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ABSTRACT

Single-molecule DNA mapping has the potential
to serve as a powerful complement to high-
throughput sequencing in metagenomic analysis. Of-
fering longer read lengths and forgoing the need
for complex library preparation and amplification,
mapping stands to provide an unbiased view into
the composition of complex viromes and/or mi-
crobiomes. To fully enable mapping-based metage-
nomics, sensitivity and specificity of DNA map anal-
ysis and identification need to be improved. Using
detailed simulations and experimental data, we first
demonstrate how fluorescence imaging of surface
stretched, sequence specifically labeled DNA frag-
ments can yield highly sensitive identification of tar-
gets. Second, a new analysis technique is introduced
to increase specificity of the analysis, allowing even
closely related species to be resolved. Third, we
show how an increase in resolution improves sen-
sitivity. Finally, we demonstrate that these methods
are capable of identifying species with long genomes
such as bacteria with high sensitivity.

INTRODUCTION

Communities of microbial species and their collective genes,
typically referred to as a microbiome, have become an in-
creasingly important study area over the last years. The in-
terplay between highly diverse microbial species and their

hosts turned out to play a key role in many fields of biology
(1). So not surprisingly, recent years have seen a tremendous
interest in the microbiome, especially in the gastrointesti-
nal tract, and its relatedness to various diseases (2–4). The
microbiome not only does encompass bacterial species, but
also covers fungal and viral communities. It is reported that
human feces contain at least 109 virus-like particles (VLPs)
per gram, a majority of which are bacteriophages (5). The
effect they have on the microbiome can be significant: as an
example, a recent article showed how type I diabetes was
associated with a significant reduction in the abundance of
Circoviridae-related sequences (6).

The classical method to identify microbial species is by
culturing them in laboratory conditions (7). However, this
method is extremely biased since the overwhelming ma-
jority of species is currently unculturable (8). Newer ap-
proaches for identification have focused on sequencing, the
most common of which targets a universally conserved
marker gene on the genome (like the 16s ribosomal DNA)
and amplifies it. Still, identification by amplification suf-
fers from some important drawbacks. First, amplification
tends to introduce biases in the sample, skewing abundance
measurements (9). Second, it only groups together species
that share the same amplification gene. And finally, it leaves
viruses ‘invisible’ because of the absence of a universally
conserved marker gene in their genome (10). A second ap-
proach is to sequence the whole genome of all the species
in the microbiome (9). While whole-genome sequencing
does not suffer from the same problems such as ampli-
fication bias and intrinsic preclusion of viruses, the most
common sequencing techniques are unable to deliver both
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long sequence-reads and high-throughput (10). Short con-
tigs (contiguous sequences), for example, make identifica-
tion difficult because of missing long-range structural in-
formation.

As a promising alternative, DNA mapping can be used
for the same purpose (11). Instead of providing sequencing
data, DNA mapping yields long-range location density of
specific short sequences on the genome. Mapping strategies
have been used to match DNA maps to, for instance, plas-
mids for bacterial resistance studies (12), to bacteriophage
sequences (13), Escherichia Coli (14) and to CRISPR-CAS9
edited regions in bacterial genomes (15). More recently,
DNA mapping was used to identify genomic regions in in-
dividual cells (16). The most common approach for DNA
mapping is to enzymatically attach fluorescent labels to spe-
cific short sequences on the DNA using DNA methyltrans-
ferases (17–19) and image them by a fluorescence micro-
scope. Other labeling methods transfer labels using DNA
nickases (20), or intercalating dyes using either competitive
binding with an inhibitor (21) or denaturation–renaturation
mapping (22).

In order to identify a species using DNA mapping, the
measured DNA maps need to be compared or ‘matched’
to the expected DNA maps for that species, which is con-
structed from the species’ known sequence. The current
matching approaches can be roughly categorized in two
classes: (i) methodologies that rely on cross-correlating the
measured profile with an expected profile and (ii) method-
ologies that use dynamic-programming-based algorithms
that compare the distance between labels (in basepairs) in
the measured and a theoretical map (23–25). The former
handles the DNA map as an intensity profile over the DNA
strand, while the latter handles the DNA map as the list
of the labeled positions on the DNA strand. Both types of
methods return a so-called matching score that increases
when the measured map more closely resembles the ex-
pected or theoretical map.

An essential step in species identification by DNA map-
ping is deciding whether the matching score is high enough
to assign the measured DNA map to a genome or species.
One approach, based on dynamic programming, uses a
quality index for rejecting false assignations (26). This qual-
ity index is based on the ratio between the matching score
and the standard deviation of false matching scores at other
positions in the genome. In a second approach, a p-value is
calculated for the probability that the matching score is ran-
domly generated (27). If this probability is low (e.g. below
5%), the matching score is considered to be statistically sig-
nificant and therefore reliable. Recently, Nilsson et al. sug-
gested the use of a p-value combined with an information
score to determine the quality of a match. Their p-value is
calculated by imposing a ‘hard’ null-model on the distribu-
tion of the matching score (14), which makes it prone to
error if the model conditions are not satisfied. Moreover,
p-values calculated for matches to different species cannot
be compared to each other. It is therefore not clear how to
discriminate between closely related species when a single
DNA map matches significantly to multiple species.

In this article, we propose a new technique rooted in re-
sampling statistics for assigning measured double-stranded
DNA maps to microbial species. Our technique is appli-

cable to either cross-correlation or dynamic programming
matching methods. We investigate the performance of DNA
mapping by validating our method on bacteriophage iden-
tification and show how it can be generalized to bacterial
species. To compare the performance of different imaging
approaches for DNA mapping, we performed a series of
experiments and developed a simulation tool that closely
mimics the sample preparation as well as wide-field and
super-resolution microscopy techniques.

MATERIALS AND METHODS

M.TaqI directed labeling using a rhodamine B-tagged SAM
analog

DNA from bacteriophage lambda (Thermo Scientific) and
T7 (Yorkshire Bioscience) and from bacterium Vibrio Har-
veyi (V. Harveyi, ATCC) was enzymatically labeled at a fi-
nal concentration of 50 ng/�l, using 35 �M rhodamine
B functionalized AdoMet analog and 0.14 mg/ml M.TaqI
methyltransferase enzyme (recognition sequence 5′-TCGA-
3′). The reaction was carried out at 60◦C for 2 h in a cus-
tom labeling buffer with a final concentration of 50 mM K-
acetate (Sigma), 10 mM Mg-Acetate (Sigma), 20 mM MES
(Sigma) and 0.1 mg/ml BSA (Sigma), buffered at pH 5.75.
Subsequently, 2 �l of proteinase k (800 units ml-1, NEB)
were added and reacted for 1 h at 50◦C. Finally, the reac-
tion product was purified using CHROMA SPIN+TE-1000
columns (Clontech, Takara Bio).

