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ABSTRACT

Dynamic functional connectivity (dFC) analysis aims at un-
derstanding how interactions across the brain resting-state
networks (RSNs) evolve over time. Here, we introduce a
novel methodological framework operating at the level of
RSN activity time courses. Through the use of coupled hid-
den Markov models (CHMMs), we model cross-network
couplings, i.e. the ability of one RSN to influence state tran-
sitions of the others. Because such modulatory influences
are not expected across all possible pairs of RSNs, we com-
bine this modeling strategy with `1 regularisation to derive a
sparse set of cross-network modulatory coefficients.
As a validation of this framework, we first demonstrate the
ability of the sparse CHMM approach to disentangle intrinsic
state transition probabilities from external modulatory influ-
ences on an artificially generated dataset. We then perform
preliminary analyses on a real resting-state dataset, using
RSN activity time courses derived from a state-of-the-art de-
convolution technique as inputs to our framework, and shed
light on several significant cross-network couplings across
major RSNs.

Index Terms— Functional Magnetic Resonance Imag-
ing, Dynamic Functional Connectivity, Coupled Hidden
Markov Models, `1 Regularisation, Cross-Network Coupling

1 Introduction
The brain is active even at rest, and studying the relationship
between its core resting-state networks (RSNs) by functional
magnetic resonance imaging (fMRI) is an active field of
research. Recently, the non-stationary nature of those inter-
actions has been put forward [1], giving rise to the growing
field of dynamic functional connectivity (dFC) [2].
Resting-state activity is at least partly made of spatiotemporal
profiles that repeatedly occur over time [3]; thus, the brain
evolves towards precise state configurations that depend on
the previous time points. To date, only few efforts have been
undertaken to explicitly model this temporal evolution: one
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strategy is to impose smoothness on the temporal evolution of
connectivity estimates computed between brain regions [4],
while another is the assumption that RSNs evolve in activity
over time independently from each other [5].
A third strategy lies in modeling both individual RSN tempo-
ral behaviours, and also causal relationships across networks,
where the activity level of one RSN will influence the others.
This has recently been tackled through the use of coupled
hidden Markov models (CHMMs) [6], with three limitations:
(1) modeling was performed at the level of connectivity time
courses derived with a sliding window approach [7], dimin-
ishing temporal resolution compared to a frame-wise analysis
of activity; (2) RSNs and associated activity profiles were
generated using spatial Independent Component Analysis
(SICA), a stationary tool for which obtained RSNs are not
always optimal; (3) to alleviate computational burden, mod-
eling was downscaled to a subset of selected RSNs, in a one
versus the others scheme.
In order to overcome those limitations, inspired by previ-
ous work in the genomics field [8], we introduce a novel
sparse CHMM framework applied at the level of RSN activ-
ity time courses, with embedded `1 regularisation [9]. This
effectively enables larger-scale analyses of RSN-to-RSN rela-
tionships, while conserving frame-wise temporal resolution.
We first validate the implementation of this framework on
artificially generated data with added cross-network cou-
pling. We then apply it to real spontaneous activity traces
recovered by a state-of-the-art deconvolution approach com-
bining total activation (TA) [10] and subsequent generation of
innovation-driven co-activation patterns (iCAPs) [11], which
stand as our RSNs here. In this framework, the iCAPs are
extracted through the detection of transient activity, and the
deconvolved time courses are undone from the hemodynamic
effect. This allows for temporal overlap, opening the door for
the investigation of RSN coupling.

2 Methods
2.1 Sparse CHMM Framework
Let h(k)t be the hidden state of network k out of N at time
point t; in the following, we make the simplifying assump-
tion that each network can be in one of three states: deactive
(h(k)t = −1), baseline (h(k)t = 0), or active (h(k)t = +1).
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In a classical parallel hidden Markov model (HMM) frame-
work, each network is parameterised by its probability to start
in state i, Π

(k)
i = P(h

(k)
1 = i), and its probability to transit

from state i to state j (notwithstanding the activity of the
other networks), A(k)

i→j = P(h
(k)
t+1 = j|h(k)t = i).

In order to sparsely model possible couplings across net-
works, we deploy a regularised multinomial framework [12],
where the effective transition probability of network k from
state i to state j at time point t depends on the activity level
of the other networks, and is given by:
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In this equation, β(k)
0,i→j is the baseline coefficient for the i to

j transition, and β(k)
l,i→j is the coefficient describing the influ-

ence of network l on network k, which impacts on the tran-
sition probability if h(l)t 6= 0. S = {−1, 0,+1} is the set of
activity states, and h

(−k)
t depicts the activity level of all net-

works else than network k at time point t. Figure 1A provides
a schematic view on the modulatory influences of RSNs onto
each other when they are active/deactive.
If all coefficients were to be inferred from the data, this would
amount to 9N2 values. Aside from the related computational
burden, which can become difficult to handle for large values
of N , it is also physiologically implausible that all RSNs in-
fluence each other; rather, we are more likely to observe only
particular subsets of interactions amongst functionally related
systems. Thus, we impose the following `1 regularisation to
the set of coefficients:∑

l 6=k

|β(k)
l,i→j | ≤ ρk∀k ∈ {1, ..., N}, i, j ∈ {−1, 0,+1}.

