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Highlights
The human brain is a dynamic system,
giving rise to behavioral facets that
fluctuate at distinctive time-scales.
Alterations of dynamic neural process-
ing, as seen in brain disorders, can
lead to perturbed behavior.

We conceptually relate fMRI methodolo-
gies for quantifying dynamic functional
connectivity, and review their application
to the study of healthy behavior and its
alterations in autism, schizophrenia, and
depression.

Each method probes regional activity or
cross-regional interactions at a given
Human behavior comprises many aspects that stand out by their dynamic
nature. To quantify its neural underpinnings, time-resolved fMRI methods have
blossomed over the past decade. In this review we conceptually organize a
broad repertoire of dynamic analytical pipelines and extract general observa-
tions on their application to the study of behavior and brain disorders. We aim
to provide an extensive overview instead of examining only selected methodo-
logical families or specific behavioral domains. We consider behavioral aspects
with distinct long-term stability (e.g., physiological state versus personality),
and also address selected brain disorders with complementary genetics and
symptomatology. This synthesis exposes the somewhat limited consistency of
dynamic findings in the literature, as well as the unbalanced application of themul-
titude of available approaches which would, owing to their technical specificities,
have potential to reveal distinct aspects of dynamics. We call for further compara-
tive and collaborative efforts in the future.
spatiotemporal resolution, focusing on
the whole brain or on dedicated areas,
and encodes dynamics with a specific
complexity.

On the whole, analytical outcomes are
difficult to relate across studies, and
only a few methodologies are broadly
leveraged by the research community.

Mechanistic models of brain dynamics,
and large-scale collaborative and com-
parative efforts, are ways forward to
circumvent these issues.
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Brain Dynamics Inferred from Functional Neuroimaging Are Relevant to the
Study of Human Behavior
Perhaps the most remarkable feature of humanity is the profound behavioral diversity across
different individuals, which pertains to all factors involved in interactions with the physical and
social environment. This diversity underlies variability in personality, physiology, and mental
capacity, which in turn are not only constituted by biological influences (e.g., fatigue, the influence
of drugs, geneticmakeup) but also shaped by experience (e.g., social learning, trauma). Arguably,
the brain is the most complex system known to humankind, and understanding this organ is
crucial for explaining behavior. Studying the brain at rest has demonstrated that, although the
environment has an influence on it, the brain operates intrinsically and is modulated rather than
controlled by the environment [1]. This modulation is a recursive process between the brain
and the environment mediated by perception and action [2]. Evidently, this process is highly
dynamic, as are the environment and the brain [3].

Neuroscience, in particular neuroimaging research, aims to relate variability in behavior to
changes in the brain. Since its discovery in the early 1990s, functional magnetic resonance
imaging (fMRI; see Glossary) has become one of the most prominent methods to this end.
fMRI is a non-invasive tool to probe whole-brain activity and enables the study of sophisticated
processes that involve functional integration and segregation of different brain areas over time.
The study of brain signals during task or other forms of stimulation has been a productive way
to decode the representation of specific processes in the brain; however, studies on the
intrinsic organization of the brain at rest are equally valuable, and have been shown to predict
behavior and psychopathology [4,5].
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Trends in Neurosciences
Original analysis approaches evolved in parallel with progress in acquisition technology from
harvesting regional activation to dispersed network connectivities, and until recently relied on static
measures to understand brain function [6]. However, static measures fall short of capturing the
inherent dynamic nature of both brain and behavior, and thus may be limited in their explanatory
value and omit important insights. Consistent with the assumption that all aspects of behavior
are dynamic phenomena, tailored analytical approaches to study the fMRI signals in a
time-resolved manner have become increasingly prominent ([7,8] for methodological reviews).
In addition, these methodologies have been applied to the study of cognition and psychiatric
disorders (as reviewed in [9] for a subset of technical approaches).

In this review, compared with past reports, we offer a more comprehensive overview of both
dynamic analytical pipelines and their application to a range of behaviors and disorders. To this
end, we provide a characterization of the primarily derived measures of functional brain dynamics
as well as a conceptual organization of a broad array of dynamic methodologies. We hope that
this will be a useful orientation not only for researchers who are new to these methods, but also
for those who are familiar with them. We then examine the use of dynamic methods across
healthy and perturbed behavior, and investigate whether commonalities regarding the
results from dynamic methods can be extracted. In doing so, we probe a set of behavioral
aspects and examine complementary brain disorders in terms of their genetic characteristics
and symptoms.