Preparation of Zeonex coated coverslips

22x22x0.17 mm #1.5 glass coverslips (Menzel-Gläser) were
rinsed thoroughly with water and blown dry. Next, the cov-
erslips were thermally treated overnight at 450◦C and sub-
jected to a 30-min UV-ozone treatment in a UVP PR-100
ozone cleaner (UVP, Upland, California, USA). A small
volume of 1.5 % w/v Zeonex (Zeon Chemicals L.P.) in
toluene (Acros Organics) was subsequently deposited using
a spin coater, programmed to rotate 15 s at 1000 RPM, 1
min at 10 000 RPM and 10 s at 1000 RPM. The Zeonex
solution was always sonicated for 40 min prior to coating.
Finally, coated coverslips were dried at 110◦C for 2 h prior
to storage in a desiccator at room temperature.

Stretching of labeled DNA molecules on Zeonex coated cov-
erslips

Purified DNA was dissolved in 50 mM MES (pH 5.6), and
deposited in stretched conformation by mechanically drag-
ging a 2 �l droplet over the surface of a Zeonex-coated cov-
erslip at a speed of 4.4 mm/min using a disposable pipette
tip, as described earlier (28). Stretched samples were stored
dry and were vacuum dried overnight prior to imaging.

Imaging

Imaging was performed with a Zeiss SIM Elyra microscope
with a Zeiss Plan-APOCHROMAT 63× oil immersion ob-
jective (numerical aperture 1.4) and an EMCCD camera
(exposure time 300 ms/frame, EM gain setting 35). An ex-
tra 1.6× image magnification was applied. The field of view
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per image was 75 × 75 �m2. The camera pixel size projected
in the sample was 80 nm/pixel. The 561-nm excitation laser
provided a power of ∼3 mW over the field of view. Fluo-
rescence emission was filtered by a 570–620 nm band-pass
filter. For each field of view, 25 frames were recorded for
5 SIM modulation angles and 5 phases/angle. The illumi-
nation patterns for SR-SIM were created by a grating with
a period of 34 �m. A drop of milliQ water was placed on
top of the sample before imaging (see Supplementary Sec-
tion S2.5). A wide-field image was calculated by averaging
over the 25 frames. SR-SIM reconstruction was done with
the open-source fairSIM plugin for ImageJ (29). DNA frag-
ments were segmented manually on the SR-SIM images us-
ing ImageJ. For each imaged DNA fragment, both wide-
field and SR-SIM signals were extracted.

Calculation of the matching score

For each species of interest, the cross-correlation function
XC(δ, f, d) between the measured DNA map and the ex-
pected DNA map was calculated. The cross-correlation
function is a measure of the similarity between two signals
as a function of the displacement of one with respect to the
other. As the measured DNA map is overstretched during
the experimental procedure and can have both 5′-3′ and 3′-
5′ orientations, the cross-correlation function is calculated
varying the overstretching factor of the expected DNA map,
f , between 1.7 and 1.76 with steps of 0.01 and the orienta-
tion of the measured DNA map, d, as:

XC (δ, f, d)= 1
Nm

∑
x

[e(x, f )−μe(x, f )][m(x+δ,d)−μm(x+δ,d)]
σe(x, f )σm(x+δ,d)

where e(x, f ) and m(x + δ, d) represent the expected and
the measured DNA map, respectively; δ quantifies the dis-
placement between the two; μ and σ denote mean and
standard deviation and Nm corresponds to the total num-
ber of sampling points in m(x + δ, d). The expected DNA
maps were constructed from the known DNA sequences of
the tested microbial species (downloaded from the NCBI
database). Specifically, the n locations of each methyltrans-
ferase enzyme recognition sequence (in units of bp) were
listed. This list, l(n), was converted into the intensity sig-
nal e(x, f ) by summing up Point Spread Functions (PSFs)
centered at each recognition sequence location. The signal
was sampled along the DNA with a step size equal to the
camera pixel size projected in the sample:

e (x, f ) =
∑

n
PSF

(
x − l (n) 0.34

nm
bp

)

where PSF(x) is the microscope PSF and p the projected
pixel size. The final matching score S was taken as the global
maximum across all δ and f values, and for both orienta-
tions d:

S = argmax
δ, f,d

XC (δ, f, d)

This way, the optimal shift, orientation and overstretch-
ing factor of the measured DNA map were also found.

Significance test on the matching score (‘matching signifi-
cance test’)

To test the statistical significance of a matching score, we ap-
plied permutation testing to calculate an empirical p-value.
Per each species, we constructed randomized DNA maps
starting from the expected DNA map and randomly reshuf-
fling the locations of the labels. A new matching score was
calculated for each reshuffled DNA map. This reshuffling is
carried out a large number of times (say Np = 104). Finally,
a p-value, p1, was calculated as:

p1 = N + 1
Np + 1

where N is the number of times the randomized matching
score was found to be higher than the measured matching
score. In this way, the tested matching score is contrasted
against the distribution of randomized matching scores.
If the tested matching score is found to be systematically
higher than those resulting from such a randomization (i.e.
p1 is found to be lower than a certain significance thresh-
old, α1), the match is considered statistically significant and
retained as such. The choice of the significance threshold
allows one to trade identification sensitivity against identifi-
cation specificity: a low threshold results in lower sensitivity
and higher specificity and vice versa.

For the sake of clarity, the fluorescent label reshuffling
was carried out in a windowed manner. Instead of random-
izing the label locations over the full length of the reference
genome, we subdivided it into 10 kb-long windows and the
labels were reshuffled within these intervals. This way, some
of the large-scale DNA structures were preserved, which im-
proved the assignation specificity while having just a little
effect on the assignation sensitivity.

