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Abstract: Diabetesis characterized by hyperglycemia that can result from
the loss of pancreatic insulin secretingβ -cells in the islets of Langerhans.
We analyzedex vivo the entire gastric and duodenal lobes of a murine
pancreas using extended-focus Optical Coherence Microscopy (xfOCM).
To identify and quantify the islets of Langerhans observed in xfOCM tomo-
grams we implemented an active contour algorithm based on the level set
method. We show that xfOCM reveals a three-dimensional islet distribution
consistent with Optical Projection Tomography, albeit with a higher reso-
lution that also enables the detection of the smallest islets (≤8000 µm3).
Although this category of the smallest islets represents only a negligible
volume compared to the totalβ -cell volume, a recent study suggests that
these islets, located at the periphery, are the first to be destroyed when type
I diabetes develops. Our results underline the capability of xfOCM to con-
tribute to the understanding of the development of diabetes, especially when
considering islet volume distribution instead of the totalβ -cell volume only.
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1. Introduction

Diabetesis a major health problem that results from defective pancreaticβ -cells in the islets
of Langerhans, causing hyperglycemia [1]. Type I diabetes is an autoimmune disease in which
T-cells infiltrate the islets, leading to the destruction of the insulin producingβ -cells [2]. Type
II diabetes, on the other hand, results from insulin resistance of the peripheral tissues and from
insufficient compensation byβ -cells [3]. According to the World Health Organisation (August
2011), 346 million people worldwide suffer from diabetes. Although many aspects of the dis-
ease mechanism are understood, several open questions about the mechanisms involved in the
progression of type I and II diabetes remain. Indeed, the difficulties faced in observing individ-
ual islets in patients or live mice significantly hinder research, and limit our ability to monitor
putative beneficial treatments that should protectβ -cells, improve their function or promote
their proliferation during diabetes.

The main challenges for imaging islets of Langerhans are (1) the localization of the pancreas
deep inside the abdominal cavity, (2) the very low density of these islets in the pancreas and (3)
their diverse shapes and small size, which varies approximately from 30 to 300 µm in diameter.
Current non invasive clinical imaging techniques such as PET, SPECT or MRI have insufficient
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resolution to detect individual islets and rely on a specific marker or contrast agent [4–6]. The
development of a specific tracer for theβ -cells is still a matter of research [7]. In order to detect
individual islets optical resolution is needed. However, currentin vivo optical techniques able
to visualizeβ -cells in situ are limited in speed, penetration depth and require labeling [8–12].
Optical Coherence Tomography (OCT) [13–15] is a well-established imaging technique that
provides cross-sectional views of biological tissue with micrometric resolution and has suc-
cessfully been applied to a wide range ofin vivo andex vivoimaging in both clinical settings
and small animal research. OCT has been applied to image fixed human pancreatic tissue [16]
and the main pancreatic duct [17]. It has also been successfully employed toex vivodistinguish
between benign and malignant pancreatic cysts [18]. Recently, we have shown that extended-
focus Optical Coherence Microscopy (xfOCM) [19] can imagein vivo andex vivo islets of
Langerhans without labeling, with a spatial resolution close to cellular dimensions [20, 21].
xfOCM is based on OCT but allows to use higher numerical aperture objectives without reduc-
ing the depth of field. The increased depth of field is obtained by using an axicon in the sample
arm, which generate a Bessel beam illumination.In vivo xfOCM pancreas imaging is possible
by making a small incision through the flank of the anaesthetized mouse and by gently pulling
out the duodenum encircling the pancreas. The anatomy of the pancreas allows only to access
a subpart of the organ.In vivo xfOCM can image the surface volume of the pancreas down
to 300 µm in depth. To compare xfOCM imaging of islets of Langerhans to other techniques,
we dissected the pancreas of a 15-week-old NOD SCID gamma (Nonobese Diabetic Severe
Combined Immunodeficiency) mouse. NOD SCID gamma mice are a well-known control for
NOD mice, which spontaneously develop type I diabetes [22]. To have access to the islets of
Langerhans located deeper in the pancreas, we cut the two lobes of the pancreas that are easily
accessiblein vivo into slices 250 µm thick. Segmentation and extraction of quantitative data
from OCT images are challenging [23–25] but are required to facilitate and improve diagnosis.
In order to obtain quantitative data, we implemented an automatic segmentation of islets of
Langerhans in xfOCM tomograms based on an active contours algorithm. In this work, we per-
formed automatic and quantitative islet imaging with xfOCM, revealing the three-dimensional
size distribution of these islets. In addition, we assessed the possibility of measuring only a
portion of the pancreas to extrapolate the totalβ -cell volume. Finally, we evaluatedin silico the
discrimination of healthy and pre-diabetic or diabetic animals based on two criteria: the total
β -cell volume and the islet volume distribution.

