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Resting-state functional connectivity studies with fMRI showed that the brain is intrinsically organized into
large-scale functional networks for which the hemodynamic signature is stable for about 10 s. Spatial
analyses of the topography of the spontaneous EEG also show discrete epochs of stable global brain states
(so-called microstates), but they remain quasi-stationary for only about 100 ms. In order to test the
relationship between the rapidly fluctuating EEG-defined microstates and the slowly oscillating fMRI-
defined resting states, we recorded 64-channel EEG in the scanner while subjects were at rest with their eyes
closed. Conventional EEG-microstate analysis determined the typical four EEG topographies that dominated
across all subjects. The convolution of the time course of these maps with the hemodynamic response
function allowed to fit a linear model to the fMRI BOLD responses and revealed four distinct distributed
networks. These networks were spatially correlated with four of the resting-state networks (RSNs) that were
found by the conventional fMRI group-level independent component analysis (ICA). These RSNs have
previously been attributed to phonological processing, visual imagery, attention reorientation, and subjective
interoceptive–autonomic processing. We found no EEG-correlate of the default mode network. Thus, the four
typical microstates of the spontaneous EEG seem to represent the neurophysiological correlate of four of the
RSNs and show that they are fluctuating much more rapidly than fMRI alone suggests.

© 2010 Elsevier Inc. All rights reserved.

Introduction

Functional connectivity of the resting brain, i.e. coherent sponta-
neous fluctuations of the blood-oxygen-level dependent (BOLD)
response, has been identified in a wide range of functional large-
scale cortical networks, the so-called resting-state networks (RSNs).
Such connectivity is conventionally assessed by correlating the low-
frequency portion of the BOLD signal in a seed region with the rest of
the brain (Biswal et al., 1995; Fox et al., 2005, 2006; Seeley et al., 2007;
Taylor et al., 2009b). More recently, Independent Component Analysis
(ICA) has become a widely used tool to analyze resting-state fMRI
data. ICA is a blind source separation method that allows unmixing
the unknown sources that constitute a signal such that these sources
aremaximally independent andwithout the need of prior information
of the sources. It has been used to decompose the fMRI signal at rest
into its constituents that are both temporally and spatially indepen-
dent (Beckmann et al., 2005; Calhoun et al., 2008; Damoiseaux et al.,
2006; Mantini et al., 2007; McKeown and Sejnowski, 1998).

Resting-state functional connectivity has been identified for e.g.
the motor system (Biswal et al., 1995), the language system
(Hampson et al., 2002), executive control and saliency processing
(Seeley et al., 2007), the dorsal and ventral attention systems (Fox
et al., 2006) and a network implied in processing interoceptive
information with emotional salience (Taylor et al., 2009a). The
hemodynamic footprint is well investigated, but the underlying
electrophysiological signature remains a matter of debate (Laufs
et al., 2003; Leopold et al., 2003; Mantini et al., 2007; Nir et al., 2008;
Tyvaert et al., 2008).

The most puzzling aspect of resting-state functional connectivity
is its slow dynamics: coherent hemodynamic fluctuations are
observed in the low frequencies (b0.1 Hz) of the BOLD signal. The
RSNs are temporally and spatially anti-correlated, and a given RSN
dominates for about 10 s (Fox et al., 2005). However, such long
durations of stable functional networks are hardly compatible with
the fast fluctuations of momentary cognitive thoughts that require
reorganization of different spatial patterns of coordination in a sub-
second time scale (Bressler, 1995; Bressler and Tognoli, 2006).
Electrophysiological recordings of brain activity with EEG or MEG
confirm these rapid dynamics by showing fast fluctuations of local
and global neuronal oscillations at rest. The obvious question is
whether and how the slow (b0.1 Hz) BOLD fluctuations are related to
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the fast neuronal oscillations (1–80 Hz) seen in the EEG. Several
studies directly probed the relation between EEG oscillations and
BOLD activity at rest by measuring the EEG in the scanner and
correlating the time course of EEG frequency power with the BOLD
signal. They demonstrated significant correlations in brain regions
that partly corresponded to some of the above described RSNs, albeit
with somewhat heterogeneous results (Goldman et al., 2002; Jann et
al., 2009; Laufs et al., 2003; Tyvaert et al., 2008). In a recent study, six
RSNs were identified by means of ICA and post-hoc correlated to the
power time course in the EEG frequency bands (Mantini et al., 2007).
None of the resting-state networks could be linked to the power in
one single frequency band but rather to profiles of EEG power in
different frequency bands. Taken together, the rather complex
relations between EEG oscillations and RSNs can be explained by
two factors: First, neither single neurons (Llinas, 1988) nor larger
networks (Buzsaki and Draguhn, 2004; Steriade, 2001) oscillate
exclusively at narrow frequency bands. Second, activity in the same
frequency band can be generated by different physiological mechan-
isms in different brain areas and can have different behavioral
correlates (Bollimunta et al., 2008; Young and McNaughton, 2009).
Finally, the tight phase-amplitude coupling between different EEG
frequency bands (Canolty et al., 2006; Lakatos et al., 2005; Schroeder
and Lakatos, 2009a) reflects a complex oscillatory hierarchy of the
EEG (Schroeder and Lakatos, 2009b) which makes it difficult to
distinguish the contribution of one band alone.