A few introductory remarks should be added. Although we include different aspects of behavior
to discuss conceptually distinct methodologies, our coverage remains non-exhaustive owing to
space constraints. In addition, in what follows we make the assumption that reported findings
truly characterize neural substrates of behavior, which remains an open question in dynamic
fMRI-based analyses (Box 1).
Box 1. Non-Neural Contributions to Dynamic fMRI-Based Brain/Behavior Analyses

To meaningfully probe the neural correlates of behavior through functional brain dynamics, one would hope that the
acquired data accurately describe electrical brain activity; however, more than half of BOLD signal contributions are in fact
non-neural [95]. More precisely, changes in head motion of the scanned volunteers, as well as respiratory and cardiac
fluctuations, exert strong confounding impacts that many have attempted to attenuate through dedicated preprocessing
steps ([96] for comprehensive review). Such choices can crucially influence the relationships between fMRI signals and
behavior: for example, associations with resting-state functional connectivity are reinforced when the global signal (the
fraction of the BOLD signal that varies similarly across the whole grey matter) is regressed out [97].

It remains uncertain whether current preprocessing strategies fully remove physiological confounds, given their insidious
similarity to neural networks. Recently, respiratory variation and heart-rate changes were shown to induce spatiotemporally
complex BOLD responses in segregated brain regions, in a way that mimicked resting-state networks [98]. In addition,
fluctuations in end-tidal CO2 (inducing vascular, as opposed to neural, changes in the brain) also yielded vascular
equivalents to several notorious networks [99]. Because physiological rhythms are profoundly affected by many behavioral
aspects, one may question the neural nature of BOLD-based behavioral correlates.

In addition, preprocessing may instead amputate the original signals from a behaviorally meaningful fraction. This has
recently been suggested in the context of head motion: indeed, several overlapping spatiotemporal motion components
were unraveled over the course of a recording session, and were linked to a broad array of behaviors [100]. Correcting for
motion may thus partly remove behaviorally relevant information from the data.

Improvements in acquisition technology may help to reduce confounding impacts on the BOLD signals, while further
favoring dynamic analyses. First, recording fMRI data at subsecond temporal resolution [101] enables a better separation
between neural and physiological signal sources [102]. However, additional issues are also introduced: for example,
estimates of head motion then becomemore strongly influenced by physiology [103], rendering a proper account of these
two types of confound even more challenging. Second, through multi-echo acquisition, physiology-, and motion-induced
confounds are further attenuated [104,105]. Dynamic analytical pipelines tailored to exploit the benefits provided by such
data are emerging [106].
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Glossary
Autism spectrum disorder (ASD): a
spectrum of neurodevelopmental
conditions characterized by socio-
communicative impairments, abnormal
responsiveness to sensory stimulation,
and stereotyped behavior.
Blood oxygenation level-dependent
(BOLD): the BOLD signal indirectly
reflects the level of neural activity through
neurovascular coupling.
Coactivation pattern (CAP): a whole-
brain map of activity denoting the
territories that co-(de)activate with a
seed region of interest.
Connection-wise variability (CV):
this quantifies (typically through standard
deviation) the fluctuations of functional
connectivity between two brain regions
along consecutive time-windows.
Connectivity states (CS): short-lived
patterns of whole-brain functional
connectivity, which are mutually
exclusive in terms of their temporal
expression.
Default mode network (DMN): a set
of synchronous areas recruited during
different types of introspective
processing, such as memory
recollection or theory of mind.
Dynamic functional connectivity
(dFC): this originally denoted the
change in functional connectivity
between pairs of brain regions with time,
and has then become an umbrella term
for all analytical approaches that attempt
to characterize the dynamics of brain
activity.
Functional connectivity (FC): a
measure of the statistical
interdependence between the activity
timecourses of two brain regions, as
most often computed through
Pearson’s correlation coefficient.
Functional magnetic resonance
imaging (fMRI): a neuroimaging
method that monitors the activity of the
whole brain over the course of time.
Graph analysis (GA): the
understanding of the brain as a network
of structurally or functionally
interconnected areas, from which
measures reflective of information flow
or community organization can be
derived.
Hidden Markov model (HMM): a
probabilistic description of data in which
a causal relationship is hypothesized
between successive states of the
system examined (for example, fMRI
volumes acquired at successive
timepoints), and each state yields an

Trends in Neurosciences
The Dynamics of Brain Activity Can Be Characterized in Diverse and
Complementary Ways
Connection-Wise Variability and Connectivity States Are the Two Primarily Derived Measures of
Functional Brain Dynamics
Given its simplicity, the sliding window framework has strengthened its position as the most widely
applied tool to track the dynamics of brain activity [7]. This is illustrated in Figure 1 in its canonical
form (discussed later); more recent technical developments and directly associated methods are
addressed in Box 2. Briefly, the statistical interdependence between regional activity timecourses,
termed functional connectivity (FC) [10], is evaluated across consecutive temporal windows of
30–60 s over the whole duration of the acquisition. The regional timecourses are generally obtained
by averaging the voxel-wise functional signals within regions of a chosen brain parcellation, or
within spatial clusters from independent component analysis (ICA). The outcome from a sliding
window-based analysis is a set of timecourses that denote temporal changes in cross-regional
interactions throughout the brain. The often-used dynamic functional connectivity (dFC) jargon
originally denoted this type of time-resolved correlational information; it has since become an
umbrella term that includes other families of methods, as developed later.

