ, (7)

where Ωij denotes a given solid angle around rij , dΩ =
sin(θ)dθdφ denotes the infinitesimal solid angle element; in
particular, a solid angle of 4π/26 and 4π/98 is used for the 3-
and 5-connectivity schemes, respectively. The exponentn > 0 is
a desired power factor that is used to sharpen the ODF given the
limited degree to which diffusion ODFs can differentiate fiber
orientations [40]. As such, p(i, rij) gives an average measure of
the surface area of the ODF within a spherical cap defined by the
solid angle. Given a discrete representation of Oi(û) in form of
No samples, denoted {Oi,k}No

k=1, along No spherical directions
from the center of voxel vi, (7) can be approximated as

p(i, rij) ≈ 1

|Dij |
∑
k∈Dij

On
i,k, (8)

where Dij denotes a subset of direction indices {1, . . . , No}
whose associated set of directions fall within Ωij . The nor-
malization by the cardinality of Dij is due to the difference
in the number of ODF samples that fall within the solid angle
subtended along the different neighborhood directions.

3) Brain Graph Edge Weights: The graph edge weights aij
are defined by using the estimates of diffusion orientation at
the associated voxels vi and vj , i.e., p(i, rij) and p(j, rji), as
well as the strength of anisotropy at those voxels. In particular,
for a given voxel vi, let F (vi) and Q(vi) denote the voxel’s
fractional anisotropy (FA) and quantitative anisotropy (QA),
respectively. FA can be calculated directly from the eigenvalues
of the diffusion tensor [41] and QA pertains to the amount of
diffusion anisotropy along the fiber orientation as originally
defined by Yeh et al. [42]. Using these measures, we define the
graph edge weights aij as

aij =

magnitude︷ ︸︸ ︷
Pmag(vi)Pmag(vj)

α2

orientation︷ ︸︸ ︷(
p(i, rij)

βi
+

p(j, rji)

βj

)
, (9)

where α = maxk{Pmag(vk)}, βk = 2maxl∈Nk
{p(k, rkl)} and

Pmag(vi) denotes the magnitude of anisotropy at voxel i, defined
as

Pmag(vi) =

{
F (vi), DTI-based design

Q(vi), ODF-based design.
(10)

The connectivity structure of the graph is then characterized
in A, such that aij > 0, given as in (9), if nodes i and j are
connected through an edge, and aij = 0 if otherwise.

The orientation term in (9) gives a measure of diffusion ori-
entation coherence between the two connected voxels, whereas
the anisotropies give a magnitude measure that is useful in
delineating tissues; the use of anisotropies is in contrast to using
probabilistic tissue maps as used in [39], enabling the design
of the graphs using only the diffusion data. Given two adjacent
voxels that exhibit highly coherent diffusion orientations, a large
weight is associated to the connection only if the two voxels
also exhibit notably large anisotropies. This interplay between

Algorithm 1: Group-Level Matching of Eigenmodes.
Xavg ← XK,1

for j = 1 to J do
for m = 1 to M do
XK,m ← Reorder columns in XK,m such that the

resulting permuted matrix best matches Xavg

end for
Xavg ← average {XK,1, . . . , XK,M}

end for

the orientation term and magnitude term enables, for example, to
prevent associating large weight to an edge between a WM voxel
and a CSF voxel. Furthermore, the normalizations incorporated
in the definition, i.e., the α and βk terms, ensure having an
unbiased definition of weights relative to the structure of the
diffusion tensors/ODFs across the brain, and, mathematically,
they impose bounds on the orientation and magnitude terms—
both terms bounded to [0,1], which in turn results in aij also
being bounded to [0,1].

E. Group-Level Eigenmodes

The voxel-wise nature of the studied graphs renders their size
excessively large, with 7.8± 0.7× 105 nodes across the 100
subjects considered. The sheer size of the voxel-wise graphs
impedes computing the full eigendecomposition of the graph
Laplacian, and, therefore, we compute and study the first leading
1000 eigenvectors corresponding to the lowest spectral fre-
quencies. To preserve subtle subject-specific spatial details, we
construct all graphs in the native space of each subject’s diffusion
data. To enable inter-subject comparison of eigenmodes, the
DARTEL normalization algorithm [43] implemented in SPM12
was used to define a group-level template coordinate space,
based on the group’s T1-weighted MRI data. This results in
a structural T1-weighted template as well as a set of transforma-
tion maps per subject. Each subject’s eigenmodes are then trans-
formed into the template space using the subject-specific trans-
formations, resulting in inter-subject spatially aligned eigen-
modes.