Resampling the highest matching score to improve specificity
(‘resampling step’)

To compare significant matching scores for different species
and reject those that can be reliably considered lower than
the highest one, we resampled its corresponding expected
DNA map as follows. From the list of its label locations, we
randomly removed two labels, creating a resampled DNA
map. Labels were removed only in the region of the ex-
pected DNA map where the measured DNA map was found
to match after the matching significance test. A resampled
matching score was found by calculating the matching score
between the measured DNA map and the resampled DNA
map, without re-optimizing the shift, orientation and over-
stretching factor found in the previous step. This resampling
procedure was repeated enough times (say Nr = 4000) to
create a well-sampled estimate of the spread on the highest
significant matching score.

For any other matching score that was found significant
after the matching significance test, a second p-value, p2,
was calculated:

p2 = M + 1
Nr + 1

where M is the number of times the resampled score was
found to be lower than the tested matching score. When
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p2 is lower than an imposed significance threshold, α2, the
tested matching score is considered significantly lower than
the highest significant matching score. In this case, the re-
spective match can be discarded as confidently worse than
the best observed match. On the other hand, when a match-
ing score is not significantly lower than the highest signifi-
cant matching score, it is retained and the corresponding
DNA map assigned to more than one species.

Simulating DNA optical mapping

We developed a simulation model, implemented in MAT-
LAB, covering the entire process of DNA mapping, includ-
ing strand breakage, DNA labeling, DNA deposition and
imaging.

First, the DNA sequences of bacteriophage species were
downloaded from the NCBI database. Next, DNA frag-
ments of 35 kbp length were drawn from the full DNA se-
quences, with random starting position. This step simulates
the random breakage of the DNA that occurs due to shear-
ing forces from pipetting and the presence of nucleases in
the sample mixture. The length of 35 kbp corresponds to a
typical DNA fragment length in our experiments (see Sup-
plementary Section S2.2). One thousand DNA fragments
were simulated per species.

In earlier work, we found that the methylation enzyme
does not label all recognition sites on the DNA, but instead
has a labeling efficiency of ∼80% (30). Moreover, we noticed
that this efficiency can be lower when the synthetic cofactor
has degraded prior to labeling or when there are remnants
of the natural cofactor AdoMet present in the labeling mix-
ture. In this study, we set the simulated labeling efficiency to
75%. Furthermore, the enzyme sometimes transfers a label
to an incorrect sequence, resulting in a false positive label.
Here, labeling efficiency and false positive labeling were sim-
ulated as Poisson processes, yielding a specific list of simu-
lated label positions on each DNA fragment. Linearization
of the DNA fragments was simulated by applying a con-
stant overstretching factor of 1.75 to the list of simulated la-
bel positions. This overstretching factor corresponds to the
value found in experiments (28).

Finally, imaging of the DNA fragments was simulated.
The PSF of the microscope was approximated by a 2D
Gaussian with full-width at half-maximum (FWHM) of
0.61λem

NA , where NA is the microscope numerical aperture
(1.4 in our experiments), and λem the fluorescence emission
wavelength (576 nm for the rhodamine-B dye used here).
The simulated images were sampled according to the mi-
croscope pixel size. Photon emission from the fluorescent la-
bels was modeled as a Poisson process. The average number
of collected photons per fluorescent label and per camera
exposure time (300 ms) was estimated to be ∼ 104. For SR-
SIM, 25 frames were simulated with sinusoidal illumination
patterns with a modulation depth of 0.7 (corresponding to
the value observed experimentally), and having the same
5 orientations and 5 phases/orientation as in the experi-
ments. The EMCCD camera quantum gain, thermal noise
and read-out noise were simulated and calibrated following
Reference (31). For simulated wide-field microscopy, the 25
frames were averaged. As for the experiments, SR-SIM re-

construction was done with the open-source fairSIM plugin
for ImageJ (29).

RESULTS AND DISCUSSION

To assess and validate our new method for identifying
species by optical DNA mapping, we used three comple-
mentary test case-studies, two consisting of experimental
data measured on bacteriophage and bacterial DNA, re-
spectively, and one consisting of simulated data from a de-
tailed model. The simulated data allowed us to find out what
parameters are important when identifying species based on
DNA maps.

The experimental data were obtained by imaging DNA
fragments from bacteriophages lambda and T7 and bac-
terium V. Harveyi. We labeled DNA fragments with fluores-
cent dyes using the M.TaqI methyltransferase enzyme with
recognition sequence 5′-TCGA-3′ and a synthetic AdoMet
cofactor (17,32). After labeling (Figure 1A), the DNA was
linearized on a coated coverslip using a ‘rolling droplet’
technique (Figure 1B). This technique causes the DNA
fragments to be overstretched by a factor of 1.7 to 1.75
(28). We imaged the labeled DNA with a wide-field micro-
scope. Finally, we extracted the fluorescence intensity signal
along the linearized DNA for each individual DNA frag-
ment (Figure 1C).

The simulated data allowed us to investigate the perfor-
mance of our identification method on expanded sets of
species. As outlined before, the simulation model gener-
ates DNA maps for these species accounting for the vari-
ous sources of experimental variation: enzymatic labeling
of the DNA, overstretching and shearing of the DNA, flu-
orescence photo-physics and imaging.

Assigning optical DNA maps to bacteriophages

In this section, the main objective of our method will be
to correctly assign every measured DNA map to a bacte-
riophage from a set of candidate species. To this end, we
calculated the cross-correlation of the measured fluores-
cence signal with each of the expected signals for the can-
didate species. We considered the maximum of the cross-
correlation function as the matching score. The expected
intensity signals were calculated by summing up the micro-
scope PSF centered at each of the locations of the labeling
enzyme recognition sequence, given the full genome of the
bacteriophages of interest (Figure 1D).