The two most widely applied dynamic measures in brain/behavior analyses are constructed
from dFC timecourses. At the level of individual connections, one can quantify the
standard deviation (or alternative variability metrics) of the timecourse [11,12]; we term this
connection-wise variability (CV). At the whole-brain level, the clustering of connection
timecourses concatenated across subjects instead leads to the identification of connectivity
states (CS); namely recurring patterns of connectivity [13]. If the derived CS are assumed to be
mutually exclusive in time, their occurrences and the rate of transitions across them characterize
temporal dynamics [13]. If instead, the CS are jointly expressed, the construction of meta-states
(weighted combinations of CS) enables investigation of the fluidity and dynamism of brain activity
at a higher-order level [14].

Instead of an FCmatrix, dFCmeasurements from a given temporal window can also be viewed as
a whole-brain graph in which nodes are the regions, and edges are their current FC estimates.
Dynamic graph analysis (GA) is then performed by tracking global properties reflective of infor-
mation flow [15] or community organization [16] over time.

Categorizing dFC Methods Based on Their Conceptual Features
Figure 2 categorizes dFCmethods (not only sliding window-based) in terms of their main concep-
tual features. First, different approaches investigate different features in the original functional
data. Some approaches, for example, characterize the temporal activity of individual regions,
whereas others (including the computation of CV or CS) probe the synchronicity of changes be-
tween distinct brain areas.

Second, each approach examines temporal fluctuations at a specific temporal resolution: it is
intermediate for CV because it cannot be known whether an FC change happened from one
frame to the next or at a slower pace. Instead, the extraction of CS relates to a faster temporal
resolution: if a step size of 1 TR (repetition time) is used, more rapid changes can indeed be
captured as sudden fluctuations in whole-brain FC.

Third, spatial resolution also differs across methods. For CS and CV, this depends on how the
regional timecourses are built; for example, the original ICA-based scheme [13] would imply a
network-level resolution. A concomitant point is the focus of the analyses; for example, whole-
brain for canonical CS versus centered on a key area.
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observed measurement (for instance,
voxel-wise patterns of whole-brain
activity).
Independent component analysis
(ICA): an unsupervised data analysis
approach that extracts statistically
independent components from a
dataset (in neuroimaging, ICA is most
commonly used to derive spatially
independent components from whole-
brain BOLD timecourses).
Innovation-driven coactivation
pattern (iCAP): a whole-brain map of
activity denoting the spatial areas that
jointly change their activity from one
timepoint to the next.
Leading eigenvector dynamics
analysis (LEiDA): a methodological
pipeline that computes the phase
difference between the activity of all brain
regions, and extracts the dominant
existing pattern at each timepoint.
Major depressive disorder (MDD): a
psychiatric condition characterized by a
persistent feeling of sadness and loss of
interest in daily-life activities.

Trends in Neurosciences
Finally, each method conveys dynamic information at a different level of complexity: for CV, each
cross-regional interplay is encoded by only one number, whereas for CS there are K different
values (one per state), and informative metrics are then generated through dedicated recombina-
tion processes, as touched upon earlier.

Alternative Analytical Approaches Refine Standard Tools along Several Conceptual Axes
Although CV and CS have beenmost prominently scrutinized in dynamic studies of the brain, they
cover a limited area of the conceptual space that can be explored. Accordingly, alternative
approaches have been introduced over the past years: for instance, the computation of blood
oxygenation level-dependent (BOLD) signal variability [17] operates at a regional (rather than
cross-regional) level, and one can also track (cross-)regional synchronization across subjects
using the sliding window framework [18]. Note that for these approaches, one estimate is
obtained per pair of subjects for a given connection.

Several frameworks specifically enhance temporal resolution by operating at a framewise level: in
leading eigenvector dynamics analysis (LEiDA) [19], framewise information regarding the
phase of regional activity is obtained through a Hilbert transform. Following extraction of the
dominant cross-regional phase differences at each timepoint, clustering-derived states offer a dif-
ferent perspective on functional brain dynamics. In another methodology, innovation-driven
coactivation patterns (iCAPs) are obtained by clustering the deconvolved fMRI volumes that
show the largest whole-brain signal change [20]. Finally, coactivation pattern (CAP) analysis
also yields patterns of whole-brain activity, but the focus is set on the interactions with a seed
region of interest by retaining only the timepoints when it exceeds a threshold of activity [21].

