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A B S T R A C T

Component analysis is a powerful tool to identify dominant patterns of interactions in multivariate datasets. In the
context of fMRI data, methods such as principal component analysis or independent component analysis have
been used to identify the brain networks shaping functional connectivity (FC). Importantly, these approaches are
static in the sense that they ignore the temporal information contained in fMRI time series. Therefore, the cor-
responding components provide a static characterization of FC. Building upon recent findings suggesting that FC
dynamics encode richer information about brain functional organization, we use a dynamic extension of
component analysis to identify dynamic modes (DMs) of fMRI time series. We demonstrate the feasibility and
relevance of this approach using resting-state and motor-task fMRI data of 730 healthy subjects of the Human
Connectome Project (HCP). In resting-state, dominant DMs have strong resemblance with classical resting-state
networks, with an additional temporal characterization of the networks in terms of oscillatory periods and
damping times. In motor-task conditions, dominant DMs reveal interactions between several brain areas,
including but not limited to the posterior parietal cortex and primary motor areas, that are not found with
classical activation maps. Finally, we identify two canonical components linking the temporal properties of the
resting-state DMs with 158 behavioral and demographic HCP measures. Altogether, these findings illustrate the
benefits of the proposed dynamic component analysis framework, making it a promising tool to characterize the
spatio-temporal organization of brain activity.
1. Introduction

The human brain exhibits a spatio-temporal organization of activity
when performing a task (Rissman et al., 2004; Jiang et al., 2004; Gaz-
zaley et al., 2004) and during resting-state (Greicius et al., 2003; Dam-
oiseaux et al., 2006; Smith et al., 2013b). Characterizing the nature of
interactions between different brain regions can be done via functional
connectivity (FC) analyses of fMRI time series (Friston, 2011). FC is
classically estimated within frameworks that ignore the temporal infor-
mation that might be present in fMRI time series. The corresponding
measures are called static because they are averaged over the entire fMRI
time series and they neglect the ordering of fMRI time points (Theiler
et al., 1992; Li�egeois et al., 2017). Static measures of FC include Pearson
correlation (Biswal et al., 1995; Buckner et al., 2009; Zalesky et al., 2010;
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Power et al., 2011; Yeo et al., 2011; Margulies et al., 2016), partial
correlation (Fransson and Marrelec, 2008; Ryali et al., 2012), or mutual
information (Chai et al., 2009), computed over entire fMRI time series. In
the past years, converging evidence has suggested the presence of in-
formation beyond static FC and new frameworks exploiting this addi-
tional information have been proposed (Hutchison et al., 2013a; Preti
et al., 2017). For example, sliding window correlation approaches
explore the time-varying nature of FC (Hutchison et al., 2013b; Leonardi
et al., 2013; Allen et al., 2014; Wang et al., 2016). Another way to extend
the static FC framework is to include information encoded in the tem-
poral ordering of time series, or precedence information, that was shown
to be of particular relevance to describe fMRI dynamics (Roebroeck et al.,
2011; Karahano�glu and Ville, 2017). Measures exploiting precedence
information include those using temporal derivatives (Shine et al., 2015;
STAR-NUS Clinical Imaging Research Centre, Singapore Institute for Neuro-
pore.
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Karahano�glu and Van De Ville, 2015; Bolton et al., 2018) or autore-
gressive parameters (e.g., Rogers et al., 2010) of fMRI time series. The
latter extension of the static framework leads to dynamic measures of FC
and the former may also be referred to as dynamic FC, or time-varying FC
to avoid confusion (Li�egeois et al., 2017).