The regularisation parameter ρk is allowed to differ across
networks, because there may be more modulatory influences
onto some RSNs than others. To solve for a given network
k and starting state i, we can individually consider the set of
coefficients related to each end state j by forming a partial
quadratic approximation to the log-likelihood. We must then
minimise:
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In the above equation, C = {t : h
(k)
t = i} is the set of consid-

ered data points, and D the number of such data points. The
coefficients of this regularised least square problem read:
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In this expression, y(k)t,j = δ
h
(k)
t+1,j

(where δ is the Kronecker

delta), β̃ denotes the current estimate of a regression coeffi-
cient, and B̃ represents the current estimate of an effective
transition probability.
In practice, we first run parallel HMMs on all networks to de-
rive hidden state estimates and transition probabilities. Then,
we set β̃(k)

l,i→j = 0 and β̃(k)
0,i→j = A

(k)
i→j , and perform the fol-

lowing sequentially for all networks: select the data points
y
(k)
t,j and {h(l)t }l 6=k within the working set C; loop through

the end state j, which involves the update of ωt,j and zt,j
according to (1) and the extraction of new coefficient values
by coordinate descent [13]; exit the loop if the log-likelihood
change is below ε = 10−6.
In order to select the regularisation parameters to use, the
above process is iterated for gradually decreasing values of
λk, using warm restarts for coefficient estimates. For all the
presented results, we selected λk giving the lowest Bayesian
Information Criterion (BIC) [14] for each network, probing
the interval of values [1000, 0.5].
For simplicity, in all the presented analyses, we focused on
transitions from the baseline activity state, that is, C = {t :

h
(k)
t = 0}. For real data analyses, we focused on modulatory

coefficients from baseline to active state (β(k)
l,0→+1).

3 Experimental Results
3.1 Artificial Data
To validate our framework, we first generated ns = 20 sets of
N = 3 artificial network time courses long of T = 300 time
points, characterised by the following transition matrices:

A(1) = A(3) =

 0.1 0.9 0
0.05 0.9 0.05
0 0.9 0.1

 , A(2) =

0.5 0.5 0
0.3 0.4 0.3
0 0.5 0.5

 .
Figure 1B (top left panel) illustrates a portion of one of the
generated time courses. With those parameters, network 2 of-
ten visits the active and deactive states, whereas networks 1
and 3 remain at baseline activity most of the time and exhibit
a similar behaviour.
To study the ability of our sparse CHMM framework to dis-
entangle intrinsic transition propensity from external coupling
effects, we also included an influence of network 2 onto net-
work 1 modulating transition probabilities as follows:

Â
(1)

=

0.1− 0.1h
(2)
t 0.9 + 0.1h

(2)
t 0

0.05 0.9− 0.8h
(2)
t 0.05 + 0.8h

(2)
t

0 0.9− 0.1h
(2)
t 0.1 + 0.1h

(2)
t

 if h(2)
t = +1.

As can be seen from Figure 1B (bottom left panel), network 1
is then attracted into the active state when network 2 is itself
active, and the time course of network 1 now differs from the
one of network 3.
We ran our sparse CHMM framework on this artificial
case, and to establish significance of the modulatory co-
efficients, compared our results against the ones generated
from null data in which each network time course from
each set was independently circularly shifted along time by
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∆S ∈ {0, ..., T}. We generated 40 null datasets, and for
each modulatory coefficient, used the minimal and maxi-
mal obtained values as the 2.5th and 97.5th percentiles for
significance assessment (α-level 0.05).
The regularisation parameters minimising the BIC were λ1 =
λ2 = λ3 = 105. The only significant modulatory coefficient
was β(1)

2,0→+1 = 4.2933, which makes sense as we simulated
an attraction of network 1 into the active state by network 2.
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Fig. 1: (A) Schematic depiction of transitions (as denoted by black arrows) across three
states of activity (blue: deactive, gray: baseline, red: active) for three networks. When
a given network is (de)active, it can influence the transition probability of the others
for their subsequent transition (red and blue modulatory arrows). (B) Comparison be-
tween parallel HMM and sparse CHMM approaches on an artificially generated dataset.
Networks 1 and 3 have the same transition probabilities without external modulatory
influences (top left panel), but we also introduce an influence of network 2 onto network
1 that attracts it into the active state (bottom left panel). Whereas the sparse CHMM
framework can disentangle intrinsic transition probabilities from modulatory influences,
parallel HMMs cannot as they only provide one transition probability estimate (right bar
graphs).