The EEG scalp topography is a much more direct measure of the
momentary global state of the brain than the frequency power over a
certain scalp area. It represents the summation of all concurrently
active sources in the brain irrespective of their frequency (Koenig et
al., 2002; Lehmann and Skrandies, 1980, 1984; Wackermann et al.,
1993). Moreover, the EEG scalp topography remains quasi-stable for
periods of about 80–120 ms; such stability is not found in amplitude
and power modulations at the single electrodes. During these periods
of quasi-stability, the topography remains fixed, while polarity can
invert; such inversions are driven by the dominant generator
oscillation. Interestingly, the scalp topographies observed at rest can
be clustered into a limited number of map classes with prototypical
configurations. Even more surprisingly, typically not more than four
topographies are persistently identified across the entire life span
(Koenig et al., 2002; Strik and Lehmann, 1993; Wackermann et al.,
1993). These periods of stable EEG topography are referred to as EEG
microstates (Katayama et al., 2007; Lehmann, 1990; Lehmann et al.,
2009; Wackermann et al., 1993).

EEGmicrostates can influence cognition and perception (Britz et al.,
2009; Mohr et al., 2005) and characterize qualitative aspects of
spontaneous thoughts (Lehmann et al., 1998), which indicates that
they index different types of mental processes. They can be thought of
representing the “building blocks of cognition” or “atoms of thought”
that underlie spontaneous conscious cognitive activity (Koenig et al.,
2005; Lehmann et al., 1998, 2009). Since such task-independentmental
operations might also generate the spontaneously fluctuating BOLD
signal of the RSNs (Raichle and Snyder, 2007), it is logical to assume a
direct link between EEG microstates and BOLD fluctuations at rest.

We hypothesized that RSN dynamics are much more rapid than
previously assumed based on analyses of the fMRI signal alone, and
that the EEG microstates are their electrophysiological signature. We
concurrently recorded EEG and fMRI while subjects were resting in
the scanner with their eyes closed. We identified the most dominant
EEG microstates indexed by their scalp topography and used their
time course to predict the BOLD signal. Our aim was to use a purely
neural signal for the subsequent fMRI analysis which a) represents
global brain activity independent of frequency b) has a high temporal
resolution and that c) is of non-hemodynamic nature. In order to
compare the BOLD-networks revealed by the EEG-microstate-
informed fMRI analysis with the conventional RSN analysis based on
fMRI only, we used group ICA to identify the independent sources that

constitute the fMRI data. We then computed the spatial correlation of
the activation maps obtained by the two methods to confirm the
similarity of the RSNs.

Methods

Subjects and procedure

Nine healthy right-handed individuals participated for monetary
compensation after giving informed consent approved by the
University Hospital of Geneva Ethics Committee. None suffered from
current or prior neurological or psychiatric impairments or claustro-
phobia.Mean age of participantswas 28.37 years (range 24–33 years).

Subjects were lying in the scanner with their eyes closed. They
were instructed to move as little as possible and to refrain from
falling asleep, and three sessions of 5 minwere recorded. Subsequent
self-report and inspection of sleep pattern of the EEG led to the
exclusion of one subject. The data of eight subjects were submitted to
further analysis.