Instead of treating temporal samples as separate entities, some methodologies jointly examine
space and time: in multilayer GA, individual sliding window-based graphs are linked in time,
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Figure 1. Canonical Sliding Window-Based Dynamic Functional Connectivity Measures. (A) Each brain region evolves in activity over time, as depicted by the
rows of the functional data matrix. To infer statistical interdependence between a pair of regions (or alternatively voxels) at a given timepoint, a subset of activity samples are
extracted within a temporal sub-window. (B) The computation of functional connectivity (FC) between these windowed segments yields one estimate of the dynamic FC
(dFC) timecourse between the selected regions (i.e., for a given brain connection). A full timecourse is constructed by iteratively shifting thewindow over time. If the standard
deviation of a timecourse is computed, the resulting extent of dFC variability over time is termed connection-wise variability (CV). If dFC timecourses are obtained for all pairs
of regions, one timepoint of the resulting representation can be seen as a matrix denoting current whole-brain FC, or as a graph where nodes are the brain regions and FC
estimates the edges. Dynamic graph analysis proceeds from a temporal series of such graphs, tracking changes in metrics such as modularity and efficiency. (C) If the dFC
data are concatenated across subjects, they can be decomposed into summary building blocks that are reflective of short-lived whole-brain FC, known as connectivity
states (CS). When CS are mutually exclusive in time, occurrences and transition probabilities are informative metrics. When they are jointly expressed in time, linear com-
binations of state expression are treated as the informative entities in a meta-state analysis.
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Box 2. Improvements to Canonical Sliding Window dFC Analysis

Sliding window-based investigations can be tuned at several stages [7]. First, instead of fixed size rectangular windows,
averaging across temporal neighbors has been suggested [107], and modulated rectangular windows were shown to
more efficiently capture dFC metrics [108]. Time-varying window lengths were also proposed: stationarity with an initial
length guess is assessed, and that length is iteratively increased until consistent stationarity across brain regions is
achieved [109]. In other work, the BOLD standard deviation across regions was assessed to pinpoint moments putatively
associated with a state transition [110].

To replace Pearson’s correlation coefficient as the measure of FC, correlating two dFC timecourses (i.e., correlation of
correlation timecourses) has been suggested, showcasing fair-to-moderate reliability [111]. Others have proposed to
compute the first-order time derivatives between dFC estimates together with dFC itself, using finite difference approxima-
tions [112]. Framewise estimation methods are also available, such as dynamic conditional correlation [113] and the com-
bination of variable parameter regression and Kalman filtering [114]. Regarding more conceptually novel metrics, dynamic
time warping arguably better accounts for nonlinearity and time lag between brain region timecourses: matching is made
between two regional timecourses, enabling differential alignment over time, and the final element of the optimal alignment
path is taken as the metric of interest [109]. Two BOLD timecourses may also be viewed in 2D space, from which the
gradient magnitude weighted by its phase consists in an FC alternative [115].

Although K-means clustering was originally applied to retrieve CS [13], several more sophisticated methodological develop-
ments have gradually blossomed: for instance, group information-guided ICA is a two-step procedure in which temporally
overlapping, spatially independent connectivity patterns shared by the whole investigated subject population are first derived;
in a second step, the dominant connectivity state of each subject is extracted with its associated timecourse [116]. In another
work, a two-stage community detection approach was suggested to replace K-means clustering and directly estimate the
optimal number of states [117]. An extensive comparison of metrics to infer the correct number of states has also recently
been performed [118].