For every measured DNA map, we calculated the match-
ing scores for all the candidate species. In order to deter-
mine which of these scores should be considered as reliable
matches, we subjected all matching scores to a significance
test. The goal of the test is to reject matches where the score
is not significantly higher than the scores for randomized
DNA maps, which are generated by reshuffling the dye lo-
cations on the expected DNA map. As described in the ‘Ma-
terials and Methods’ section, we used permutation testing
to calculate a corresponding p-value (p1). If p1 is found to
be lower than a certain significance threshold, the match-
ing score is retained as significant (Figure 1E). If not, the
matching is rejected (Figure 1F). The result of this proce-
dure is a list of species that yield a significant match for the
measured DNA map.
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Figure 1. (A) Graphical sketch of the enzymatic labeling procedure. (B) After enzymatic labeling, DNA fragments are surface deposited and overstretched
using a ‘rolling droplet’ procedure (28), followed by fluorescence imaging. (C) Representative image of labeled T7 DNA molecules stretched on a coated
coverslip, obtained by wide-field fluorescence microscopy imaging. (D) Measured DNA map of one of the imaged molecules (cyan) overlaid with the T7
expected DNA map (black). (E and F) Histograms of the randomized matching scores corresponding to the maximum cross-correlations of the measured
DNA map with the reshuffled expected DNA maps of T7 and lambda. The vertical dotted line indicates the observed matching score of the measured
DNA map with the expected DNA map, with low p1-value for T7 (ground truth) (E) and high p1-value for lambda (control) (F). (G) Results of the match-
ing of 87 T7 DNA molecules imaged by wide-field microscopy to the expected DNA maps of bacteriophages lambda and T7 (α1 = 0.001). (H) Results of
the matching of 142 lambda DNA molecules imaged by wide-field microscopy to the expected DNA maps of bacteriophages lambda and T7 (α1 = 0.001).
The horizontal dotted line indicates the total amount of DNA maps concerned.

Figure 1G and H shows the results of this test for exper-
imental data recorded with wide-field microscopy of over-
stretched DNA fragments from bacteriophage T7 (87 mea-
sured maps) and lambda (142 measured maps). The DNA
fragments were assigned to the right bacteriophage species:
the fraction of DNA fragments that were assigned to the
ground truth species (true positives) is above 75%, while
false positives are at 0%. The significance threshold was set
as α1 = 0.001.

While the goal of this significance test is the same as in
the method of Nilsson et al. (14), our approach is non-
parametric as we do not need to assume any statistical dis-
tribution for the matching score in order to calculate p1.
Hence, any bias due to assumption inaccuracy is inherently
avoided. Furthermore, our method can easily be applied
to other types of matching scores, for example, the align-
ment score from dynamic programming methods (23). This
matching significance test is therefore a widely applicable
matching reliability metric. In addition, testing the statis-
tical significance of the matching score allows the whole
approach to be robust against biased definitions of the
database of reference species. That is to say that if fragments

drawn from a species that is not included in the reference
database are imaged, we expect our methodology to recog-
nize them as unknowns (i.e. no significant matchings should
be returned for any of the reference species under assess-
ment). This is a clear advantage over just assigning these
fragments to the species for which a maximum matching
score is found as it reduces the impact of false positives on
the final outcomes. Similarly, in situations in which DNA
maps that are shared by multiple microbial species (due to
high evolutionary similarity) are imaged, they will not be
necessarily assigned to only one of them, allowing common
genomic subsequences to be therefore easily recognized.

Improving sensitivity by overstretching and super-resolution
microscopy

For a labeling enzyme with a 4-base recognition sequence,
the expected number of labels in a random string of nu-
cleotides is 1 per 256 bases, or about 1 label every 87 nm of
full-length DNA. Therefore, one can expect to have more
than 1 fluorescent dye in a diffraction-limited PSF spot in
∼93% of the cases [If one assumes labeling to be a Poisson
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process, the probability of finding one or more extra fluo-
rescent labels within a PSF is given by:

Pl = 1 − P0

where P0 = ν0e−ν

0! based on the definition of the Poisson dis-
tribution. ν here denotes the average expected labeling rate
within a PSF, yielded by the size of the PSF divided by the
expected distance between two labels on a random string
(44 = 256 bp). Expressing the FWHM of the PSF in base-
pairs as:

FWHM = 0.61
λem

0.34 · NA · f

with λem = 576 nm and NA = 1.4 as described before, f
being the DNA stretching factor and 0.34 representing the
DNA basepair distance, it subsequently holds that for un-
stretched DNA ( f = 1):

ν = FWHM
256 bp

= 2.8

and

Pl = 1 − P0 = 1 − e−2.8 = 0.93

quod erat demonstrandum].
Signal overlap from different labels limits the amount of

information that can be extracted from the DNA sequence.
We can therefore expect improved identification of bacte-
riophages when the PSF is narrowed. Besides improving the
optical resolution, another way in which the effective width
of the PSF can be narrowed (in terms of basepairs) is by
overstretching DNA. This approach is equivalent to expan-
sion microscopy. When depositing its molecules on a surface
using DNA combing, the DNA adopts an overstretched
configuration where the basepair distance increases from
0.34 nm to 0.6 nm. This overstretching of around 75% cor-
responds to the maximal length of double-stranded DNA
before strand-breakage (28,33). Consequently, overstretch-
ing reduces the fluorescent dye overlap probability to 81%.
Super-resolved microscopy techniques can further narrow
the PSF, thus reducing the overlap probability to 54%.

To investigate the effects of improved resolution on bac-
teriophage identification, we simulated four different sce-
narios: (i) diffraction-limited wide-field microscopy of un-
stretched DNA; (ii) wide-field microscopy of overstretched
DNA (stretching factor 1.75); (iii) super-resolved structured
illumination microscopy (SR-SIM) of overstretched DNA;
(iv) single-molecule localization microscopy (SMLM) with
reverse photobleaching of overstretched DNA. These meth-
ods progressively increase the effective resolution. SR-SIM
is capable of improving the resolution ∼2-fold beyond the
diffraction limit (34). In SMLM with reverse photobleach-
ing, all the dyes on the DNA are localized and fitted with a
2D Gaussian with a FWHM set to the accuracy of the local-
ization resulting from a super-resolution image (19,35). The
accuracy of localization using this method was 20 nm (see
Supplementary Section S3.2). When generating the simu-
lated DNA maps, we also included the imperfections of the
labeling procedure.

We generated 1000 DNA fragments for each bacterio-
phage from a set of 10 species, of which 6 are from the same

family as bacteriophage lambda (Siphoviridae), 2 from the
same family as bacteriophage T7 (Podoviridae) and 2 from
the Myoviridae family. Because different species can con-
tain widely different labeling densities, we included two bac-
teriophages with high labeling density (17.9 and 10.9 sites
per kbp) and two with low labeling density (1.0 and 1.1 sites
per kbp). The average labeling density of the other species
is ∼3 sites per kbp. For a detailed overview of the selected
species, see Supplementary Table S1.