F. Consistent Inter-Subject Ordering of Eigenmodes

The ordering of DARTEL-normalized eigenmodes is not nec-
essarily consistent across subjects, including sign ambiguity and
linear combinations between modes with close eigenvalues. To
obtain a consistent ordering of the eigenmodes, and enable inter-
subject comparison of individual eigenmodes, we used the Pro-
crustes transform [44], which finds the optimal rotation, transla-
tion, and/or reflection between two linear subspaces. We imple-
mented a scheme of Procrustes transformation, where the sub-
space is defined by the firstK DARTEL-normalized eigenmodes
of any M subset of subjects. Let ui,m denote the i-th eigenmode
of subject m, and let XK,m = [u1,m u2,m · · · uK,m].

The reordering is done based on Procrustes transformation es-
timates, andJ denotes the optimal number of iterations to ensure
that Xavg does not remain biased towards its initial value, i.e.,
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Algorithm 2: Procrustes Validation.
for K = 100 to 1000 step 100 do

for j = 1 to 1000 do
{m,n} ← randomly select 2 values ∈ {1, . . . , 100}
{XK,m, XK,n} ← Algorithm 1 on {XK,m, XK,n}
εj ← Em,n(K)

end for
μK ← mean of {εj}j=1,...,1000

σK ← standard deviation of {εj}j=1,...,1000

end for

XK,1. The columns of the resulting {XK,m}Mm=1 are reordered
in such a way that they optimally match each other and can
thus be compared across the subjects. Although the Procrustes
transformation removes much of the variance that is common
between subjects, it cannot discount for subject-specific details;
in the following section we define a metric that quantifies the
extent of remaining inter-subject structural variability.

G. Quantification of the Extent of Inter-Subject
Structural Variability as Encoded in Brain Graphs

The precision of the Procrustes transformation can be evalu-
ated by quantifying the cosine similarity between corresponding
eigenmodes of different subjects, after DARTEL normalization
and Procrustes transformation. For any pair of subjects, a sym-
metric cosine similarity matrix is obtained, where the deviation
of the off-diagonal elements of the matrix from zero quantifies
inter-subject structural variability. If the set of eigenmodes of
two subjects has been ideally matched, the cosine similarity
matrix should be the identity matrix. Therefore, to quantify the
mismatch between a pair of subjects m and n based on their first
K eigenmodes, we define a measure of the extent of inter-subject
structural variability, termed Procrustes error, via computing the
cosine similarity between pairs of eigenmodes as

Em,n(K) =
1

2

√√√√√ K∑
i=1

K∑
j=1

j �=i

(
u�i,muj,n

‖ui,m‖ ‖uj,n‖

)2

. (11)

We used this error term to determine J in Algorithm 1 and also
to compare the different graph designs.

To validate the performance of the Procrustes transformation,
we implemented a bootstrap scheme, which successively applies
the transformation on the first K eigenmodes of two randomly
chosen subjects; the implementation is summarized in the fol-
lowing algorithm:

When comparing two brain graph designs, the design that
results in a higher μK , with reasonably small σK , is interpreted
as capturing more subject-specific structural features.

H. Spectral Decomposition of fMRI Data

As proof-of-concept of the applicability of the proposed
whole-brain, voxel-wise brain graphs, we evaluated the extent
to which brain fMRI data are spatially shaped by the underlying
brain structure as encoded by the graphs. In particular, we

Fig. 1. Degree distribution of the (a) DTI-3, (b) ODF-3, and (c) ODF-5
voxel-wise brain graphs for a representative subject. (d) Distribution of
the number of nodes in each tissue type across all subjects.

constructed fMRI graph signals from six functional tasks as
well a resting-state acquisition, across 100 subjects. Each fMRI
time frame was transformed in to a single graph signal. This
was done by extracting the fMRI voxels associated to the graph
vertices, i.e., voxels that fall within each subject’s brain mask,
arranging them as a vector, ordered based on the order of vertices
as reflected in each subject’s graph adjacency matrix. As such,
for each subject, a time-evolving series of graph signals were
obtained from each of the subjects’ task or resting-state 4D fMRI
volumes. We studied the energy spectral density of the extracted
graph signals associated to the first 1000 spectral indices of the
ODF-3 graph. To serve as a null, we also evaluated the energy
spectral density of synthesized shuffled fMRI signals—obtained
through random permutation of voxel indices of each fMRI
volume to destroy spatial order, as well as white Gaussian noise
signals.