In order to extract the most neurologically relevant information
from FC measures, different approaches have been proposed. Among
them, component analysis frameworks such as principal component
analysis (PCA) (Viviani et al., 2005; Zhong et al., 2009), independent
component analysis (Calhoun et al., 2009; Varoquaux et al., 2010;
Smith et al., 2012), sparse PCA (Ulfarsson and Solo, 2007; Eavani et al.,
2015) or constrained PCA (Hirayama et al., 2016) have been applied to
identify the main patterns of interactions in fMRI time series. The
identified components are interpreted as the main networks shaping
brain connectivity, such as the default mode network, the visual
network, or the motor network (Van Den Heuvel and Pol, 2010;
Moussa et al., 2012). It is important to note that in these frameworks,
components are identified from a static representation of the data. For
example, principal components are the eigenvectors of the correlation
(or covariance) matrix of the entire fMRI time series and can therefore
be considered as static (Jolliffe, 1986). Based on this, and in the same
way new FC measures were proposed to explore the time-varying na-
ture of FC as well as its dynamic properties (Hutchison et al., 2013a;
Preti et al., 2017), one could investigate the time-varying and the
dynamic extensions of component analysis. The former can be ach-
ieved by applying a classical component analysis within a sliding
window setting (Kiviniemi et al., 2011; Leonardi et al., 2013). The
latter consists in exploiting the links between successive time points of
time series in order to identify the main oscillatory modes driving their
dynamics. Several methods, originally developed to characterize the
spatio-temporal organization of climate systems, have been proposed
to this end: principal oscillatory patterns (Penland, 1989; Bürger,
1993; von Storch et al., 1995), principal interaction patterns (Hassel-
mann, 1988), or more recently dynamic mode decomposition (Schmid,
2010). These methods are based on a first-order autoregressive (AR-1)
representation of time series, and dynamic modes (DMs) are obtained by
decomposing the AR-1 model matrix identified from the time series
(see Methods). Since they are computed from a dynamic generative
model, DMs not only have a spatial characterization, as in classical
component analysis, but they also have a temporal characterization.
More precisely, each DM is associated with a damping time and a
period that provide further information about the dynamics of the
main patterns of connectivity present in the data (Neumaier and
Schneider, 2001).

The use of AR models to explore the multivariate interactions within
fMRI time series dates back to more than a decade (Harrison et al., 2003;
Valdes-Sosa, 2004; Vald�es-Sosa et al., 2005; Rogers et al., 2010). The
optimal order of these models decreases with the number of ROIs, and
was in general found to be one in whole brain analyses considering more
than a hundred ROIs (Valdes-Sosa, 2004; Ting et al., 2015). More
recently, the AR-1 model was also shown to be a promising representa-
tion of FC dynamics (Li�egeois et al., 2017). Therefore, we propose to
explore the spatio-temporal organization of fMRI data using a dynamic
extension of component analysis based on the AR-1 model of fMRI time
series (Neumaier and Schneider, 2001). We start by illustrating the
benefits of this approach over classical static component analysis on a toy
example. Then, using resting-state and motor-task fMRI data of 730
healthy subjects of the Human Connectome Project (Van Essen et al.,
2013), we compute the dominant DMs in resting-state and motor-task
fMRI time series. Finally, using canonical correlation analysis (CCA),
we explore the link between 158 HCP behavioral and demographic
measures and the temporal properties of the resting-state DMs. Overall,
our results complement previous findings using classical static methods,
offering a new way to explore the spatio-temporal organization of brain
function in rest and during task.
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2. Methods

2.1. Data

We used data of the HCP 1200-subjects release comprising resting-
state functional MRI, task functional MRI, and behavioral measures of
young (ages 22–35) and healthy participants drawn from a population of
siblings (Van Essen et al., 2013). All imaging data were acquired on a 3-T
Siemens Skyra scanner using a multi-band sequence. Functional images
have a temporal resolution of 0.72 s and a 2-mm isotropic spatial reso-
lution. For each subject, four 14.4min runs (1200 frames) of functional
time series were acquired (Smith et al., 2013a). Resting-state fMRI data
was projected to the fs_LR surface space using the multimodal surface
matching method (MSM-All; Robinson et al., 2013; Van Essen et al.,
2013). Data were cleaned using the ICA-FIX method (Salimi-Khorshidi
et al., 2014; Griffanti et al., 2014), saved in CIFTI grayordinate format,
and no bandpass filtering was performed. Linear trends andmean cortical
grayordinate signal were regressed. fMRI time series were parcellated
into NR ¼ 400 cortical regions of interest (ROIs) (Schaefer et al., 2017),
demeaned and normalized ROI-wise. Finally, for consistency reasons we
selected the NS ¼ 730 subjects with four complete runs.