The simulated DNA molecules were matched to all of the
10 bacteriophage species, and p1-values were calculated for
the matching scores. If a match passed the significance test
with threshold α1 = 0.001, the DNA molecule is assigned to
the corresponding species of bacteriophage. In this way, an
assignation matrix of significant matches was constructed,
as shown in Figure 2B. A perfect assignation matrix would
show 100% matches on the diagonal and 0% elsewhere.

The improvement due to overstretching is clearly visi-
ble from the number of significant matches on the diago-
nal (i.e., the true positive rate or sensitivity) of the assig-
nation matrices in Figure 2B (see also Supplementary In-
formation, Section 3.3). In the case of wide-field imag-
ing without DNA overstretching, the sensitivity was rather
low, and there was a large variation between species (some
species showed around 100% matching sensitivity while
some around 20%). Most notably both the species with
the lowest labeling density showed low matching sensi-
tivity. DNA overstretching increased sensitivity. Interest-
ingly, imaging unstretched DNA with SR-SIM showed the
same improvement of matching sensitivity (not shown) as
imaging overstretched DNA with standard wide-field mi-
croscopy, most likely because the resolution in terms of
basepairs is almost identical, which demonstrates that it
is such a resolution that determines the sensitivity of the
matching. Applying overstretching and increasing the reso-
lution (either by SR-SIM or SMLM) further boosted sensi-
tivity, as shown in the two rightmost matrices in Figure 2B
(see also more detailed assignation matrices in Supplemen-
tary Section S3.3).

In addition, we found that overstretching and improved
resolution reduced the DNA fragment length required to
achieve a given level of sensitivity. Hence, shorter DNA
fragments can still be correctly identified with high sensitiv-
ity. This effect can be seen in Figure 2C, where the sensitiv-
ity is plotted for different simulated fragment lengths. The
improved resolution lowered the fragment length required
for maximal sensitivity from 40 kbp down to 20 kbp. Inter-
estingly, while SMLM did improve the matching sensitivity,
its improvement was smaller than the improvement of SR-
SIM over wide-field, shifting the curve leftward by just a
few kbp. Possibly, the sensitivity cannot be improved much
by SMLM because not much additional information is re-
vealed by further narrowing the PSF.

Moreover, note that there was a rather large variation in
sensitivity across the different species, as can be seen from
the shaded areas in Figure 2C and E. The shaded areas are
circumscribed by the 25th and the 75th percentile of the sen-
sitivity values obtained for the set of 10 different species.
This variation seems to be mainly due to the variation in la-
beling density across species. Both species with high label-
ing density (�Ch1 and Bcep781) showed the highest sen-
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Figure 2. (A) Examples of experimental microscopy images of bacteriophage lambda and T7 DNA fragments, obtained in wide-field (blue) and by SR-SIM
(green). The corresponding fluorescence intensity traces are shown at the top. The traces are placed at the location of the genome found by maximizing
the cross-correlation as described in the ‘Materials and Methods’ section. The black vertical lines below the traces indicate the expected dye positions
(i.e. the locations of the recognition sequence in the full genome). (B) Assignation matrices for 10000 simulated DNA fragments drawn from the full
genome of 10 different bacteriophage species and matched to the same 10 species. Significance threshold α1 = 0.001. Different methods for collecting
the DNA fragment measurements are compared. From left to right: Unstretched DNA fragments imaged by wide-field microscopy; Overstretched DNA
fragments (stretching factor 1.75) imaged by wide-field microscopy; Overstretched DNA fragments (stretching factor 1.75) imaged by SR-SIM microscopy;
Overstretched DNA fragments (stretching factor 1.75) imaged by localization microscopy. See Supplementary Section S3.3, for more detailed versions of
the assignation matrices. (C) Simulated data: Bacteriophage identification sensitivity as a function of simulated DNA fragment length (). Solid lines indicate
the median sensitivity over all the 10 species. The shaded areas are circumscribed by the 25th and the 75th percentile of the sensitivity values obtained for
the set of 10 different species. (D) Experimental data: Identification sensitivity as a function of DNA fragment length (α1 = 0.001). (E) Simulated data:
Identification sensitivity as a function of simulated DNA fragment length (α1 = 0.05). (F) Simulated data: False matching rate as a function of simulated
DNA fragment length (α1 = 0.001). The shaded areas are circumscribed by the 25th and the 75th percentile of the false matching rate values obtained for
the set of 10 different species. (G) Experimental data: False matching rate as a function of DNA fragment length (α1 = 0.001). (H) Simulated data: False
matching rate as a function of simulated DNA fragment length (α1 = 0.05).
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sitivity in matching, while species with low labeling den-
sity (ASCC191 and LP-110) showed the lowest sensitivity
in matching. This dependence of the matching sensitivity
on labeling density is most likely due to the ratio between
false labels and real labels, as we kept the false-label rate (the
number of false labels per kbp) constant in our simulations.
Under this condition, DNA optical maps proceeding from
genomes with low recognition site density tend to be charac-
terized by a reduced number of fluorescent labels and, there-
fore, to be less specific than those belonging to species whose
recognition site density is higher (for a given map length and
a given enzymatic labeling efficiency). It is then reasonable
to think that variations like false labels affect the assigna-
tion accuracy more for the former than for the latter. And
this constitutes a natural drawback intrinsic to the nature of
the specific genetic material at hand. The most immediate
solution to overcome such a limitation is to guarantee for
all the microbial species under study a sufficiently high en-
zymatic labeling efficiency such that all the analyzed DNA
optical maps contain information as specific as possible for
a reliable and, possibly, unique assignation. This is evident
from Supplementary Figure S13, which suggests that a min-
imal labeling efficiency of 70% was needed for achieving a
good matching sensitivity with overstretched DNA images
collected by wide-field microscopy. As for fragment length,
an increase in resolution also relaxes this requirement to
∼60%.