2. Methods

2.1. xfOCM setup

The xfOCM instrument is based on a Mach-Zehnder interferometer (Fig. 1) [19]. A broadband
light source (Ti:Sapphire laser, Femtolasers, Vienna, Austria;λc = 800 nm,∆λ=135 nm) is cou-
pled into a polarization maintaining single mode fiber and then collimated and split by beam
splitter BS1 into reference and illumination fields. The illumination beam passes through an axi-
con (175◦ apex angle, Del Mar Photonics) which generates a Bessel-like field with an extended
focus over a length of about 400 µm. The field behind the axicon is relayed by two telescopes
into the intermediate image plane (IIP), and from there demagnified by the lens combination
Lt , Ls (Zeiss Neofluar, 10x, NA 0.3), resulting in a lateral definition of 1.3 µm. The illumination
beam is raster scanned over the sample, typically scanning a range of 0.5 mm x 1 mm. In order
to increase the field of view, the objective can also be moved by two lateral motorized scanning
axes (Thorlabs, model Z812B). The light backscattered by the sample is superimposed with
the reference field by beamsplitter BS2. The optical signal is analyzed through a custom spec-
trometer consisting of a transmission grating (1200 lines/mm) and a line-scan camera (Atmel
Aviva 2048 pixels, Stemmer Imaging, Pfäffikon, Switzerland) set to an integration time of 40 µs

#166531 - $15.00 USD Received 12 Apr 2012; revised 7 May 2012; accepted 10 May 2012; published 14 May 2012
(C) 2012 OSA 1 June 2012 / Vol. 3,  No. 6 / BIOMEDICAL OPTICS EXPRESS  1368



and working at an A-line rate of 20 kHz. The depth profile is reconstructed after background
removal, k-mapping and Fourier analysis.

Axicon

θ
x, y

Detection

Illumination

Reference

Dispersion

compensation

Sample

Lt

Ls

BS1 BS2

Spectrometer

Ti:Sa

IIP

Fig. 1: Schematic layout of the xfOCM setup.

2.2. Specimen preparation

Anatomically, the pancreas can be segmented into three lobes [26, 27]: the splenic, gastric and
duodenal lobes (Fig. 2(a)). After cervical dislocation, the duodenal and gastric lobes of a 15-
week-old female NOD SCID gamma mouse (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ, Jackson Lab-
oratory, Bar Harbor, USA) [28] were fixed for 90 min in a 10% (vol./vol.) paraformaldehyde
solution in phosphate buffered saline (PBS) at room temperature, prior to an overnight incuba-
tion in a 30% (wt/vol.) sucrose solution in PBS at 4◦C. The tissue was embedded in gelatin and
frozen at−80◦C. 34 sections of 250 µm thickness were prepared for xfOCM imaging.