The HCP experimental protocol for the motor task was adapted from
Buckner and colleagues (Buckner et al., 2011; Yeo et al., 2011). The
motor-task fMRI data consisted of two 3.5min (284 frames) runs per
subject. Participants were presented with a visual cue, prompting them to
perform one of the five motor tasks: squeeze left or right toes, tap left or
right fingers, move tongue. Each task was performed twice within each
run, with task block durations of 12 s preceded by a 3 s cue. We applied
the same preprocessing as for resting-state fMRI time series, including a
parcellation into 400 cortical areas (Schaefer et al., 2017), ROI-wise
demeaning and normalization. The dynamic modes specific to each
motor task were computed from sections of the time series: we selected
only the last 6 s of each task block in order to consider the portion of the
block where the hemodynamic response for the cued task is maximal,
while also allowing a refractory period for the hemodynamic response of
the previous task block (Buxton et al., 2004). Our results were repro-
duced for other choices of the fMRI time series subsections selected for
each task (Fig. S4).

Among the set of 458 HCP subject measures (SMs), we selected the
158 behavioral and demographic measures of most interest following
Smith and colleagues (Smith et al., 2015). The list of SMs is reported in
Table S1.
2.2. Estimation of dynamic modes

We identify dynamic modes from the AR-1 representation of time
series (Neumaier and Schneider, 2001):

xt ¼ A � xt�1 þ εt8t 2 ½2;…; T �; (1)

where xt 2 R NR�1 represents the fMRI time series at time t, A 2 R NR�NR

is the model parameter that encodes the linear relationship between
successive time points, εt 2 R NR�1 are the residuals of the model, and T is
the number of time points. We used a first-order AR model because this
order was found to be optimal for all subjects (Fig. S5), in line with
previous findings (Valdes-Sosa, 2004; Ting et al., 2015). The model
parameter A is computed by solving the following least-squares problem:

min
A

XT
t¼2

kxt � A � xt�1k2; (2)

whose optimal solution is A ¼ XY 0 ðYY 0 Þ�1
where X ¼ ½x2;…; xT � and Y ¼

½x1;…; xT�1� (Stoica and Moses, 2005). For subject-level computations,
time series of different runs are concatenated and points corresponding to
transitions between runs are removed from X and Y, e.g., if data from
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runs R1 and R2 are concatenated, the columns corresponding to xR21 and
xR1T are removed from X and Y, respectively. Note that this amounts to
assume that A is common to both runs R1 and R2, and then solve the

following optimization problem: min
A

�P
t¼2

T ����x1;t � A � x1;t�1
����2 þ

P
t¼2

T ��x2;t � A � x2;t�1
��2� where x1;t and x2;t denote the data of runs R1 and

R2 at time t. Likewise, the group-level estimation of A, denoted AG, is
obtained by concatenating the time series of all runs and all subjects, and
points corresponding to transitions between different runs or different
subjects are removed from X and Y.

The eigendecomposition of A is defined as A ¼ SΛS�1 where the
columns of S, denoted Si, are the eigenvectors of A and the diagonal
matrix Λ encodes the corresponding eigenvalues, denoted λi. Since A is
not symmetric with real entries, S and Λ are in general complex with
complex entries coming in complex conjugate pairs: if λi is an eigenvalue
and Si an eigenvector of A, then their complex conjugates are also ei-
genvalues and eigenvectors of A. Using this decomposition of A, one can
reformulate the dynamic system (1) as a sum of linearly decoupled dy-
namic modes (DMs) (Neumaier and Schneider, 2001): each eigenvector of
A defines one DM and the associated eigenvalue λi provides its temporal
characterization in terms of its damping time (Δi) and period (Ti):

Δi ¼ �1
log jλij and Ti ¼ 2π

jarg λij: (3)