Finally, it is worth noting that, aside from the employed analytical pipeline, an adequate representation of the data is essen-
tial because a tensor-based description of whole-brain FC leads to different analytical outcomes compared to a vectorized
simplification [119].
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Figure 2. Conceptual Categorization of Dynamic fMRI Analytical Tools. Some dynamic analytical approaches extract regional activity features directly from the
functional data matrix (top left), whereas others describe cross-regional relationships. This may be at the level of individual dynamic functional connectivity (dFC)
timecourses (middle left) or at the whole-brain scale (bottom left), where one connection then stands as the edge of a graph (as annotated in light blue), changing in FC
over time. Existing approaches are listed from top to bottom (first yellow box from the left) along this hierarchy. A dashed arrow reflects quantification of the standard
deviation, a solid arrow denotes the computation of a graph metric (in this review, we primarily consider regional flexibility), and an arrow with an embedded rectangle
means that data from separate subjects must be pooled to gather dynamic estimates. For multilayer graph analysis, additional edges are added to the graph
representation, as depicted by dashed lines. Each methodology can be further categorized in terms of the operations that must be applied to the data beforehand, the
spatial resolution at which it operates (voxel-wise or regional), the temporal resolution of obtained dynamic measures (ranging from +, denoting little ability to pinpoint
changes in time, to ++++ in the most optimal case), and its complexity (number of values extracted per voxel, edge, or region). Compared to most methods, modeling
approaches (pink box top right) enable a mathematical description of the dynamical system at hand, and by this means potentially address causal system properties.
Abbreviations: BOLD, blood oxygenation level-dependent; QPP, quasi-periodic pattern; Spat. res., spatial resolution; Temp. res., temporal resolution.
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resulting in cross-regional and cross-time edges [22]. At the framewise level, recurring spatio-
temporal patterns of activity, the quasi-periodic patterns, can also be extracted [23].

Temporal modeling approaches have also been introduced to conduct principled framewise
analyses. For instance, autoregressive models have been applied at a regional spatial resolution
[24]: although only R2 coefficients (where R is the number of brain regions) embed information re-
garding temporal changes in brain activity, the approximation is as good as with state-based ap-
proaches. Hidden Markov models (HMMs) have also been applied by extracting patterns of
activation parameterized by their mean and covariance [25].

Dynamic Approaches Have Been Leveraged to Study Behavior
Analysis approaches focused on dFC have potential for application to all aspects of behavior. We
provide a selective overview of studies using different dFC approaches to investigate behavior, as
summarized in Table 1.

Executive function is central to the continuous processing of information, and understanding its
underlying processes in the brain is therefore aided by using dynamic compared to static
approaches, as demonstrated using autoregressive models [26]. Overall, executive function
has mostly been associated with increased dFC. In one study, the average dFC along time within
the dorsal attentional network and between the default mode network (DMN), cerebellar, and
ventral attentional networks positively correlated with fluid intelligence [12]; in addition, CV within
the DMN also positively correlated with executive function. Similarly, a comparison of meta-states
between chess experts and beginners revealed that chess experts generally occupied more
meta-states and exhibited more transitions between them [27]. In turn, both multilayer GA and
dynamic GA showed that executive function was predicted by nodal flexibility, which describes
the transition of nodes between different network configurations [28,29]. By contrast, sustained
attention was enhanced by more stable connectivity in visual, motor, and executive-control
networks at rest in a whole-brain CV analysis [30]. Furthermore, there is evidence for an interac-
tion between emotional state and cognitive control: using a precuneus seed, a CAP associated
with executive control networks was specific to cognitive control efforts after participants
watched sad movie clips [31].

Recent research has also demonstrated a link between dFC and personality. In a state-based
analysis focused on the DMN, salience, executive, and dorsal attention networks, openness to
experience was stronger in subjects with longer dwell times in a state of overall positively corre-
lated networks, perhaps because these interactions would support enhanced imagination and
creativity [32]. In subjects with major depressive disorder (MDD), the temporal features of a
connectivity state with strong within- and between-network connectivity of sensory-related
networks were positively associated with extraversion, and negatively with neuroticism; both
personality factors have been linked to MDD, potentially the reason why these associations
were absent in healthy controls [33]. Another report focusing on interactions between subregions
of the anterior insula and the rest of the brain found that subjects differentially occupy CS
depending on their levels of empathy [34]. Importantly, to capture some aspects of personality
there may be no added benefit of dynamic over static measures [26].

A more variable factor influencing behavior is psychological state, which has also been described
with respect to changes in dFC. For instance, multilayer GA of several hours of longitudinal fMRI
measures of one subject at rest revealed that increased subjective ratings of surprise and positive
affect were related to respectively lower and higher nodal flexibility predominantly in the
somatomotor network [35]. When considering multiple subjects, valence and arousal during
672 Trends in Neurosciences, September 2020, Vol. 43, No. 9



Table 1. dFC Studies Conducted to Study Human Behavior (in the Same Order as Reported in the Text)

Behavioral aspect Analysis method Ref

Executive control

Executive function Autoregressive models [26]

Executive function CV [12]

Chess expertise CS [27]

Executive function Dynamic GA [28]

Executive function Multilayer GA [29]

Attentional control performance CV [30]

Cognitive control CAPs [31]

Personality

Openness to experience CS [32]

Extraversion and neuroticism CS [33]

Empathy CS [34]

Personality Autoregressive models [26]

Psychological state

Surprise and positive affect Multilayer GA [35]

Response to emotional speech (valence and arousal) Inter-subject analysis [36]

Emotional response to psychosocial stress CS [37]