2.3. Three-dimensional image processing

Each of the 34 sections of the gastric and duodenal lobes were imaged individually. Due to
the instrument design a field of view of only 0.5 mm x 1 mm is accessible. Therefore, we
performed mosaics of each slice by a lateral displacement of the objective with motorized
scanning axes (Fig.2(b)). The three-dimensional imaging of the gastric and duodenal lobes
resulted in more than 7· 108 A-scans and represents approximately 5 Terabytes of data. The
image processing was performed on the log scale, by taking 10· log(|FFT(I(k))|2), where FFT
is the Fast Fourier Transform andI(k) is the interferogram recorded on the spectrometer. The
processing time was one week on a computational cluster composed of four 8-core 2.27 GHz
nodes with 48 GB of RAM and 20 Gb/s Infiniband interconnect. Figure 3 shows an example
of 8 adjacent en face views of a fixed murine pancreas at different depths. The largest islet in
the center extends over more than 50 µm in depth which illustrates the importance of having a
3D segmentation. In order to assess and quantify the islet shape and the ratio of islet volume to
tissue volume, two segmentation tasks were performed: first, tissue versus background, defining
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Fig. 2: (a) Schematic representation of the three lobes of a pancreas. (b) Illustration of the experimental
procedure.

which fraction of the volume was filled by tissue; and, second, the islets within the detected
tissue volume. The islet segmentation algorithm relies on active contours [29] with a level set
method implementation [30]. The active contour model iteratively deforms an initial surface
towards the boundary of the object by minimizing a function according to the properties of the
image. The level set method allows tracking of the evolution of this surface using a surface of
higher dimension. The initial conditions required for active contours are automatically defined
from the histogram intensity of the image. The tissue segmentation relies on a cluster analysis
which divides the image into two groups: tissue and background. A schematic overview of the
main principles of these algorithms is illustrated in Fig. 4.

2.3.1. Segmentation of the islets of Langerhans

Definition of the initial conditions:In xfOCM tomograms, islets of Langerhans are character-
ized by a higher scattering signal; as a result, the islets appear as dense clouds of points of high
intensity (Fig. 5(a)). One major difficulty is caused by intensity variation along the depth of
the sample, caused by sample attenuation, the variation of the focal volume, and the system
intrinsic sensitivity roll-off. The signal-to-noise ratio (SNR) of deep islets is reduced compared
to islets near the surface. In order to obtain an automatic detection procedure, an initialization
of the Active Contours algorithm (AC-algorithm) is essential. The initial conditions algorithm
uses an initial adaptive thresholding step (see flowchart in Fig. 5). The adaptive threshold is
fixed by using the pixel intensity distribution of eachxy-slice. The pixel intensities appear to be
roughly normally distributed, but an exponential distribution can be fitted to those above a cho-
sen threshold intensity. We chose a higher threshold at the 0.75 percentile of this exponential
distribution, allowing us to distinguish pixels belonging to islets, and also some other structures
(Fig. 5(b)). Then, we applied the morphologicalclosing operator to obtain filled structures
(Fig. 5(c)). The Euclidean distance transform (i.e., each pixel is associated to its distance from
the nearest border) of the resulting binary image is computed (Fig. 5(d)). Finally, each pixel
corresponding to a regional maximum is used as the origin of a sphere of radius equal to the
computed Euclidean distance of the pixel (Fig. 5(e)).

Active Contours and Sparse Field Algorithms:The AC-algorithm has several important fea-
tures: (i) generation of smooth and continuous boundaries, (ii) robustness against intensity
variations and speckle, and (iii) detection of objects with various shapes and sizes. The AC-
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(a) (b)

(c) (d)

Fig. 3: Mosaic of 8 en-face views recorded on a pancreatic section. Arrows indicate islets. In addition to
the islets, one can clearly observe ducts (arrowhead) and lobe structures. Each picture shows the same
area but at different depth positions. (a) 11 µm in depth, (b) 54 µm, (c) 97 µm, (d) 140 µm. Scale bar:
200 µm.
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Fig. 4: Schematic 2D representation of the detection principles. The segmentation of the islet is based
on an active contours algorithm starting with an initial curve which evolves towards the boundaries of
the islet. The active contours algorithm is implemented with the level set method. In this example, the
intersection of the grey 3D surface with the plane in blue creates a 2D contour. By moving this plane up
(in green) and down (in red), one can make the contour evolve, and even split or merge. The segmentation
of the tissue is based on a cluster analysis.