III. RESULTS

Fig. 1 shows the degree distributions of the graphs across
the different tissue types. The connectivity strength is highest
in WM nodes compared to GM and CSF nodes. The degree
distribution of ODF-5 graphs is a shifted version of that of the
ODF-3 graphs towards a higher degree, reflecting the larger
number of connections possible with the ODF-5 design. It can
be observed that the nodal degrees within gray matter and CSF
almost coincide for the DTI design whereas this is much less
pronounced in the ODF designs (compare Fig. 1(a) with Fig. 1(b)
and (c)); this is more pronounced for the ODF-3 design, which
reflects that the ODF-3 design bears larger differences across
tissue types compared to the DTI-3 design. Fig. 1(d) shows
the distribution of nodes for the different tissue types across all
subjects; the median number of nodes for GM, WM, and CSF
were 254 299, 221 964, and 294 028, respectively, with standard
deviations 25 322, 28 579, and 25 742, respectively.



BEHJAT et al.: VOXEL-WISE BRAIN GRAPHS FROM DIFFUSION MRI 163

Fig. 2. (a) First Laplacian eigenmode of 3-connectivity DTI,
3-connectivity ODF and 5-connectivity ODF brain graphs of a represen-
tative subject. (b) The next lowest frequency eigenmodes corresponding
to the 3-connectivity ODF brain graph.

A. Spectral Comparison

Fig. 2(a) shows the first Laplacian eigenmodes obtained from
the three brain graphs of a representative subject. Noting that
the first eigenmode of L is a function of the graph nodal
degrees—u1 = D1/21 where 1 denotes the constant function
that assumes the value of 1 on each node, the spatial pattern
manifested by the first eigenmodes is a corroboration of the

Fig. 3. (a) Lower-end eigenvalues of DTI-3, ODF-3 and ODF-5 graphs,
consisting of their first 1000 eigenvalues. (b) weighted zero-crossing
the corresponding eigenmodes; cf. (2); solid lines show the mean and
shades show the standard deviation across the 100 subjects.

results shown in Fig. 1(a)–(c), demonstrating that the distinc-
tion between tissue types naturally arises from the assignment
of the connectivity weights in the brain graph, in particular
through the assignment of the magnitude term in (9). Moreover,
the first eigenmode manifests a specific profile of local tissue
structure, in which higher values reflect voxels/regions that are
more strongly connected to their surrounding neighbourhood,
particularly observed at regions of less ambiguous fiber struc-
ture, e.g. within the corpus callosum The second and third
eigenmodes shown in Fig. 2(b) manifest global morphological
organization of the brain, contrasting the posterior and anterior,
and the left and right brain regions, respectively. The next eigen-
modes exhibit a greater extent of spatial variability and localized
information.

Fig. 3(a) shows the lower-end graph spectra in which the rate
of increase in the first 1000 eigenvalues are shown. The ODF-5
graph has relatively larger eigenvalues than the ODF-3 and DTI-
3 graphs. Given that the eigenvalues entail a notion of spatial
saliency, the increase in local connectivity in the ODF-5 implies
that the associated eigenmodes have greater degrees of freedom,
and as such, spatial saliency can become higher. The spatial
saliency of the eigenmodes’ can be quantified by computing
their weighted zero-crossing, cf. (2). Fig. 3(b) shows a trend
that is consistent with that of the eigenvalues, thereby confirming
the general notion that higher indexed eigenmodes encompass
a larger extent of spatial saliency.
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Fig. 4. Cosine similarity between the first 300 eigenmodes before and
after Procrustes transformation (PT) for two representative subjects.

Fig. 5. Quantification of the extent of inter-subject structural variability
captured by the eigenmodes, cf. Algorithm 2. The four markers (DTI-3,
ODF-3, ODF-5, and Null) within each vertical shade are associated to
the same K.