In summary, each DM is described by Si (spatial characterization),
and Δi and Ti (temporal characterization). If λi is complex or if it is real
and negative, its period Ti is bounded and the corresponding DM is
known as an oscillator of period Ti. If λi is real and positive, its period Ti is
infinite and the associated DM is a relaxator characterized by a damping
time Δi (von Storch et al., 1995; Neumaier and Schneider, 2001). The
modes are ordered by decreasing value of damping time Δi, meaning that
the least damped mode is assumed to be the most important one. For
complex modes, we show both the real and imaginary parts of Si and do
not show the corresponding redundant complex conjugate DM. In the
same way real eigenvectors are defined up to a change of sign, complex
eigenvectors are defined up to a random phase shift. To ensure unicity of
complex eigenvectors Si, we impose orthogonality between their real and
imaginary parts as detailed in Appendix A1 (see also Neumaier and
Schneider, 2001). Values of Δi and Ti are multiplied by the temporal
resolution of fMRI time series (0:72 sec) in order to express these quan-
tities in seconds.

While the meaning of the period associated to a DM is straightfor-
ward, the interpretation of its damping time might be more ambiguous.
As mentioned here above, the damping time is a measure of magnitude of
the corresponding DM. This is because if all the DMs are activated by an
input of similar amplitude, the ones with the longest damping times will
dominate the dynamics of the system in the long run (Neumaier and
Schneider, 2001). The damping time also reflects the amount of infor-
mation carried between successive timepoints within the corresponding
DM. In other words, we can expect that when DMs with long damping
times are activated (e.g., by an external input), they remain active for a
long time, possibly reflecting a longer or more complex processing of the
external input.

2.3. Matching modes across subjects

In our last experiment we explore whether the temporal character-
ization of resting-state DMs encodes subject-specific behavioral and de-
mographic information. However, subject-level DMs cannot be simply
organized to allow comparison across subjects as there is no natural
correspondence between DMs of different subjects. To circumvent this,
we imposed the spatial modes (Si) of each subject to be equal to the group
spatial modes. The temporal characteristics of these DMs in subject k are
computed from the solutions of the following least-squares optimization
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problem:

min
Dk

XT
t¼2

��xt � SDkS�1 � xt�1

��2 ¼ min
Dk

XT
t¼2

kxt � Ak � xt�1k2; (4)

where Dk is a diagonal matrix with entries to be optimized, S contains
the eigenvectors of the optimal AR-1 parameter AG, and Ak ¼ SDkS�1.
The difference between problem (4) and the unconstrained least-squares
problem (2) is that Ak is forced to share the same eigenvectors, or
diagonalization, as AG. In order to evaluate the impact of imposing the
eigenvectors of Ak, we computed the ratio ρ ¼ ð1=NSÞ �

PNS
k¼1

��Ak � Ak
��
F=����Ak

����
F where k � kF denotes the Frobenius norm and Ak is the uncon-

strained least-square AR-1 estimate of subject k.
We provide the closed form expression of the solution to problem (4)

in Appendix A2. From the optimal values of the entries of Di obtained
from Eq. (A10)-(A12), subject-specific damping times and periods of the
DMs sharing the same spatial properties as the group DMs are computed
using Eq. (3). In other words, for each subject we identify DMs that have
the same spatial characterization as the group-level modes, but that have
different damping times and periods. The dynamical properties of subject
i's resting-state DMs can be summarized by the damping times and pe-
riods of all its modes, resulting in a vector vk of length 2NR for each
subject, where NR is the number of ROIs, equal to the number of DMs
identified for each subject.
2.4. Linking dynamic modes to behavior

We explore the link between the dynamical properties of resting-state
DMs and the 158 HCP subject measures (SMs) using canonical correla-
tion analysis (CCA) (Hotelling, 1936). The dynamical properties of DMs
are encoded in the matrix V ¼ ½v1;…; vNS � of size 2NR � NS, where NS is
the number of subjects, and SMs are encoded in the matrix B of size 158�
NS. Age, gender and education were regressed from the SMs, and since
periods Ti may take infinite values we use the corresponding frequencies
fi ¼ 1=Ti as inputs to CCA. In order to avoid CCA overfitting, we first
applied PCA to both V and B, extracting the 36 first principal components
(PCs) of B and the 20 first PCs of V, thereby keeping the same proportion
of variance in both datasets: 97%. Our results are not significantly
affected by changes in these values. The resulting 20� NS and 36� NS

matrices were the inputs to the CCA framework. We evaluate the statis-
tical significance of the identified canonical modes by permutation
testing that preserves the family structure of the HCP dataset using the
hcp2blocks function of Winkler and colleagues (Winkler et al., 2015).