Sparse Field Algorithm (Active Contours)

1.  Initialisation of the level set function Φ(x,y) (f ) 

       Contour: Φ(x,y)  = 0

       Outside: Φ(x,y)  < 0

       Inside: Φ(x,y)  > 0

2.  Evolving the contour with Chan-Vese energy (g)

3.  Update Φ(x,y)

4.  Go back to step 2 until convergence reached (h)

Manual review

1.  Adaptive threshold (b)

2.  Closing morphological operator (c)

3.  Euclidian Distance Transform (EDT) (d) 

4.  On each local maximum add a sphere with                                                                    

      radius proportional to the EDT pixel value (e)

Initial condition

Original tomogram (a)

a b

c d

e f

g h

Fig. 5: Flowchart and illustration of the different steps for islet segmentation.
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algorithm searches for the boundary of an object by using a surface that deforms under external
andinternal forces (Fig. 4). External forces are computed based on image properties, whereas
the internal forces depend only on the curve geometry. Usually, external forces drive the curve
or the surface to the edge of the object, whereas the internal force tends to keep the curve or the
surface smooth. Among the numerous variations of the AC-algorithm, we used the Chan-Vese
algorithm [29] which proved to be the most efficient for this type of dataset. Each image was
normalized according to an adaptive threshold based on the histogram. In addition, saturated
pixels or black pixels were discarded in order not to take artefacts or areas without tissue into
account. One drawback of the AC-algorithm is the requirement for initial conditions. In our
study, these were automatically defined based on the pixel intensity of the image, as explained
above.

The evolving curve is represented using the level set method which capturesn-dimensional
surfaces as the intersection of a plane and a(n + 1)-dimensional surface (Fig. 4). The
three-dimensional surfaces are internally represented using the Sparse Field algorithm (SF-
algorithm) [31], a particular efficient implementation of the level set method. Importantly, the
level set method allows splitting or merging of the currently detected blobs as well as detection
of several islets in parallel. In order to assess the convergence of the algorithm, we monitor the
evolution of the detected volume. If the discrete derivative is less than 10−5 during 50 iterations,
then the algorithm is stopped. The SF-code was written in Matlab and is partly based on the
software package developed by J.G. Malcolm et al. [32,33].

2.3.2. Tissue segmentation

Since one of our goal is to calculate the ratio ofβ -cell volume to pancreas volume, we need to
compute the total volume of tissue. The general idea behind the tissue detection algorithm (TD-
algorithm) presented hereafter is to classify each pixel into one of two categories: tissue or back-
ground. The TD-algorithm has two main steps (Fig. 4; Fig. 6 provides a more detailed flowchart
of the algorithm). First, a large dataset of spatial features is built by scanning the whole image
with overlapping boxes of fixed size. To each box we associate one two-dimensional data point
p = (µ ,σ) whereµ is the mean andσ is the standard deviation of all pixels within the box,
without taking into account pixels with extreme values (i.e., black or saturated pixels). Boxes
with extreme mean values are removed from the dataset before performing a cluster analysis
using thekmeans function in Matlab. Finally, we use a linear classifier to find the line that
separates the two clusters found by thekmeans function. The second step consists in attribut-
ing to each pixel a score that depends on the boxes the pixel belongs to; i.e., the number of
boxes classified as tissue minus the number of boxes classified as background. Then, based on
its score, each pixel is set as tissue or background.

2.3.3. Validation

The efficiency of segmentation of the islets was determined using two criteria: the number of
islets detected and the detection accuracy over a set of islets of different shapes and sizes and
with various intensities. The number of islets detected by the algorithm is validated against the
observations of a trained user. The detection accuracy is calculated by comparing the results
with the best detection ever obtained for each islet and defined as correct by a trained user;
this notion of “best detection” is subtle and subjective, as it is difficult to visually evaluate the
quality of detection in three dimensions. Indeed, two detections of the same islet that are both
visually accurate could differ significantly after quantification in terms of volume. In such cases
and for referencing, we systematically chose the detection with the highest volume defined by
a trained user as correct. By using these criteria, we obtained 90% of islets detected with a
relative mean square error for the volume of the islets of 30%. The error on the volume of each
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       - background 

- foreground

Fig. 6: Flowchart of the TD-algorithm.