To confirm these effects experimentally we imaged over-
stretched DNA fragments from bacteriophage T7 and
lambda using a SIM microscope, which allowed us to obtain
both wide-field and SR-SIM images for each DNA frag-
ment (see ‘Materials and Methods’ section). The resolution
improvement is apparent from the experimental data shown
in Figure 2A, where wide-field and SR-SIM data are shown
side-by-side. We assessed the resolution improvement ex-
perimentally to be close to 2 (see Supplementary Section
S2.3). Our experiments showed similar improvements in
sensitivity in the experimental data (Figure 2D) as we have
seen in the simulated data. Moreover, to investigate the ef-
fect of fragment length, the measured DNA maps were cut
to various lengths in silico. Again, we observed that increas-
ing the resolution lowered the requirement on the DNA size
for both lambda and T7.

A higher sensitivity can also be achieved artificially by
raising the significance threshold (Figure 2E). However, this
improvement comes at the cost of a higher false matching
rate (i.e. the number of significant matches to the wrong
species, Figure 2H). In contrast, the increased sensitivity
obtained by improving resolution does not suffer from this
trade-off: the false matching rate is rather independent from
resolution. This observation is valid both for strict (α1 =
0.001 – Figure 2F and G) and less strict (α1 = 0.05 – Fig-
ure 2H) significance thresholds. Notice that the significance
threshold can anyway be tuned in order to achieve the
best compromise between assignation sensitivity and false
matching rate by performing DNA optical mapping exper-
iments encompassing known microbial species and utiliz-
ing tools like receiver operating characteristic (ROC) curves
(36).

If we consider these results in the context of using
DNA mapping as a tool for identification of microbiome

species, it is important to realize that besides sensitivity,
the throughput of the method is crucial as well. Because
a large number of species is involved in the microbiome, it
is important to gather enough data to allow their reliable
identification. Typical sequencing approaches yield around
one million reads (37). If the same quantity of optical map-
ping reads is required (i.e. one million DNA maps), then
the acquisition time for a single field-of-view on the micro-
scope (containing typically 100 individual DNA fragments)
should take at most a few seconds to realistically acquire
enough images in one day. Such acquisition speeds are at-
tainable with the SR-SIM and wide-field analysis, but not
with SMLM. Although SMLM achieves the highest sensi-
tivity, the image acquisition and analysis are orders of mag-
nitude slower compared to wide-field and SR-SIM.

Improving specificity by resampling the highest significant
matching score

By expanding the set of 10 bacteriophage species to in-
clude 2 species closely related to lambda (having 82 and 69%
sequence similarity to lambda, respectively) and 2 species
closely related to Stx 1 (having 95% and 85% sequence sim-
ilarity to Stx 1, respectively), we observed that while an im-
proved resolution still increases the overall identification
sensitivity, the false positive rate (i.e. 1-specificity) also in-
creases for the closely related species (see Supplementary
Figure S12). Figure 3A shows how closely related the added
species are. For a detailed overview of the expanded set of
14 species, see Supplementary Table S2.

The assignation matrix for simulated overstretched SR-
SIM data in Figure 3B illustrates that, while the sensitiv-
ity of the method is high, many false positives are observed
within the two sets of closely related species. Therefore, we
developed a method to extend the benefits of improved reso-
lution to closely related species as well. Lowering the signif-
icance threshold does not solve this issue, as the improved
specificity comes at the cost of reduced sensitivity. An alter-
native approach to improve the specificity of our method,
without sacrificing sensitivity, would be to directly compare
the matching scores found to be statistically significant by
the matching significance test. Ideally, the highest of these
matching scores reflects the true positive match. However,
because of imperfect enzymatic labeling, the observed score
may be lower than in ideal conditions and could vary from
case to case. Because of this, closely related species with
similar sequences might show very similar matching scores.
Therefore, we can think of assigning only to species whose
matching score is significantly higher than the others. Ide-
ally, we would like to know how large the spread on the
highest matching score due to the labeling uncertainty is.
Knowing the spread, we could then test which matching
scores are significantly lower than the highest one and re-
ject them.

To incorporate the effect of an imperfect labeling effi-
ciency, we emulated the spread on the highest matching
score by randomly removing two chosen labels from the
corresponding expected DNA map, and re-calculating the
matching score (as illustrated in Figure 3D). Repeating this
procedure many times yielded a distribution for the high-
est significant matching score. We then tested which of
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Figure 3. The resampling step improves specificity. (A) Phylogenetic tree of the selected bacteriophages, constructed from the pairwise Jukes-Cantor
distance between their sequences. (B) Assignation matrix showing matching percentages yielded by the matching significance test for 1000 simulated wide-
field data traces per ground truth species. Significance threshold α1 = 0.001. Note how the regions of confusion between species correspond to short
sequence distances in panel (A). (C) Assignation matrix showing matching percentages yielded by the matching significance test and the resampling step
for the same data traces as in panel (B). Significance threshold α1 = α2 = 0.001. Note the reduced confusion in the regions of short sequence distances.
(D) Schematic representation of the resampling step. Intensity trace of a measured lambda DNA molecule (green) overlaid with the ideal trace of the
same molecule (blue). Underlying dye locations are indicated by black vertical lines. The resampling of the ideal trace is performed by randomly removing
two dye locations (red vertical lines) from the matching region (gray box). Two examples of resampled ideal traces are shown (orange and purple). (E)
Schematic representation showing the distributions of the maximum cross-correlation scores yielded by the matching significance test and the resampling
step, respectively. Experimental data for one measured lambda DNA molecule. The scores for the expected DNA traces are shown by colored dots. The
greyscale distributions refer to the randomized scores used for the matching significance test. Red dots indicate nonsignificant scores (p1 ≥ α1). The green
and purple dots indicate significant scores (p1 < α1). The highest score was found for the tested species HK630 whose ideal trace is therefore resampled
within the matching region (green distribution). The score for the tested species lambda was found to be reasonably drawn from the green distribution. The
additional match to HK629 can be safely ruled out since its score falls significantly outside the green distribution. The algorithm therefore assigns the DNA
map to HK630 and lambda at the same time. (F, gray bars) Results of the matching of 142 lambda DNA molecules, yielded by the matching significance
test (experimental data, SR-SIM microscopy, α1 = 0.001). The dotted line indicates the total amount of DNA maps concerned. (F, red bars) Results of
the matching of the same molecules, yielded by additionally applying the resampling step (α2 = 0.001). (G, gray bars) Results of the matching of 87 T7
DNA molecules, yielded by the matching significance test (experimental data, SR-SIM microscopy, α1 = 0.001). The dotted line indicates the total amount
of DNA maps concerned. (G, red bars) Results of the matching of the same molecules yielded by additionally applying the resampling step (α2 = 0.001).
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the other species yielded matching scores that were signif-
icantly lower and could therefore be rejected (Figure 3E).
The method is described in more detail in the ‘Materials
and Methods’ section. In principle, this second computa-
tional stage might encompass more rigorous computational
steps for the estimation of the uncertainty associated to the
global cross-correlation function maximum. Nevertheless,
defining an accurate null-model accounting for all the dif-
ferent physico-chemical phenomena involved in the gener-
ation of a DNA optical map is not straightforward when
real-world case-studies are dealt with. Sample heterogeneity
and variability are factors that are not easy to control and
their effect on the nature and quality of the collected data
is considerable and difficult to forecast or infer a priori in
complex biological scenarios. In such situations, more elab-
orated algorithmic methodologies could easily return un-
reliable outcomes, especially if their single underlying op-
erations are not exact or are affected by an intrinsic bias
resulting from an ill-conditioned theoretical description of
the investigated system. This was the rationale behind the
way the second level of the presented data analysis tech-
nique was conceived: the use of a simpler, more immediate
and purely data-driven approach, which may guarantee a
sufficient robustness toward the influence of the aforemen-
tioned factors. The reported simulated and experimental ex-
amples clearly show the great potential of such a proposal
in this sense. Furthermore, the selection of the number of
fluorescent labels to remove at each resampling iteration is
not crucial from a practical point of view. In fact, the second
empirical test of the implemented strategy simply provides a
refinement of the assignation results yielded by the first one
and is nested to them. That is to say that, if the estimation
of the uncertainty on the global cross-correlation function
maximum does not lead to a reduced assignation ambigu-
ity, the output proceeding from the first step of the statis-
tical workflow (which is anyway meaningful from the iden-
tification point of view) will be retained. All this renders a
remarkably good compromise between computational com-
plexity and efficiency and microbial species differentiation
accuracy.