Simultaneous EEG/fMRI recording

The EEG was recorded from 64 sintered Ag/AgCl ring electrodes
mounted in an elastic cap (EasyCaps, Falk Minnow Services, Herrsch-
ing, Germany) and arranged in an extended 10–10 System. Electrodes
were equipped with an additional 5 kΩ in series-resistor, and
impedances were kept below 15 kΩ. The EEG was acquired with a
band-pass filter between 0.1 Hz and 250 Hz and digitized at 5 kHz,
referenced online to FCz using a non-magnetic MRI-compatible EEG
system (BrainAmp MR plus, Brainproducts, Munich, Germany). The
ECGwas recorded from a bilateralmontage above and below the heart
from sintered Ag/AgCl electrodes with an additional 15 kΩ resistor
and digitized like the scalp EEG using a BrainAmp ExG MR amplifier.
The EEG amplifier along with a rechargeable power pack was placed
ca. 15 cm outside the bore. The amplified and digitized EEG signal was
transmitted to the recording computer placed outside the scanner
room via fiber optic cables.

Anatomical and functional imaging was acquired using a 3 T-whole
body scanner (Siemens Magnetom Trio TIM, Erlangen, Germany)
equipped with a standard birdcage headcoil. A magnetization prepared
rapid acquisition gradient-echo sequence was employed to acquire
high-resolution T1-weighted structural images (TR/TE/TI=2500 ms/
3 ms/1100 ms, flip angle=3°, thickness=0.9 mm, acquisition matrix
256×240, in-plane resolution=0.89×0.89 mm2). Functional volumes,
comprising 25 slices (thickness=5 mm+0.5 mm gap) parallel to the
AC–PC line, were obtained using a multislice gradient-echo planar
imaging (EPI) sequence (TR/TE=1500 ms/35 ms, flip angle=90°,
acquisition matrix 64×64, in-plane resolution 3.75×3.75 mm2,
FOV=240×240 mm). In total 3 runs were performed, each consisting
of 200 volumes, yielding a total of 600 functional volumes. Slice
acquisition was performed continuously in order to facilitate off-line
gradient artifact correction of the EEG.

EEG data processing

In a first step, the gradient artifacts were removed using a sliding
average (Allen et al., 2000) of 21 averages and subsequently, the EEG
was downsampled to 500 Hz and low-pass filtered with an IIR filter
with a cut-off frequency of 70 Hz. Subsequently, the ballistocardio-
gram (BCG) artifact was removed by first using a sliding average
procedurewith 11 averages (Allen et al., 1998) and then applying ICA
in order to remove residual BCG along with oculo-motor compo-
nents. The so-cleaned EEG was then band-pass filtered between 1
and 40 Hz and further downsampled to 125 Hz, and the maxima of
the Global Field Power (GFP) were determined. Since topography
remains stable around peaks of the GFP, they are the best
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representative of themomentary map topography in terms of signal-
to-noise ratio (Koenig et al., 2002). Allmapsmarked as GFP peaks (i.e.
the voltage values at all electrodes at that time point) were extracted
and submitted to a modified spatial cluster analysis using the
Atomize-Agglomerate Hierarchical (AAHC) clustering method (Tib-
shirani and Walther, 2005) in order to identify the most dominant
map topographies (Britz et al., 2009). The optimal number of
template maps was determined by means of a cross-validation
criterion (Pascual-Marqui et al., 1995). The cross-validation criterion
is a measure about the residual variance, and it identifies the best
solution to a cluster analysis. In other words, the cross-validation
criterion identified the minimal number of template maps that
explain the maximal variance. We made no a-priori assumptions on
the number of clusters or on the minimum of explained variance,
because we wanted our analysis to be strictly data-driven.

We then submitted the template maps identified in every single
subject into a second AAHC cluster analysis to identify the dominant
clusters across all subjects. Finally, we computed a spatial correlation
between the templates identified at the group level with those
identified for each subject in every run. We so labeled each individual
map with the group template it best corresponded to in order to use
the same labels for the subsequent group analysis. We will use the
terms “scalp map” and “topography” interchangeably throughout the
manuscript to refer to the topographical configuration of the
momentary EEG scalp potential field and “template map” to refer to
template maps identified in the cluster analysis.