islet depends on the size category, with a larger error for the small islets. A major effort was
dedicated to the detection and handling of false positives, i.e., pancreas structures designated
by the algorithm as islets, but rejected by a trained user (see Fig. 7). Due to the small number
of islets in a pancreas, these ”false positives” have been addressed individually in order to
minimize false detection. Although this step is time-consuming, it is much faster and, most
importantly, much less error-prone than a manual search through thousands of tomograms. In
addition, it allows the user to restart the detection with a better manual initial condition if an
islet is missed or not completely detected.

ba

*

Fig. 7: The picture in (a) shows two areas with a higher intensity. By using a three dimensional view,
only the area marked by a (*) is defined as an islet by a trained user. However, the result of the algorithm,
shown in (b), finds three blobs. The solid arrow shows the correct detection of an islet whereas the dashed
arrows indicate false positives. Scale bar: 100 µm.

3. Results

3.1. Assessingβ -cell volume

The development of type I diabetes is closely related to the totalβ -cell volume (or calculated
β -cell mass). Assessing theβ -cell volume is therefore crucial to understanding and monitoring
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diabetes onset. However,in vivoxfOCM can only image a subvolume of the pancreas due to its
anatomy and localization into the abdominal cavity. Therefore, we asked ourselves whether we
can extrapolate the totalβ -cell volume by imaging only a part of the pancreas. We answered
this question by comparing theβ -cell volume extrapolated from a part of our data with the
total β -cell volume obtained from the completeex vivomeasurements. Following an approach
called bootstrapping in statistics [34], we re-sampled the data for varying sample sizes. For each
sample size, we re-constructed 2500 random samples and calculated the resulting percentage
of β -cell volume per pancreas volume. Figure 8 shows the variability in the error obtained by
comparing the percentage ofβ -cell volume per pancreas volume extrapolated from the small
sample and the true value from the comprehensive experimental measurement. This procedure
shows that we cannot reliably extrapolate theβ -cell volume based on small samples of the
pancreas. Indeed, even for 50% of the measured tissue, the relative error is still around 30%.
This result outlines the difficulty in determining, at least on a mouse model, the totalβ -cell
volume.
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Fig. 8: Relative error for the extrapolated percentage ofβ -cell volume per pancreas volume based on dif-
ferent sample sizes. Each red circle represents the results of an individual trial. The black near-horizental
line represents the median and the vertical black error bars show the 5th and 95th percentile. Even if the
median relative error is below 5% for 5% of the total volume, the spreading error is still of 57% for 25%
of the tissue.

3.2. 3D islet distribution in the duodenal and gastric lobes

The resolution of xfOCM offers the possibility to determine the whole islet volume distribution
instead of looking at an integral value such as the totalβ -cell volume. According to Bock
et al., the meanβ -cell volume is 1280 µm3, which corresponds roughly to 150 voxels [35].
Therefore, objects smaller than the volume of aβ -cell are considered below threshold and
have been automatically discarded. After a manual review of the output of the algorithm, we
detected 924 islets in the duodenal and gastric lobes of a 15-week-old NOD SCID gamma
mouse. A histogram with logarithmic binning shows that the smallest islets (≤8000 µm3) are
the most common, and account for 20% of the total number of islets (Fig. 9(b)). However, this
category contributes only 3% of the totalβ -cell volume (Fig. 9(c)), whereas the largest islets (≥
4×106 µm3) contribute more than 45% of theβ -cell volume and represent 4% of the total islet
number. The important contribution of the small islets can, therefore, only be discovered by
plotting the islet volume distribution and would be undetectable in the integralβ -cell volume.
The largest islet found has a volume of 9×106 µm3. The total volume ofβ -cells corresponds
to 0.26 mm3, which yields a percentage ofβ -cell volume per pancreas volume of 0.175%. The
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islet volume distribution seemed to follow a power law. We verified this hypothesis by fitting
different discrete power law distributions (Yule–Simon, Zeta, Zipf and Zipf–Mandelbrot) to
the islet volume data. After goodness of fit testing [36], only the Zipf–Mandelbrot distribution
appears to fit the data at this level of discretisation (Fig. 9(a)):