B. Procrustes Validation

We evaluated the inherent inter-subject variability encoded
in two voxel-wise brain graph designs via the Procrustes trans-
form, which finds the optimal configuration that matches single
subject eigenmodes to an averaged set. This step, however,
cannot account for subject-specific fiber pathways encoded in
the eigenmodes, as manifested by the cosine similarity analysis
of pairs of subjects. The cosine similarity matrices of two sets of
eigenmodes before and after applying Procrustes transformation
are shown in Fig. 4. The diagonal structure of the cosine similar-
ity matrix associated to the transformed eigenmodes shows the
effectiveness of the transformation in aligning eigenmodes of the
same neuroanatomical spatial nature. The insets show traces of
flipped signs and unordered eigenmodes in the original vectors,
which were corrected after Procrustes transformation. The pre-
cision of the Procrustes analysis improves after several rounds
of the transformation; see Fig. 1 in Supplementary Materials.

Fig. 5 shows the Procrustes error when different subset of
eigenmodes are used, for each of the three graph designs, reflect-
ing the extent of inter-subject structural variability captured by

Fig. 6. (a) Ensemble average energy spectral density of fMRI data
of 100 subjects for the first 1000 eigenmodes of ODF-3 brain graph.
(b) Same as in (a) but showing the cumulative values as well as a
comparison to shuffled fMRI data and white Gaussian noise.

the eigenmodes. Furthermore, to serve as a null for comparing
and validating the brain graphs, we synthesized 100 random
orthonormal vectors of the same dimension as each of the
subject-specific eigenmodes, applied DARTEL normalization,
and then subjected the resulting vectors to Procrustes validation.
All three brain graphs show a decreasing trend, and they get
closer to that of the null upon reaching higherK-values. Despite
the differences in the Procrustes errors across the three brain
graphs for low values of K, all errors eventually converge to
a single point for high K. In addition, the ODF-based designs
show higher Procrustes errors than the DTI-based design, across
K. The ODF-5 design slightly outperformed the ODF-3 design,
suggesting the benefit of using the larger neighborhood in en-
coding fiber orientations with better angular resolution.

C. Spectral Decomposition of fMRI

Fig. 6(a) shows the ensemble energy spectral densities of the
fMRI. The energy spectral density of the fMRI data is character-
ized by a power-law behavior. The lowest frequency component
eigenmodes capture the majority of the energy content (spatial
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variability), which is about two orders of magnitude greater than
what is captured by the 1000th eigenmode. Moreover, a notable
dispersion is observed in the energy profiles of approximately the
first 100 spectral indices across the different tasks, whereas for
the higher spectral indices, the profiles are more closely packed,
following a steady power-law drop. This observation is more
apparent by inspecting the cumulative ensemble energy (CEE)
profiles, see Fig. 6(b); results are shown also for synthesized
shuffled fMRI signals (cf. Section II-H) and Gaussian noise sig-
nals. In particular, the CEE profiles of task and rest fMRI sharply
differ from that of Gaussian noise as well as shuffled fMRI data.
For Gaussian noise, each eigenmode captures a fraction of the
total energy equivalent to approximately 1/N , where N is the
number of the graph nodes, whereas shuffled fMRI still entails
the distribution of values as in the real fMRI data, but lacks the
exquisite spatial dependencies manifested in fMRI data that is
linked to the underlying structure. The CEE profiles of fMRI data
show that functional brain activity is expressed preferentially by
lower-frequency components; approximately 85% of the total
signal energy content4 captured by the first 1000 eigenvectors,
wherein the contributions from the first eigenmode are equal to
zero due to that the data were demeaned, cf. Section II-C.

IV. DISCUSSION

Voxel-wise brain graphs enable overcoming several limita-
tions associated to existing region-wise brain graphs. For ex-
ample, they obviate the need for cortical parcellation, and as
such, downstream analysis will not be affected by the choice of
parcellation scheme [45]. Moreover, analyses on local-encoding
voxel-wise graphs prevents variations in results as a function of
the algorithm that is employed to approximate the number of
WM tracts for region-wise graphs [46]. Lastly, given that the
proposed graphs are constructed at the native diffusion space and
encompass the whole brain, tissue segmentation and subsequent
transformation to a template space is not needed, which can
be challenging especially in populations that exhibit a complex
mixture of brain structural deficits.