We computed the spatial correlation between the EEG and each of
the templatemaps, i.e. for each templatemapwe obtained ameasure of
how well it explained the topography of the EEG at every moment in
time (Murray et al., 2008). This yielded the time course of the
microstates. In order to assure that none of the microstates reflected
the ballistocardiogram,we computed the correlation of the timecourses
of the microstates and the ECG for each run of each subject. In every
single run, there was no correlation between the time courses of the
microstates and the ECG. These spatial correlation time courses were
then used for subsequent fMRI data analysis.

In order to investigate whether the identified topographies might
be related to activity in different frequency bands, we performed
time-frequency analysis (S-Transform) for the delta (1–4 Hz), theta
(4–8 Hz), alpha (8–14 Hz), beta (14–20 Hz), and gamma (20–40 Hz)
frequency bands and calculated the average power across all
channels at each moment in time for the five frequency bands. We
then computed the cross-correlation matrix (Pearson's R) between
the time courses of frequency power and the time courses of the
spatial correlations of each template map. This yielded (i) how
strongly the time courses of the momentary scalp topographies, (ii)
the power in the five frequency bands and (iii) the time courses of the
momentary scalp topographies and the frequency powers correlate
with each other.

FMRI data processing

Spatial pre-processing and GLM analysis
Image pre-processing and statistical analyses were performed

using the SPM5 software (Wellcome Department of Imaging
Neuroscience, London, UK). First, all functional volumes were
spatially realigned to the first volume, normalized into MNI space
(Montreal Neurological Institute, resampled voxel size: 2×2×2 mm)
by using cubic B-spline interpolation, and smoothed using an isotropic
Gaussian spatial kernel of FWHM=6mm. Since subjects moved less
than 0.2 mm and less than 0.001°, we refrained from including motion
parameter estimates from the realignment procedure.

For statistical analysis, the design matrix of the general linear
model (GLM) was set up with custom regressors that modeled the
BOLD responses associated to each microstate map. The spatial
correlation time courses of each microstate map were convolved with
SPM's canonical HRF. The convolutionwas performed on the EEG time
resolution and subsequently sampled at the fMRI acquisition time-
points. In other words, we build a model of how each template map
could explain the BOLD fMRI activations in each subject. (See
Supplementary Fig. 1 for an illustration of the procedure for the
construction of the regressors.) The GLM modeling included a high-
pass filter with cut-off of 1/128 Hz in order to remove low-frequency
components due to scanner drifts and serial correlation was modeled
by the autoregressive model of order 1. The analysis was performed
for the individual subjects and also at the group level by a multi-
subject GLM where we matched the regressors of the corresponding
maps of the individuals. Statistical maps were obtained using t-tests
and corrected for multiple comparisons using false discovery rate
(FDR) at p=0.05. We also performed single-subject GLM analysis (t-
test, corrected, FDR at p=0.05) to test for the presence of the maps at
the individual level.

Group-ICA analysis
We used group spatial ICA (Calhoun et al., 2001) to decompose the

data into independent components using the GIFT toolbox (http://
icatb.sourceforge.net/). We estimated the number of components to
be 20, and applied ICA to the group data in the following way: we
concatenated all three sessions of all eight subjects and used PCA to
reduce the data set to 20 temporal dimensions followed by an
estimation of the independent components using the infomax
algorithm (Bell and Sejnowski, 1995).

Each IC represents an idiosyncratic pattern of activity with its
particular time course that is maximally independent of the other ICs.
Their spatial maps represent the intensity with which the
corresponding waveform is expressed at each voxel. We scaled the
intensities at each voxel to z-scores (D'Argembeau et al., 2005), and
those voxels exhibiting z-scores greater than 1.5 were considered as
IC-active voxels (Mantini et al., 2007). Positive z-scores indicate BOLD
modulations with the same time course than the IC waveform, and
negative z-scores indicate BOLD modulations with opposite time
courses than the IC waveform.