To determine the ability of our sparse CHMM framework to
disentangle intrinsic transition propensity from external in-
fluences, we compared real transition probabilities from the
baseline state to the ones extracted by parallel HMMs, and
by the sparse CHMM approach (Figure 1B, right panel). Par-
allel HMMs cannot disentangle both effects, and so in a set-
ting where no modulation is present, the 0 → 0 probability
is underestimated, whereas the 0→ +1 probability is overes-
timated (top bar graph). In the case where coupling is intro-
duced, the converse is observed (bottom bar graph). With a
sparse CHMM approach, however, excellent probability esti-
mates are retrieved for both settings.

3.2 Real Data
For real data analyses, we applied our sparse CHMM frame-
work to the resting-state data from ns = 20 healthy volun-
teers (38.4±6 years old) acquired with a Siemens 3T Trio
TIM scanner, using a 32-channel head coil and gradient-

echo echo-planar imaging (TR/TE/FA=1.1s/27ms/90◦, ma-
trix=64x64, voxel size=3.75 x 3.75 x 5.63 mm3, 21 slices).
We analysed T = 264 volumes from the iCAP time courses
previously extracted from this dataset in [11].
In order to maximise the number of observed configurations
of the system, we selected the N = 9 networks displaying
most apparent state transitions for our analyses (see Figure
2 for illustrations). We derived a set of significant modula-
tory coefficients using the same null data strategy as outlined
in the artificial data section. For clarity, we then focused
our interpretation on only the largest significant coefficients
(|β(k)

l,i→j | > 0.5).
Optimal regularisation parameters were: λ1 = 9, λ2 = 16,
λ3 = 7, λ4 = 7, λ5 = 5, λ6 = 7, λ7 = 16, λ8 = 5 and
λ9 = 9. Those values are different across networks and lower
than in the artificial case, hinting at the facts that (1) different
networks may be modulated to different extents, and (2) spar-
sity of modulatory influences may be less strong in real data
compared to our simulated example.

Auditory

Fronto-parietal 

attention

Primary visual

Precuneus/PCC

Thalamus

Dorsal attention

Anterior salience

Motor

Anterior executive
Posterior default mode

Fig. 2: The 9 iCAPs selected for sparse CHMM analysis, entitled as suggested in [11],
and modulatory influences across them (orange/blue: positive/negative modulatory co-
efficient, meaning that if the modulatory network is active, the modulated network has a
larger/lower probability to become active from baseline state. Thickness of the modula-
tory arrows is proportional to the strength of the modulatory coefficients.

19 significant modulatory coefficients were retrieved (out
of the 72 possible ones; recall that we focus on transitions
from the baseline state to the active state only). In Figure
2, for clarity, we only display the top 8 modulatory influ-
ences across iCAPs: 7 of those 8 coefficients were positive,
with the modulated network attracted into the active state
when the modulating network is active. Only the anterior
salience iCAP had a negative modulatory influence on the
precuneus/PCC/thalamus iCAP; i.e., decreasing its propen-
sity to become active when being itself active.
Positive couplings were observed both between sensory net-
works (auditory to visual), as well as between several iCAPs
reflective of subparts from the salience, executive and default
mode networks. The largest such modulation was positive
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coupling from the posterior default mode iCAP to the fronto-
parietal attention one.

4 Discussion and Extensions
Through explicit modeling of cross-network couplings by
a sparse CHMM framework, we could reveal a set of yet
uncharacterised modulatory influences across some of the
key brain RSNs. Many of those couplings unsurprisingly
involved players from the salience/executive/default mode
triad, which are known to dynamically interact across time
upon resting-state to give rise to the content of mind wander-
ing [15,16].
Particularly intriguing from those preliminary results is the
positive coupling between the posterior default mode and
fronto-parietal attention networks, which are classically be-
lieved to be anti-correlated at rest [17]. This may highlight
the fact that particular subsystems of those networks may
exhibit more complex relationships than the ones known to
date. Alternatively, it may be that, while the posterior default
mode network drives the fronto-parietal attention network
towards an active state, that fronto-parietal attention network
also promotes the shift of the posterior default mode network
back to a baseline state of activity. Future analysis of mod-
ulatory influences from the active state (β(k)

l,+1→j) could help
in answering this question.
We also note that the present framework holds some lim-
itations: first, we assume that the transition probabilities
and modulatory influences are the same across subjects,
whereas there is in fact enough inter-individual heterogeneity
in resting-state configurations to permit the accurate finger-
printing of single subjects [18]. Second, we assume that
the modulatory strength of a deactive network is the same
as when active with opposite sign, which may be an over-
simplification. Finally, there are also alternatives to CHMM
modeling, such as through fully-linked HMMs or dynam-
ically multi-linked HMMs [19]; the comparison of those
different approaches may consist in an interesting direction
for future work.

5 Conclusion
Here, we introduced a novel framework combining coupled
hidden Markov models and `1 regularisation, to describe
modulatory influences across RSNs. We showed the presence
of such interactions in resting-state, and presented prelimi-
nary results demonstrating the value of this added character-
isation. We believe that more complete analyses with this
framework, and possible further methodological extensions,
shall pave the way towards more accurate dFC analyses.
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