The different analyses carried in this work are summarized in Fig. 1.

3. Results

3.1. Dynamic modes vs. static components

In Fig. 2 we present a toy example illustrating the spatial and tem-
poral properties of the dynamic modes (DMs) of multivariate time series.

The toy example is composed of 5 variables -or regions of interest
(ROIs)- containing two networks associated to different periods of
oscillation. The first network, depicted in red in Fig. 2A, oscillates with a
period of 10 arbitrary units and is present in ROIs 1, 2 and 3 with ROIs 2
and 3 being dephased by π=7 with respect to ROI 1. The other network,
depicted in blue in Fig. 2A, oscillates with a period of 7 a.u. and is present
in ROIs 3 and 4, with a dephasing of π=4. The networks overlap in ROI 3
which hence consists of a sum of two noisy sine waves with periods 7 and
10, and ROI 5 is pure white gaussian noise. The details of the simulation
are found in Eq. (S1).

From these toy time series, we compute components -or modes-using
three methods: two classical static component analysis frameworks
(Fig. 2B) and the dynamic extension that is used in this work (Fig. 2C).
Principal Component Analysis (PCA) and Independent Component



Fig. 1. Summary of analyses carried in this work. Fig. 3 and 4 present the
dominant group-level DMs in resting-state and in task, and Fig. 5 presents the
results of the CCA analysis linking 158 behavioral and demographic HCP
measures to the temporal properties of the subject-level resting-state DMs. CCA:
Canonical Component Analysis. DMD: Dynamic Mode Decomposition. SMs:
Subject Measures.
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Analysis (ICA) identify five components that recover more or less accu-
rately the spatial organization of the two networks. In comparison, the
proposed framework extracts five DMs including two pairs of complex
conjugate DMs, thereby leading to the three unique DMs represented in
Fig. 2C. We first note that the spatial information recovered by the real
parts of the DMs almost perfectly matches the organization of the two
overlapping toy-networks. Then, the imaginary part of the DMs allows to
recover the correct dephasing between the variables of a same DM from
the ratio between its imaginary and real parts (Neumaier and Schneider,
2001): ROIs 2 and 3 of DM 1 are found to have a dephasing of π=7 with
respect to ROI 1 of the same mode, and ROI 4 of DM 2 a dephasing of π=4
with respect to ROI 3 of the same mode, as modeled in the toy example
(S1). Finally, the temporal properties of the DMs encode information
about their characteristic damping times and periods. The oscillatory
Fig. 2. Toy example illustrating the differences between classical component analysi
example consists of 5 variables representing activity in regions of interest (ROIs) as a
characteristic periods. The first network (red) is present in variables 1–3 and has a pe
3–4 with a period of 7 (a.u.). We included dephasing within networks, ROIs 2 and 3
being dephased by π=4 as compared to ROI 3 within the blue network. ROI 5 is whit
identified using Principal Component Analysis (PCA) and Independent Component
analysis identifies complex dynamic modes (DMs) that have a spatial and a temporal c
and imaginary (Im) parts separately. The real parts of the DMs accurately recover t
within the networks. The DMs also have a temporal characterization in terms of per
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periods of the first and second DMs are 9.97 a.u. and 7.00 a.u., which
almost exactly correspond to the true periods characterizing the two
toy-networks. The third mode has an infinite period, which is consistent
with the fact that white gaussian noise is not dominated by periodic
oscillations. It also has a low damping time suggesting a weak influence
between successive time points, as expected. On the contrary, the
damping times of the first two modes are relatively high since the
oscillatory behavior is not damped along the toy time series (Neumaier
and Schneider, 2001). We finally note that the generative model of this
toy example (Eq. (S1)) consists of sine functions which are not AR-1 time
series as they contain information beyond the first autocorrelation lag.
Hence recovering the correct toy-networks using the proposed dynamic
component analysis framework does not result from considering a toy
example fitting the framework's assumptions, but rather highlights the
relevance of exploiting the temporal information encoded in time series.