Comparison of GLM- and group ICA analyses
To assess spatial correlation between the activation maps

identified by EEG-informed GLM analysis and ICA, we computed
the normalized spatial correlation coefficients after additional
smoothing using 8 mm FWHM Gaussian kernel. We then deployed
a wavelet statistical resampling method (Patel et al., 2006) to
determine the threshold of significant correlation for a given GLM
contrast by generating a large number of surrogate volumes that
maintain the spatial autocorrelation structure of the original
data and by comparing the observed correlation against the
maximum one for surrogates. Using n=399 surrogate volumes for
each GLM map results in a false positive error rate of p=0.05,
corrected for multiple comparisons (20 per map), the corresponding
thresholds are r=0.25, 0.30, 0.41, and 0.30, for each map,
respectively.

Anatomical localization of the statistical results
Results of the statistical analyses were overlaid on the MNI152

average T1 weighted template available in SPM5. Their anatom-
ical localizations were determined using the WFU pickatlas
plugin for SPM5 (http://fmri.wfubmc.edu/cms/software)

Fig. 1. EEG template maps identified in every subject and each run. The cluster analysis identified four template maps as the best solution of the cluster analysis in every subject in
each run. The maps are displayed with the left hemifield on the left and the nose on top.
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(Maldjian et al., 2003) as well as the Talairach Demon (Lancaster
et al., 2000).

Results

EEG

Identification of the four prototypical EEG microstates
We identified microstates by their map topography. We applied a

cluster analysis to the artifact-corrected EEG and used a cross-
validation criterion to determine the most dominant topographies.
Four template maps yielded the optimal number of clusters in each
run for each subject and across all subjects; they explained on average
66.16% (STD=8.1%, min=49%, max=81%) of the overall variance. In
the second cluster analysis across all subjects, the cross-validation
criterion identified again four templates as the best solution which
explained 78% of the variance. Spatial correlation between these
templates identified at the group level and those identified at the
individual subject level revealed that each template could be
identified in each subject in each run. The results of this analysis are
displayed in Fig. 1. For further details on their Global Explained
Variance and Frequency of Occurrence, see Supplementary Tables 1
and 2. The four microstate maps have strikingly similar topographies
across subjects and resemble those described in previous studies
(Koenig et al., 2002; Lehmann et al., 2009; Wackermann et al., 1993).
Map 1 has a left posterior–right anterior orientation, Map 2 has a right
posterior–left anterior orientation, Map 3 has an anterior–posterior
orientation andMap 4 has a central maximum. None of themapswere
correlated with cardiac activity (see Supplementary Fig. 3).

Fig. 2a shows the time course of the spatial correlations for two
microstate maps in one representative subject. The figure confirms
the notion of microstates: the time courses are largely anti-correlated,
and one map is dominant during a certain time in the sub-second
range, interrupted by short transition periods.

Microstates are independent of EEG frequency power
The occurrence of the microstate maps is independent from the

power in the five major EEG frequency bands (Fig. 3): we found no
correlations between the time courses of the occurrence of map
topographies and power in the five EEG frequency bands (mean
correlation=0.021, range−0.006 to0.112).Moreover, the timecourses
of map occurrences were also not correlated between each other
(mean=0.094, range −0.357 to 0.375) unlike those of the EEG

frequency bands, which showed a positive correlation throughout
(mean=0.448, range 0.314–0.695), this pattern was found in each
subject (Supplementary Fig. 2).

fMRI

Results of the GLM analysis
We derived regressors for the BOLD estimation by convolving the

time course of the spatial correlation coefficients for each template
map with the canonical HRF. Fig. 2b displays the time course of the
convolved signal for Microstate Maps 1 and 2 in one subject. It
indicates that also at this slower time scale, temporal anti-correlations
between the microstate-informed regressors remain.

Fig. 4 displays the fMRI activations along with templates of the
microstate maps that were used for their estimation, and foci of
activations are summarized in Supplementary Table 3. RSN 1
identified by Map 1 explains a widespread cluster of activations
primarily in bilateral superior and middle temporal gyri as well as the
left middle frontal gyrus (Fig. 4a). RSN 2 identified by Map 2 explains
bilateral activation restricted to bilateral occipital areas in bilateral
inferior occipital gyri, bilateral cuneus and the left lingual and middle

Fig. 2. Scale invariance in the time course of EEG and fMRI signals. a) Time course of the spatial correlation coefficients of MS1 andMS2 in a randomly chosen time interval of 500 ms
for one subject; the signals are strongly anti-correlated. b) Time course of the EEG signal after convolution with the HRF for all 200 TRs; the same anti-correlation of time courses is
preserved after the convolution, i.e. temporal low-pass filtering.