Emotional response to sad stimuli CAPs [31]

Trait mindfulness

Trait mindfulness CS [38]

Trait mindfulness CS [39]

Physiological state

Sleep stages CV [42]

Sleep stages HMM [43]

Sleep deprivation CS [44]

Substance consumption

Citalopram CV [45]

Nicotine absence in chronic smokers CS [46]

Psilocybin LEiDA [47]

Trends in Neurosciences
listening to naturalistic speech stimuli predicted inter-subject phase synchronization of language
and emotion circuits [36]. Furthermore, emotional responses following psychosocial stress have
been associated with two unrelated CS: a positive and a negative emotion state comprising the
ventromedial prefrontal cortex, amygdala, anterior insula, and anterior cingulate cortex [37].
Finally, a precuneus CAP including the DMN and anticorrelated elements within the anterior
cingulate cortex and insula, resembling parts of the salience network, showed higher occur-
rences after subjects watched emotional compared with neutral movie clips [31].

Trait mindfulness has recently been studied as the stable tendency to have present-moment
awareness. High trait-mindful young adults compared to low trait-mindful individuals transited
more frequently towards a whole-brain connectivity state displaying strong anticorrelation
between task-positive and task-negative networks, as well as large positive within-network corre-
lation [38]. The authors of this study posit that this may be an energetically more costly state asso-
ciated with refocusing. Meanwhile, in another analysis focused on dynamic interplays between the
Trends in Neurosciences, September 2020, Vol. 43, No. 9 673
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DMN, sensory, and central executive networks in children and adolescents, more trait-mindful
children were found to exhibit more frequent transitions across the derived CS, as well as
a lower fraction of time spent in a state showcasing positively correlated DMN and central
executive network [39].

In addition to describing psychological elements with dFC features, evidence has continued to
accumulate regarding the impact of physiological state. Two reviews on the relationship between
consciousness level and its neural correlates point towards reduced dFC with reduced level of
consciousness [40,41]. An examination of the variance of regional dFC timecourses during
sleep revealed that, in deeper sleep stages, CV was overall stronger, whereas the mean dFC
value over time was lowered between distinct brain networks [42]. Thus, variability increases as
consciousness diffuses. In addition, a study using an HMM at the spatial resolution of a regional
atlas characterized 19 whole-brain states visited over the course of falling asleep, as well as their
transitions, and thus expanded on the traditional understanding of sleep stages [43].
Another report using state-based analysis revealed a shift towards the expression of CS with
reduced thalamocortical connectivity when participants were sleep-deprived. They also observed
increased connectivity across cortical networks in a sleep-deprived state [44].

Substance consumption can alsomodulate functional brain dynamics because it alters physiological
state. The effects of citalopram, a serotonin reuptake inhibitor, were assessed by computing CV
between the medial prefrontal cortex and other DMN locations [45]: citalopram significantly lowered
dFC variability with two clusters located in the posterior DMN, putatively because of reduced spon-
taneous mind-wandering. Similarly, in chronic smokers, abstinence was associated with fewer
transitions between states, and complementary results from static analyses showed altered
connectivity between insular subdivisions and three distributed networks (DMN, executive, and sa-
lience) [46]. Finally, using LEiDA, psilocybin (a serotonergic psychedelic) was shown to particularly
suppress a state overlapping with the frontoparietal network [47].

Perturbed Dynamics in Autism Spectrum Disorder, Schizophrenia, and MDD
Psychiatric and neurodevelopmental disorders dramatically alter behavior at many levels, and this
is reflected in changes in dFC. Reviews on the prediction of disorders from fMRI have discussed
the use of dynamic techniques and found that models including dynamic measures typically
outperform those relying on static measures [48,49]. Three disorders have been selected here
to exemplify the clinical potential of characterizing individual behavioral variability using dFC
approaches: autism spectrum disorder (ASD), schizophrenia, and MDD (summarized in
Table 2). This selection reflects the relatively large amount of empirical work using dFC methods
in these populations, but it also presents a complementary choice owing to the diversity of the
disorders chosen [50,51].