Figure 3E illustrates this procedure on experimental data
taken from a lambda DNA molecule imaged by SR-SIM.
In this example, significant matching scores are found for
three closely related species: lambda, HK 630 and HK629.
The highest matching score is found for the (wrong) species
HK630. Resampling the highest matching score and test-
ing which scores are significantly lower allows rejecting the
match to HK629, but not to lambda. Hence, the resam-
pling procedure has improved specificity by rejecting one
false positive, without rejecting the true positive (lambda).

Our method for the identification of imaged DNA
molecules now consists of two steps. First, a matching sig-
nificance test is performed on the matching scores and
all non-significant matches are rejected. Second, in the re-
sampling step, all significant matches with matching scores
lower than the highest significant one are rejected. As can
be seen from the results for the simulated overstretched SR-
SIM data in Figure 3C, applying the resampling step clearly
improved specificity, while having only a minor effect on
sensitivity. We observed the same improvement in experi-

mental data from bacteriophages lambda (Figure 3F) and
T7 (Figure 3G).

One might wonder whether it is necessary to perform the
initial matching significance test at all if the resampling step
allows distinguishing between species on its own. Indeed, if
the reference database of tested species contains all possi-
ble species present in the sample, this approach would yield
the same results. However, if no matching score significance
test is carried out, the resampling step will always return at
least the species with the highest matching score. Thus, if the
sample under study contains species that are not present in
the reference database, measured maps from such unknown
species will always be assigned to wrong species. The match-
ing score significance test is therefore required to eliminate
false matches for unknown species. Considering the lack of
assembled genomes for a lot of species in the microbiome
(colloquially known as the dark matter of the microbiome),
it is necessary to perform a significance test before compar-
ing matching scores.

Simulated identification of bacterium-sized genomes

To investigate if the identification performance varies when
the reference species have a much longer genome (a bacte-
rial genome, for example, is about 2 orders of magnitude
larger than the one of a bacteriophage), we created artifi-
cially large genomes in silico by inserting the sequence of
a bacteriophage (lambda and T7) in the middle of the se-
quence of a bacterial genome (Bacteroides thetaiotaomicron
VPI-5482) having similar labeling density (lambda: 2.5/kb,
T7: 2.8/kb, bacteroides: 2.8/kb). Next, we used our ex-
perimental SR-SIM data for lambda and T7 DNA frag-
ments and matched them to the artificial bacteria, as well
as to the bacterium without the inserted phage DNA. We
also matched to two other bacteria as a control: Lacto-
bacillus Reuteri and Escherichia Coli (strain K-12 substrain
MG1655). After performing the matching significance test,
we found that matching sensitivity to the artificial bac-
terium was lower than to the phage itself (both for phages
lambda and T7, as shown in Figure 4A and B). We were able
to bring the sensitivity for the artificial bacteria back toward
the level of phages by implementing a local normalization
on the expected maps before the calculation of the cross-
correlation function. The rationale behind the local normal-
ization was that local regions of high labeling density bias
the cross-correlation to high values, causing false matches.
However, these false matches did not pass the matching sig-
nificance test, since the reshuffled bacterial genomes also
contained random regions of high local labeling density,
which yielded high randomized matching scores. By locally
centering and standardizing the expected DNA maps in a 5-
kb window, high cross-correlation values in high local den-
sity regions were avoided. With local normalization, match-
ing to the artificial bacteria performed similarly as when
matching to the phages themselves, as shown in Figure 4C
and D.

The case of V. Harveyi

In order to prove the usefulness and suitability of the pro-
posed methodology for the assessment of more complex bi-
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Figure 4. Identification of bacteria simulated by using experimental bac-
teriophage data recorded with SR-SIM. Results of the matching of bac-
teriophage T7 and lambda DNA molecules to phage and artificial bac-
terial genomes, yielded by matching significance testing (α1 = 0.001). (A)
Ground truth species: T7, no local normalization. (B) Ground truth
species: lambda, no local normalization. (C) Ground truth species: T7,
5kb-window local normalization. (D) Ground truth species: lambda, 5kb-
window local normalization.

ological samples, 601 optical maps of V. Harveyi DNA were
recorded based on the experimental procedure described in
the ‘Materials and Methods’ section and analyzed by the
developed algorithm.