Results on fMRI show that despite the high dimensionality
of voxel-wise graphs, brain functional activity can be well
approximated by merely a small subset of their low-frequency
Laplacian harmonics, whereas in contrast for region-wise brain
graphs a larger subset of their total number of Laplacian har-
monics is required [21], [24], [28]. This observation shows that
functional brain maps are smooth relative to the underlying fiber
architecture and tissue profile morphologies, which, on the one
hand, is consistent with energy profile of fMRI graph signals on
tissue-specific, voxel-wise graphs [16], [47], and on the other
hand, can be linked to the decreasing trend observed in the Pro-
crustes validation errors (see Fig. 5), where increasing K-values
reduce the error close to that of a randomly generated graph. This
energy pattern is reminiscent of a power-law behaviour, which

4For each graph signal, the first eigenmode captured approximately 70% of
the total signal energy. In the demeaning step, cf. Section II-C, the contribution
from the first eigenmode was regressed out. As such, baed on Fig. 6(b), the total
amount of energy captured by the first 1000 eigenmodes amounts to approxi-
mately 85% of total signal energies of the original signals, i.e., 70 + 0.45× 30.

is interesting in light of the evidence of scale-free behaviour
in human brain activity [48], [49] observed in both temporal
and spatial scales. Moreover, a practical implication of such
energy profiles is that the lower-spectral-end energy content of
fMRI data on whole-brain voxel-wise graphs has the potential
to provide signatures of mental activity, similar to that observed
for cerebral cortex gray matter graphs [50], which substantially
reduces the computational burden associated to diagonalization
of the graph Laplacian. Alternatively, to study the energy profile
across the spectrum, a filter design scheme that adapts to the
ensemble signal content can be used to efficiently partition the
spectrum [51], which can be implemented in a computation-
ally efficient manner [52], obviating the need to even compute
individual eigenvectors.

Voxel-wise brain graphs hold the potential to open new re-
search avenues to study the brain. One avenue is to study the
graphs from a pure structural perspective, using spectral graph
theoretical measures that have been used to e.g. discriminate au-
ditory gyri subtypes [53], or to perform subject identification and
characterization of hemispheric asymmetries [54]. A second,
more interesting, avenue of research is to employ voxel-wise
brain graphs within the context of relating brain structure to
function. The proposed voxel-wise graphs can be leveraged to
perform whole-brain anatomically-informed spatial filtering and
interpolation of fMRI data, operations that are inherent within
numerous fMRI processing pipelines; e.g. spatial smoothing to
enhance whole-brain fMRI activation mapping, as done using
tissue-specific designs in gray matter [16], [18] and white mat-
ter [17], [31]. Moreover, it yet remains to be studied how func-
tional connectivity (FC) and their associated measures can be
extended to accurately integrate structural information. FC has
often been associated to Euclidean distance [55], whereas by us-
ing the Laplacian eigenmodes of the proposed graph, functional
distance can be better interpreted in relation to the underlying
brain structure. That is, functional variations that are captured
using low-frequency eigenmodes are smooth with respect to
long-distance white matter bundles, whereas localized and short-
distance functional associations are expected to be dominated by
higher frequency components. Lastly, the exquisite voxel-wise
scale of the proposed graphs can enable assessing the extent to
which brain structural-functional relations hold at spatially finer
mesoscales [30]; e.g. by using graph Slepians [56], [57], [58]
or variants of localized graph filter banks [59], [60] and spectral
transforms [61], [62], [63], focus can be placed on a particular
subset of nodes, thus, providing a finer level of analytical reso-
lution than that provided by conventional region-wise graphs.

V. CONCLUSION

Two methods for constructing voxel-wise brain graphs from
diffusion MRI data were studied. Through a Procrustes valida-
tion scheme that reflects inter-subject structural differences, it
was shown that low-frequency eigenmodes of such high spatial
resolution graphs reflect the highest amount of structural infor-
mation from diffusion MRI. This finding was corroborated by the
manifested energy spectral density of functional signals showing
the preferential expression of human brain activity onto lower
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frequency components. Overall, the presented results signify the
capability of voxel-wise brain graphs’ eigenmodes in capturing
anatomically-constrained functional variations that are specific
to different cognitive tasks. By treating voxel-wise brain graphs
as the scaffold on which brain function is observed, they hold
the potential to open new research avenues to study the brain,
in particular, enabling the development of novel GSP methods
to study the interplay between brain structure and function, in
health and disease.
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