ASD is an intensively studied neurodevelopmental condition that is associated with difficulties
with social interaction, communication impairments, and repetitive behaviors. Recent reviews
have touched upon the benefits of using dynamic analysis for understanding neurodevelopmental
disorders, and have also highlighted a continued need for insights into dFC disruptions as a way to
understand the neural underpinnings of ASD [52,53]. The evidence from both state-based and CV
approaches points towards a pattern of hyperconnectivity and hypervariability in ASD. Specifically,
but not exclusively, altered dFC in the DMN and salience network was reported [54–56]. Further-
more, differential expression of CS including thalamic–sensory connectivity was observed in ASD
subjects aged on average 16 years [57]. Particularly interesting for clinical practice, inter-subject
functional correlation was used to associate ASD symptomatology with the expression of CS
during watching natural movies [58].
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Table 2. dFC Studies Conducted to Study Brain Disorders Showcasing Behavioral Impairments (in the Same
Order as Reported in the Text)

Brain disorder Analysis method Refs

Autism spectrum disorder

ASD CS [54]

ASD CV [55]

ASD CS [56]

ASD BOLD variability, CS [57]

ASD Inter-subject analysis [58]

Schizophrenia

Schizophrenia CV [59]

Schizophrenia CV [60]

Schizophrenia CS [61]

Clinical high risk of psychosis and early illness schizophrenia CS [62]

Schizophrenia HMM [63]

Schizophrenia CV [64]

Schizophrenia Dynamic GA [65]

Psychotic-like experiences CS [66]

First episode psychosis Quasi-periodic patterns [67]

High risk of psychosis CAPs [68]

Clinical high risk of psychosis and early illness schizophrenia CS [69]

22q11 deletion syndrome iCAPs [70]

Major depressive disorder

MDD CS [33]

MDD CS [71]

MDD CS, CV [72]

MDD Multilayer GA [73]

First episode MDD, untreated CS [74]

MDD in remission LEiDA [75]

Trends in Neurosciences
Schizophrenia, a debilitating mental disorder characterized by profound disruption of thinking,
language, perception, and sense of self and reality, has continued to be a target of neuroimaging
research. CV involving the left precuneus, a hub of both task-positive and task-negative
networks, was stronger in schizophrenic patients relative to healthy controls, irrespective of
genotype and treatment [59], whereas in another study, regional CV was increased in schizo-
phrenia at the level of the somatomotor and visual networks, while a decrease was seen in the
DMN and frontoparietal network [60]. At the level of CS, several studies found that schizo-
phrenic subjects generally showed connectivity profiles of weak intra- and sometimes also re-
duced inter-network dFC compared with controls [61,62]. This pattern is consistent with
reduced cognitive functioning. In line with these findings, results from an HMM formalism at
the resolution of whole-brain networks evidenced an association between positive symptoms
of schizophrenia and fractional occupancy in states with low activity in all networks, most
prominently in the DMN and executive networks [63]. More focused analyses assessing
the functional correlates of auditory hallucinations found that CV in schizophrenic subjects
was reduced between the left auditory perception and speech-production brain areas [64].
Trends in Neurosciences, September 2020, Vol. 43, No. 9 675



Outstanding Questions
For which categories of behavior
do dynamic methodologies to study
fMRI signals contribute novel and
meaningful information beyond that of
their conventional static counterparts?

To what extent is the current
understanding of behavior biased by
the simplifying interpretations of most
correlational approaches?

What is themost effective and thorough
way to enable large-scale comparative
analyses of behavior across different
dynamic methodologies?

How is complex and adaptive behavior
supported by interactions of large-
scale functional brain networks?

How can one build system-level
mechanistic brain models, integrating
knowledge about brain function and
structure, that are relevant for explaining
and predicting behavior?

Trends in Neurosciences
When focusing on hallucination severity, a dynamic GA revealed that nodal flexibility of the lateral
occipital cortex was perturbed in people with schizophrenia, and this was related to symptom
strength [65].

Interestingly, dFC also shows functional specificities in subjects considered to be at risk of
developing schizophrenia. Using dynamic conditional correlation, a framewise alternative to
sliding window analysis (Box 2), a study showed that healthy subjects undergoing psychotic-
like experiences spent more time in a state characterized by hypoconnectivity within the
DMN, and hyperconnectivity within visual regions [66]. Moreover, measuring quasi-periodic
patterns in participants with first-episode psychosis revealed hypoconnectivity in the
frontoparietal network [67]. Similarly, a CAP analysis with an anterior insula seed demonstrated
that individuals at high risk of psychosis have prolonged expression of a CAP that resembles
the DMN, as well as decreased CAP switching, compared to healthy controls [68]. Further-
more, by extracting CS through group information-guided ICA, healthy controls, subjects at
clinical high risk for psychosis, and early schizophrenia patients were shown to share a domi-
nant state, but to differ in non-dominant states; notably, subjects at clinical high risk displayed
altered connectivity patterns consistent with an intermediate stage between healthy and early
illness schizophrenia patients [69]. In other work, iCAP analysis in patients with 22q11 deletion
syndrome, a neurodevelopmental disease with a strongly elevated risk of schizophrenia,
demonstrated that longer durations and couplings of iCAPs were associated with the severity
of positive psychotic symptoms and anxiety, solidifying the case for a relationship between
decreased dFC and schizophrenia [70].