Fig. 3. Correlation matrix of the time courses of the spatial correlation coefficients of the
microstate maps and the power in the 5 EEG frequency bands. Power time courses in
the EEG frequency bands are positively correlated. Time courses of microstate maps are
partly negatively and partly positively correlated. Microstates and frequencies are not
correlated.
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occipital gyrus (Fig. 4b). RSN 3 identified by Map 3 explains bilateral
activations in the anterior cingulate cortex and the cingulate gyrus
medially and left inferior frontal gyrus and left claustrum as well as
the right inferior frontal gyrus and right amygdala (Fig. 4c). RSN 4
identified by Map 4 explains activation in a dorsal network that is
primarily right-lateralized and which encompasses the right superior
and middle frontal gyrus as well as the right superior and inferior
parietal lobules (Fig. 4d). The respective glass brain views are
depicted in Supplementary Fig. 4.

These networks were also found by the statistical analysis at the
single-subject level, however, not every network was statistically
significant in every individual, indicating that the group-level
statistics were not driven by a single individual.

Results of the group ICA analysis
Out of the 20 estimated independent components (ICs), five

represented noise with activations in the ventricles and at the edges.
The remaining 15 ICs corresponded to those previously identified
(Beckmann et al., 2005; Calhoun et al., 2008; Damoiseaux et al., 2006;
Mantini et al., 2007). Four ICs were found that each correlates
significantly with one of the EEG-informed GLM estimations (Fig. 4):
one IC encompassing bilateral temporal areas and primary visual
areas correlated with the network corresponding to Map 1 (r=0.38)
(Fig. 4a), one IC encompassing bilateral lateral extrastriate visual
areas correlated with the network corresponding to Map 2 (r=0.58)
(Fig. 4b), one IC encompassing the ACC and bilateral inferior frontal
areas correlated with the network corresponding to Map 3 (r=0.44)
(Fig. 4c), and the IC encompassing right-lateralized frontal and
parietal areas correlated with the network corresponding to Map 4
(r=0.47) (Fig. 4d). Furthermore, one IC was found to represent the
DMN (Fig. 4e). However, no EEG map was correlated with this DMN
ICA component.

Discussion

We hypothesized that RSN dynamics are much faster than
hemodynamic fluctuations alone suggest and that the EEG micro-
states are their electrophysiological signature. We used the time
course of the EEG microstates indexed by their scalp topography to
analyze spontaneous activity in BOLD fMRI. The time course of EEG
microstates is of non-hemodynamic origin and a direct measure-
ment of all concurrent synchronized post-synaptic neural activity
independent of frequency and is sampled at its original high
temporal resolution. The cluster analysis of the EEG topography
recorded in the scanner revealed the repeatedly described four
dominant map topographies that explained close to 70% of the
variance in the data (Koenig et al., 2002; Strik and Lehmann, 1993;
Wackermann et al., 1993), the so-called EEG microstates. They were
identified as the best solution of the cluster analysis without any a-
priori assumptions on the number of clusters or on the minimum of
explained variance. The four microstates were de-correlated in time
and temporally discontinuous and could be parsed into periods of
around 100 ms during which always one of them dominated. These
observations are fully in line with the EEG-microstate model
(Lehmann et al., 2009), and demonstrate that these microstates
can be identified in the EEG recorded in the scanner. The
convolution of the time course of each microstate map with the
hemodynamic response function revealed highly significant distinct

networks of activation. The correlation of these BOLD maps with the
networks identified by the independent component analysis of the
fMRI revealed one distinct correlating IC map for each microstate-
derived BOLD map.

RSN 1 identified byMicrostate Map 1 was correlated with negative
BOLD activations primarily in bilateral superior and middle temporal
gyri, areas that are implicated in phonological processing. It was
spatially correlated best with an IC which shows negative BOLD
activation in the same temporal areas and additionally in primary
visual areas. Very similar networks were identified bymeans of ICA by
Mantini et al. (2007), (RSN 4) and Damoiseaux et al. (2006), (RSN ‘G’)
and were interpreted as reflecting phonological processing. RSN 2
identified by Microstate Map 2 was correlated with negative BOLD in
bilateral extrastriate visual areas, BA18 and BA19. It was best
correlated with an IC that likewise shows negative BOLD signal in
the same extrastriate visual areas. This was previously identified as
the visual network RSN 3 in Mantini et al. (2007) and ‘E’ in
Damoiseaux et al. (2006).