f (k;N,q,s) =
(k+q)−s

∑N
i=1(i +q)−s

, k = 1, . . . ,N, (1)

with N = 600, and estimated parametersq = 0.45 ands= 1.55 (Fig. 9(a)).
The principle of goodness of fit testing is to compare the empirical distance (i.e., the distance

between the experimental data and their fitted distribution) with an artificial distance (i.e., the
distance between artificial data generated according to the hypothesized distribution and their
fitted distribution). When the number of bins is large (>500), the discrete chi-square distance
becomes computationally intractable. In this case, because the number of bins is sufficiently
large, we used the continuous Kolmogorov–Smirnov distance. The p-value corresponds to the
proportion of trials where the artificial distance exceeds the empirical one, and in this case is
0.17, estimated from 2500 simulated artificial datasets, so we conclude that our data are close
to following a Zipf–Mandelbrot law, at least at this discretization.
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Fig. 9: Histogram of the islet volumes in the gastric and duodenal lobes of a 15-week-old female NOD
SCID gamma mouse. The islet volume distribution follows a Zipf–Mandelbrot distribution (a). A loga-
rithmic visualization of the size categories shows that the most common islets are those of volume less
than 8000 µm3, followed by those between 32000 and 64000 µm3 (b). The proportion of the islet volume
of each size category to the totalβ -cell volume is inversely related to their occurrences, with the smallest
categories of 8000 µm3 contributing only 3% (c).

3.3. Different distributions between the duodenal and the gastric lobe

Interestingly, we noticed that the distribution of islet volumes from the gastric lobe is different
from that in the duodenal lobe: we found 315 islets in the gastric lobe and 609 islets in the duo-
denal lobe, even though the totalβ -cell volumes are comparable (0.129 mm3 and 0.132 mm3
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respectively). The total tissue volumes of the gastric and the duodenal lobes were 70.79 mm3

and78.47 mm3. Both islet distributions follow a Zipf–Mandelbrot law (Fig. 10). Thus the duo-
denal lobe contains more small islets than the gastric lobe.
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Fig. 10: (a) Histogram distribution of the duodenal lobe and (b) of the gastric lobe. The Zipf-Mandelbrot
parametersareN = 600,q= 0.56 ands= 1.65 for the duodenal lobe andN = 600,q= 0.38 ands= 1.41
for the gastric lobe, with a p-value of 0.11 and 0.7, respectively.