V. Harveyi can be regarded as a naturally ‘calibrated’ bio-
logical system. Every V. Harveyi cell, in fact, contains DNA
constituted by two single chromosomes (chromosome #1:
accession number CP000789.1, size 3.77 Mb – chromosome
2: accession number CP000790.1, size 2.20 Mb) and a vary-
ing amount of plasmids (accession number CP000791.1,
size 0.09). As the ratio of occurrence of these two chro-
mosomes does not change across cells, its expected value
can be easily estimated as the ratio of their size, which is
equal to 3.77Mb

2.20 Mb = 1.71. Assuming that the imaged optical
maps cover more or less homogeneously this full genome
and considering the fact that the M.TaqI labeling density
inside both chromosomes is approximately the same (4.489
sites/kb for chromosome #1 and 4.654 sites/kb for chromo-
some #2), the ratio between their relative abundance yielded
by the two consecutive algorithmic steps of our assigna-
tion strategy should also match 1.71. Figure 5 confirms this
point: the calculated ratio between the relative abundance
of chromosome #1 (0.59) and chromosome #2 (0.35) equals

Figure 5. (A) Schematic representation of the genetic content of V. Har-
veyi. (B) Abundance of chromosome #1 (accession number CP000789.1),
chromosome #2 (accession number CP000790.1) and plasmids (accession
number CP000791.1) relative to the total amount of assigned optical maps
sampled from V. Harveyi DNA (α1 = 0.05, α2 = 0.001, 5 kb-window lo-
cal normalization). The results reflect the expected occurrence of the three
different constituents.

1.69, which is closely in agreement with the theoretical ex-
pectation. This example shows that the identification proce-
dure described in this article represents a powerful tool that
might aid the resolution of mixtures of sequenced species
characterized by single DNA molecule fluorescence optical
mapping. Given the higher level of noise observed in this
particular case-study, α1 and α2 were here set to 0.05 and
0.001, respectively. A 5 kb-window local normalization was
also carried out.

CONCLUSIONS

In this article, we proposed an improved method for iden-
tifying microbial species based on single-molecule double-
stranded DNA maps. We based ourselves on intensity pro-
files extracted from microscopy images. These intensity pro-
files can be compared to a reference sequence by generat-
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ing an expected map and cross-correlating it with the mea-
sured map. More specifically, we first subject the retrieved
alignment to a matching significance test, where we calcu-
late an empirical p-value for the alignment. We showed, for
this matching significance test, how an increase in resolu-
tion, both through super-resolution microscopy and over-
stretching, improved identification sensitivity. This means
many of the false assignations are filtered out. However, it
does not remove assignation ambiguity for closely related
species. For this reason, we have developed a second al-
gorithmic step, where we resample the highest significant
matching score by generating variations of the expected
map with missing labels (i.e. mimicking lower labeling ef-
ficiency). This resampling step assigns the map to a sin-
gle species if its matching score is significantly higher than
the significant matching scores for other species. Impor-
tantly, the method we proposed for species identification is
independent from the tool used to extract the DNA maps
and could easily be applied to other datatypes such as cur-
rent traces through a nanopore. Finally, we showed that,
with the addition of a local normalization procedure, this
method can also be extended to the identification of bac-
terial species. As an alternative for resampling the theoret-
ical traces, one could also generate surrogates of the ac-
quired intensity profiles using the Fourier phase random-
ization method that preserves the correlation structure of
the empirical data (38). Recent extensions of this method to
graph structures (39) could also be considered if additional
information about local stretching is available.

It is fundamental to notice that testing the statistical
significance of the matching score allows the whole pro-
posed approach to be robust against biased definitions of
the database of reference species. This is a clear advantage
over just assigning these fragments to the species for which
a maximum matching score is found as it reduces the impact
of false positives on the final outcomes. Since currently not
all microbial species are sequenced, unknowns are to be ex-
pected in real world scenarios. Therefore, not assigning a
DNA map will be important when matching experimental
maps against a sub-database containing only species of in-
terest (since matching against all known species would be
computationally very demanding). Such scenarios will oc-
cur frequently when studying the change of composition of
a few species in a highly heterogeneous system such as the
gut microbiome. For all these reasons and considering the
possibility our proposal offers of easily recognizing com-
mon genomic subsequences shared by multiple species, we
believe this novel methodology can be particularly suitable
for handling even very complex real case-studies.

Finally, when creating an abundance profile of the mi-
crobiome, high sample throughput is critical for acquiring
enough data. Localization microscopy is known for requir-
ing a lot of time for a single image, whereas SR-SIM is a
lot faster, property which makes it a more realistic imag-
ing tool for obtaining enough DNA maps. A second im-
portant element is the analysis of the DNA maps. Analysis
of shotgun metagenomic reads from microbiome samples
is typically very challenging from a computational point of
view due to the large quantities of data involved (37). This
issue also applies to optical mapping and the method pre-
sented here: all measured DNA maps need to be aligned

to the expected DNA maps for all target species. Neverthe-
less, the selection of the reference DNA sequences is actu-
ally not a critical step. The algorithmic procedure proposed
here, in fact, performs a separate test for every single species
under study in the attempt of assessing whether a particu-
lar DNA map belongs to its corresponding genome or not.
This way, one can easily reduce the database constructed
for identification purposes so as to encompass only few mi-
croorganisms of interest while guaranteeing high robust-
ness against optical maps proceeding from unknown species
(which, as specified before, ideally would not be assigned).
This would dramatically decrease the computational load
and cost in real-world scenarios characterized by the pres-
ence of unsequenced/partially sequenced genomes and ex-
treme complexity and heterogeneity (e.g. gut microbiome
mapping) without jeopardizing the identification quality
and minimizing the number of false assignations. More-
over, alignment of DNA maps by cross-correlation can
be implemented very efficiently by converting the signals
into the Fourier domain. Due to the convolution theorem,
the cross-correlation estimation becomes, indeed, a compu-
tationally cheaper multiplication. Moreover, the database
of expected DNA maps for all target species needs to be
Fourier-transformed only once, after which it can be re-
used for each alignment. As an example, a single cross-
correlation alignment against a 6.3 Mbp bacterium (Bac-
teroides thetaiotaomicron VPI-5482) took 86 ms, whereas
a dynamic programming alignment took 3.3 seconds (see
Supplementary Figure S17 for more details), almost a 40-
fold increase. Additionally, cross-correlation analysis gener-
ated more correct significant matches compared to dynamic
programming (see Supplementary Figure S16).

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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