RSN 3 identified by Microstate Map 3 was correlated with positive
BOLD activations in the posterior part of the anterior cingulate cortex
as well as bilateral inferior frontal gyri, the right anterior insula and
the left claustrum. It was best correlated with an IC that shows
positive BOLD in the ACC and bilateral inferior frontal gyri as well as
the insula. It roughly corresponds to RSN 6 in Mantini et al. (2007).
The fronto-insular cortex has been found to be part of the saliency-
network (Fox et al., 2006; Seeley et al., 2007) and to play a critical role
in switching between central-executive function and the default
mode (Sridharan et al., 2008). We only find activity in the anterior
part of the right insula which has been recently found to be
functionally connected to the posterior anterior cingulate cortex and
anteriormiddle cingulate cortex at rest. This connectivity is thought to
integrate interoceptive information with emotional salience to form a
subjective representation of the own body (Taylor et al., 2009a).

RSN 4 identified byMicrostate Map 4 was correlated with negative
BOLD signal in right-lateralized dorsal and ventral areas of frontal and
parietal cortex. It was correlated with an IC showing negative BOLD in
virtually the same frontal and parietal areas. This corresponds to the
RSN 2 network in Mantini et al. (2007) and RSN ‘C’ in Damoiseaux et
al. (2006). Ventral fronto-parietal areas subserve reflexive aspects of
attention such as detecting behaviorally relevant stimuli while more
dorsal areas in fronto-parietal cortex are involved in switching and
reorientation of attention (Corbetta and Shulman, 2002).

The neuronal activity reflected by each of these four maps has its
idiosyncratic hemodynamic counterpart, i.e. the EEG microstates
reflect BOLD signal changes in distinct networks. Previous attempts to
relate these networks to activity in the power of discrete EEG
frequency bands showed no distinct relation to one single frequency
(Mantini et al., 2007). This is confirmed by our comparison of the
microstate time coursewith the time course of the different frequency
bands using time-frequency analysis. No correlation was found
between the microstates and the different frequency bands, while
the different frequency bands correlated among each other. The tight
phase-amplitude coupling between the different EEG frequency
bands probably underlies these correlations (Schroeder and Lakatos,
2009a,b). These and our results indicate that EEG frequency oscilla-
tions are not the electrophysiological signature for the fMRI-defined
resting states. The EEG microstates seem to show much more distinct
correlations with the fMRI resting states.

Fig. 4. EEG template maps identified at the group level and BOLD activations revealed by GLM and ICA. a) Microstate 1 group-level template map, BOLD activations revealed by GLM
regression of its time course and the corresponding correlated IC spatial map were located in bilateral temporal areas. b) Microstate 2 group-level template map, BOLD activations
revealed by GLM regression of its time course and correlated IC spatial map were located in bilateral extrastriate visual areas. c) Microstate 3 group-level template map, BOLD
activations revealed by GLM regression of its time course and correlated IC spatial map were located in the ACC and bilateral inferior frontal areas. d) Microstate 4 group-level
template map, BOLD activations revealed by GLM regression of its time course and correlated IC spatial map were located in right superior and middle frontal gyri as well as the right
superior and inferior parietal lobules. e) IC revealed for the DMN.

1168 J. Britz et al. / NeuroImage 52 (2010) 1162–1170



In is important to note that the sign of the BOLD contrasts revealed
by the GLM analysis and in the ICA is always the same: RSNs 1, 2 and 4
show negative BOLD contrasts and RSN 3 shows a positive BOLD
contrast. Likewise, the ICs they were best correlated with also showed
z-scores with the same sign. However, negative BOLD does not
necessarily mean de-activation relative to a baseline or decreased
neuronal activity which is due to the complex neuron–vascular
coupling (Logothetis et al., 2001). Epileptic spikes which unequivo-
cally represent an increase in synchronized neuronal activity can
likewise be associated with positive and negative BOLD in the locus of
the epileptic focus (Gotman, 2008; Vulliemoz et al., 2009).