3.4. In silico discrimination of healthy and sick animals

We cannot extrapolate the totalβ -cell volume of an animal by analyzing only a subvolume of
the pancreas. Due to the anatomical configuration around the pancreas, only a small portion
is accessiblein vivo. Therefore, extrapolation of the totalβ -cell volume in a living animal is
almost impossible. However, this might not preclude the possiblity to discriminate between
healthy, pre-diabetic or diabetic mice (hereafter referred assick mice). A full study is well
beyond the scope of this project, given the variability across the different animals, which would
demand a large cohort of animals. Therefore, we propose anin silico approach consisting of
generating simulated islet datasets of a sick mouse, and detecting deviation from a healthy
situation based only on a subvolume. To date, not much is known about the dynamics leading
to the apoptosis ofβ -cells in type I diabetes. The work of Alanentalo et al. suggests that the
smallest islets are the first to disappear in NOD mice and that the T-cells infiltration does not
seem homogenous throughout the whole organ [37]. One may hypothesize that at first only the
smallest islets disappear or all islets are attacked at the same rate, therefore leading to the earlier
destruction of the smallest islets. However, the reality might involve more randomness and the
islets might be attacked at different rates. Therefore, we propose for ourin silico analysis three
scenarios in an attempt to simulate this degenerative process: (A) all islets smaller than a certain
size are removed from the dataset, (B) all islets are shrunk by a certain percentage in volume,
and (C) a stochastic approach in which islets are attacked with a predetermined probability. The
latter approach involves two parameters: (i) the probability that an islet is attacked, and (ii) the
conditional probability that each individual cell is destroyed given that the islet is attacked. By
applying these three scenarios to the healthy experimental data, we obtain a set of simulated
datasets of sick mice. Further on we asked the question, which percentage of the tissue should
be analyzed to discriminate a deviation from a healthy situation. For this approach, we can
apply to these datasets the same bootstrapping method as described previously. To this end,
we selected small samples of variable volume at random locations within the tissue until we
obtain the desired volume. For this analysis, we can try to use either theβ -cell volume or
the islet volume distribution as a criterion to detect a deviation from a healthy situation. The
β -cell volume would indicate an onset of the disease if it is smaller than a given threshold.
Importantly, this threshold must account for the intrinsic variability of the underlying dataset.
In our case, the threshold is fixed to the 0.1 percentile of the variability of the percentage ofβ -
cell volume per pancreas volume obtained by bootstrapping in Fig. 8, thereby leading to a 10%
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tolerance of false positives. For the islet volume distribution criterion, we compared re-sampled
distributions from the sick and healthy datasets. To achieve that, we apply the Kolmogorov-
Smirnov non-parametric statistical test. Figure 11 and Fig. 12 show the success rate to detect a
deviation, which is indicated by the colorbar. In all scenarios, the ability to detect a deviation
based on the islet volume distribution performs far better than the integral criterion based on
the totalβ -cell volume. In scenario A, if all islets smaller than 20’000 µm3 are destroyed, then
the proportion of successful detection is 30% even for small sample sizes of 1.5% of the total
measured volume. If we double this volume to 6% we can reach 60% of successful detection
of diabetes onset. In scenario B, the difference between the two criteria is less pronounced;
yet, the islet volume distribution performs better. The results become conclusive only for high
percentages of reduction. Scenario C exhibits less favorable results, but it illustrates again the
superiority of a diagnostic approach based on distributions rather than solely the totalβ -cell
volume. However, it becomes reliable only for high probabilites of an islet being attacked and
that individualβ -cell are destroyed. Overall, thisin silico study indicates an alternative way to
determine diabetes onset and evolution. A distribution based criterion in contrast to the integral
β -cell volume criterion seems to be a more sensitive diagnosis for the onset of type I diabetes.
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Fig. 11: Success rate to detect a deviation between the healthy and simulated sick datasets for scenarios A
andB. The colorbar indicates the proportion of successful detection over 2500 trials.

4. Discussion

In this study, we described the complete three-dimensional distribution of islets of Langerhans
in the duodenal and gastric lobes of a 15-week-old female NOD SCID gamma mouse. An
alternative estimation of the islet distribution in a pancreas was doneex vivousing Optical Pro-
jection Tomography (OPT) [10]. Although we analyzed only the duodenal and gastric lobes of
the pancreas with xfOCM, the islet distribution is similar to the distribution obtained with OPT
for an entire pancreas. However, xfOCM is capable of resolving an islet size category of less
than 8000 µm3 (∼ 6−10 cells), which is not yet detectable with OPT [10]. The same authors
recently suggested that the smallest and peripherally located islets are the first to be destroyed
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Fig. 12: Success rate for discrimination between the healthy and simulated sick datasets for scenario C.
Eachdiagram represents a probability (p) of an islet being attacked. The x-axis shows the probabilities
that if an islet is attacked the individual cell will be destroyed. The y-axis always represents the different
sample size used to do the test. The colorbar indicates the proportion of successful detection over 2500
trials.