Finally, MDD is one of the most prevalent psychiatric conditions, with great cost to individuals and
society. Overall, patients with MDD present a pattern of hypoconnectivity; specifically, two state-
based analyses revealed lower dwell times in connectivity states with strongwithin- and between-
network connectivity regarding the auditory, somatosensory, and visual networks in patients
[33,71]. This was supported by another state-based analysis centered on the DMN, salience,
and executive networks: patients with MDD spent longer durations in a sparsely connected
state [72]. In the same study, CV between the anterior DMN and right central executive network
was found to be diminished. Similarly, a study using multilayer GA showed that nodal flexibility of
the anterior cingulate cortex was impaired in MDD [73]. Conversely, a trend towards increased
CV between the laterobasal amygdala nucleus and the supplementary motor area was found in
untreated patients with first episode of MDD [74]. Finally, patients remitted from MDD show
network abnormalities as seen with LEiDA, and these particularly include shorter duration and
altered transitions in relationship to a state including the DMN, frontoparietal, and salience
networks [75].

Concluding Remarks and Future Perspectives
We have examined the utility of a large range of time-resolved analytical approaches in capturing
the dynamic features of fMRI data in studying different facets of behavior, and in shedding light on
a select set of psychiatric and developmental disorders. Dynamic analytical approaches have
been shown to provide benefits over static methods, particularly for behavioral aspects that are
transient. In addition, we have also shown how thesemethodologies can be very useful in further-
ing our understanding of these disorders.

A first observation from this review is the current prominence of correlational dynamic approaches
to probe brain function. Modeling frameworks that link fMRI measures to structural or molecular
data [76,77] enable us to move closer to a causal understanding of brain dynamics (see
Outstanding Questions). If the goal is to eventually act on behavior, rather than merely studying
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it (for example, by renormalizing brain activity in neural disorders), a model that can be perturbed
is an essential tool [78].

A second observation stemming from this literature synthesis is that, although findings within the
same behavioral aspect or disorder are somehow distinct from others, there is still considerable
variance between studies and the areas implicated, and their dFC properties rarely overlap. Many
factors may explain such discrepancies: first, small-sized subject populations with distinct demo-
graphic characteristics are generally studied, but dFC metrics are known to be particularly
influenced by measurement noise or sampling variability, among other factors [79,80]. Data pre-
processing choices or analytical settings (e.g., the number of considered CS) also often differ
from case to case, as do acquisition parameters (for instance, the repetition time that dictates
the best possible temporal resolution of the analyses). As touched upon in Box 1, some of
these factors also relate to the amount of non-neural signal contributions in the analyses in a
poorly understood manner. In addition, accurately studying an individual facet of behavior is in
itself a daunting task because interplays manifest across several factors (e.g., physiological
state may influence executive functions).

There are several ways to counter these problems: one is to take advantage of large-scale,
publicly available datasets to address well-delineated research questions. Another promising
option is the decentralization of dFC computations across physical locations, to foster cross-
institutional analyses relying on similar (pre)processing choices [81]. In addition, it is also important
to remain critical regarding existing approaches and their possible caveats: for example, if spatial
dynamics exists on top of temporal dynamics, as recently argued [82], approaches relying on
fixed atlas-based parcels would then be ill-posed by nature.

A final observation is that the breadth of explored behavioral aspects contrasts with the limited
number of dynamic methods that are applied in practice. In most studies to date, CV or CS are
computed (albeit almost never jointly, despite their reliance on the same sliding window frame-
work), but there are many alternatives with potential to reveal complementary dynamic informa-
tion owing to their conceptual specificities (e.g., faster-paced fluctuations with framewise
investigations, or more localized subtleties with spatially focused techniques). In fact, the arsenal
of existing dynamic methods far exceeds those discussed here (e.g., [83–85]). Because behavior
is only contemplated from few methodological angles in relation to dynamics, our understanding
of some of its facets may be biased.

As a solution, we believe that current efforts towards a more comparative investigation of dFC
tools, which so far concern specific subfamilies of approaches [86–89], should be further pushed
to a larger scale, complemented by attempts to more thoroughly mathematically characterize the
relationships between different dynamic methodologies [90]. To this end, the increasing availability
of publicly released tools to apply different families of dynamic approaches [91–94] is reassuring. In
addition, a possibly fruitful way to encourage research laboratories to leverage their own method-
ologies towards such comparative insight may be via dedicated competitions (e.g., https://www.
kaggle.com/c/trends-assessment-prediction/overview) or large-scale collaborative efforts that
unite the methodological know-how from various experts in their respective techniques.
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