The rapid dynamics of the EEG microstates and the fact that their
relative temporal correlation is not abolished by the convolution with
the HRF indicate that the underlying dynamics of RSNs is much faster
than analysis of the fMRI signal alone suggests. Moreover, this
measure of momentary overall brain activity varies at a high
frequency and is still meaningful after convolution with the HRF.
Without the presence of long-range dependencies in the microstate
occurrences, convolution with the HRF that acts as a strong temporal
smoothing filter would remove any information-carrying signal. The
fact that it shows the same relative behavior at time scales that are
two orders of magnitude apart is indicative of potentially underlying
scale invariance in the time course of microstate presence.

This fast sub-second dynamics of the resting-state networks is
intuitively more compatible with the idea of rapidly changing
spontaneous cognitive operations. Large-scale networks link groups
of neurons in separate cortical areas into functional entities, thereby
mediating complex mental activities (Bressler, 1995; Fuster, 2006;
Seeley et al., 2009). These large-scale neuronal networks have to grant
both stability and plasticity and therefore have to flexibly and rapidly
change depending on the momentary cognitive process (Bressler,
1995; Bressler and Tognoli, 2006; Grossberg, 2000). It is therefore
required that they reorganize in different spatial patterns of
coordination on a sub-second time scale. While this demand is
obvious when the brain processes external information, it is
reasonable to assume that this fast rearrangement of large-scale
neurocognitive networks also takes place during spontaneous mental
activity, i.e. during stimulus-independent thoughts.

The large-scale neurocognitive networks might correspond to the
proposed “neuronal workspace” that consists of a distributed set of
cortical neurons that form a discrete spatiotemporal pattern of
activity (Baars, 1997; Dehaene and Naccache, 2001). The neuronal
workspace model proposes that episodes of coherent activity last for
100 ms and that are separated by sharp transitions. Only one such
workspace representation is active at any given time (Baars, 2002;
Dehaene et al., 2003). The segmentation of the EEG into microstates
fits this global workspace model. The EEG microstates are a candidate
electrophysiological correlate for the process of global integration of
local processes at the brain-scale level, which ultimately leads to
conscious thought (Changeux and Michel, 2004). It suggests that
conscious cognitive processing occurs through a stream of discrete
units or epochs rather than as a continuous flow of neuronal activity,
i.e. that mental activity evolves through a sequence of quasi-stable
coordination states (Fingelkurts and Fingelkurts, 2006; Grossberg,
2000).

The regressors derived from the EEG microstates identified four
RSNs that were identified previously, but not the DMN. We identified
the DMN by ICA, but we did not identify its neurophysiological
signature. Two distinct ideas prevail about the functional significance
of intrinsic brain activity (Raichle and Snyder, 2007), i.e. activity at
rest in the absence of stimuli and tasks: the notion of stimulus-
independent thoughts (Mason et al., 2007) and that of a more
fundamental property of intrinsic brain functional organization. Our
data suggest that the microstates reflect stimulus-independent
thoughts and the default mode a more fundamental property of
intrinsic brain organization. The former is supported by the idea that

subjects inevitably engage in some kind of unconstrained cognitive
activity while being scanned at rest but awake; the kinds of ‘mental
operations’ are reflected in the nature of the functional networks
identified with the EEG-informed regressors: visual, phonological,
introspection and reorienting attention. The latter is supported by the
fact that the main nodes of the DMN are already present at birth
(Fransson et al., 2007) and that they form the main nodes of the
structural core of the cerebral cortex (Hagmann et al., 2008).
Moreover, the DMN can also be identified in sleep and coma (Boly
et al., 2008) and the anesthetized monkey (Vincent et al., 2007).

Taken together, our results suggest that large-scale networks can
be segregated at rest bymeans of EEGmicrostates. The time courses of
the microstates correlate with BOLD activation in distinct distributed
networks. The signal used to construct the regressors for BOLD
estimation is of purely neuronal and non-hemodynamic origin. It is
sampled at a high temporal resolution and is still meaningful after
convolving it with the HRF, which serves as a massive temporal filter.
This study is the first that has distinguished four different networks,
with a regressor derived from a purely neurophysiological signal
sampled with a high temporal resolution. The nature of the regressor
suggests that these networks alternate faster than conventional
resting-state connectivity analyses alone imply.
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