during infiltration in type I diabetes in NOD mice [37]. Therefore, even if this small size cate-
gory represents only 3% of the totalβ -cell volume, the ability to resolve these islets might be
crucial to detecting the early onset of type I diabetes. Sincein vivo xfOCM is limited by pen-
etration depth (300 µm) and by anatomical constraints to a small portion of the total pancreas,
it would be interesting to determine the islet volume distribution in this accessible region only.
However, due to the location and the morphology of the pancreas and due to the protocol of our
experiment it is difficult to determine the distance of an islet to the organ’s surface. A potential
solution would be to image directly the entire organ in three dimensions, like in OPT. Theβ -
cell volume per pancreas volume of 0.175% detected in our analysis is in the same range, but
slightly lower than the percentages reported in the literature [38–42], although some authors
report a higherβ -cell volume [26, 43, 44]. It should be noted that there are significant varia-
tions between strains and across species [38]. In addition, theβ -cell mass is most often given
in mg and rarely with the corresponding pancreas weight or as a percentage ofβ -cell area per
pancreas area. Finally, the majority of these imaging techniques relies on partial measurement
of the pancreas and are done in two dimensions. Therefore, this lower value can be attributed
to the difference between the strains and/or the use of different imaging techniques, in particu-
lar the fact that our method is three-dimensional and applied to the duodenal and gastric lobes
only. Our statistical analysis reveals a huge variability on the extrapolated percentageβ -cell
volume which confirms the fact that the islets of Langerhans are non-homogeneously distrib-
uted throughout the pancreas [10]. This result shows that measurements based on a small part
of the pancreas cannot be used to extrapolate reliably the totalβ -cell volume. This outcome
does not confirm the statements of Chintinne et al.. They claim that 1.2% of the adult rat pan-
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creas being systematically sampled is sufficient to obtain predictions of theβ -cell mass with
an error below 10% [45]. Besides the fact that the study is not based on the same species, this
discrepancy might be attributed to a different experimental approach. First, they perform imag-
ing only in two dimensions (area) whereas we have fully three-dimensional data. Second, their
ground truth is the averageβ -cell mass measured on 2% of the pancreas of 6 rats whereas we
obtain it from the complete dataset of one mouse. In this work, the experimental islet volumes
follow a Zipf-Mandelbrot distribution. However, more mice would be required to conclude that
a healthy islet volume distribution can be associated to a Zipf-Mandelbrot distribution. Yet, in
this study we used a NOD SCID gamma mouse, which is a control for NOD mice, a reference
strain for type I diabetes. Therefore we can safely assume that our islet volume distribution is
indeed a reference distribution for healthy animals. Finally, thein silico analysis strongly sug-
gests the superiority of islet volume distribution compared to theβ -cell volume as a criterion
for disease progression and detection. The islet distribution criterion performs the best in the
case where small islets are removed from the dataset (scenario A in Fig. 11). The success rates
become acceptable upon removal of all islets smaller than 16’000 µm3 (∼ 25 µm in diameter).
However, when Analentalo et al. suggests that the small islets are the first to disappear, they are
referring to islet sizes below 1’000’000 µm3 (∼ 100 µm in diameter). In our case, if we remove
islets smaller than 122’000 µm3 (∼ 50 µm in diameter) we can reach a success rate of detection
of 56% for only 1.5% of the total tissue imaged. In the two other scenarios (see Section 3.4),
the islet volume distribution criterion still performs better than the totalβ -cell volume, but it
is reliable only for more extreme conditions. These results underline the importance of imag-
ing techniques that can resolve individual islets, compared to clinical imaging techniques that
detect only a global signal. Although optical techniques are mainly limited to research, they
provide a realm of information for a deeper understanding of type I diabetes in well-established
mouse models. Nevertheless, even if diabetic mouse models are well-established, differences
in the islet architecture between humans and mice should not be forgotten [46,47].

5. Conclusion

We show that xfOCM coupled with an efficient segmentation algorithm is a label free imaging
method to quantify islets of Langerhans over their whole size range (≤8000 - 9×106 µm3).
Their sizes follow a Zipf-Mandelbrot distribution, which suggests a different way of monitor-
ing diabetic type I onset. The conclusions of our statistical analysis are two-fold: first, it shows
that we cannot extrapolate quantitative predictions of the totalβ -cell volume based on small,
randomly sampled sets of measurements. Second, criterion based on the islet volume distribu-
tion shows better potential than a criterion based on the totalβ -cell volume alone to detect a
deviation from a healthy situation. xfOCM results are consistent with the literature and have
sufficient resolution to enable the visualization of the smallest islets, which is crucial for future
optical diagnosis techniques of type I diabetes as well as for the development and optimization
of future treatments.
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