Overall, Fig. 2 shows the additional information carried by dynamic
modes as compared to classical static components such as independent or
principal components. First, the complex-valued DMs allow to encode
phase shifting information. Then, the associated eigenvalues provide a
temporal characterization of the modes in terms of damping times and
periods. These properties are not captured by classical components as
their generative model treats time series as a collection of observations
rather than as a succession of time points with a temporal structure
(Jolliffe, 1986; Li�egeois et al., 2017).
3.2. Dynamic modes in resting-state fMRI

We compute group-level dynamic modes using resting-state fMRI
data from 730 HCP subjects. The three dominant DMs, i.e. the ones with
the longest damping times, are shown in Fig. 3. In each DM, ROIs asso-
ciated with warm colors are anti-correlated with those associated with
cool colors.

The first mode displays two anti-correlated networks. The warm-
colored network overlaps with the default mode network (DMN),
including strong activations of the posterior cingulate cortex, the pre-
cuneus, and the ventromedial prefrontal cortex, as well as parts of the
superior temporal sulcus and the inferior parietal lobule. The network
s frameworks and their dynamic extension used in the present work. (A) The toy
function of time. ROIs are grouped into two overlapping networks based on their
riod of 10 (arbitrary units), and the second network (blue) is present in variables
being dephased by π=7 as compared to ROI 1 within the red network, and ROI 4
e gaussian noise. Details of the toy model are given in Eq. (S1). (B) Components
Analysis (ICA) on the toy time series. (C) A dynamic extension of component
haracterization. Only the first two DMs are complex, we represent their real (Re)
he two original networks and their imaginary parts allow to recover dephasing
iods (T) that are very close to the original values, and damping times (Δ).



Fig. 3. Dominant group-level resting-state dynamic modes. The first two modes are purely real and the third mode is complex. Modes oscillate with a characteristic
period T and decay with a characteristic damping time Δ. The weight of each ROI in the dynamic modes is indicated by the colorbar, cool colors ROIs being anti-
correlated with warm colors ROIs.

Fig. 4. Dominant group-level dynamic
modes in five motor-tasks: left foot, right
foot, left hand, right hand, and tongue. The
dominant mode is complex in each task, and
the real and imaginary parts are displayed
separately on the cortical surface map. Clas-
sical activation maps corresponding to these
tasks are represented in the bottom right
(adapted from Yeo et al. (2011), with
permission). Task-related activity classically
identified in activation maps seems to be
mostly encoded in the imaginary parts of the
DMs (arrows), indicating a dephasing of ac-
tivity with respect to the corresponding real
parts.

J. Casorso et al. NeuroImage 194 (2019) 42–54
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Fig. 5. Most positive and negative correlations between the subject measures (SMs) and the two canonical modes linking 158 behavioral measures and the temporal
characteristics of resting-state DMs. Full HCP headers corresponding to the SMs are found in Table S1.
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associated with cool colors overlaps with the task positive network (TPN)
with activations around the intraparietal sulcus, in the inferior temporal
gyrus, and in lateral parts of the prefrontal cortex (Fox et al., 2005;
Fransson, 2005; Yeo et al., 2011). This DM is found to be the one
dominating resting-state fMRI dynamics, with a characteristic damping
time of 7.27 s. The second DM shows activations in lateral subregions of
the DMN as well as in parts of the prefrontal cortex that were less or not
activated in the first DM. These ROIs are anti-correlated with the primary
visual area and the damping time of the DM is 5.87 s. The third DM is
complex-valued. The real part presents clear activations of the motor,
somatosensory, and primary visual areas, with anticorrelation to regions
of the lateral prefrontal cortex and the intraparietal sulcus. The imagi-
nary part of this DM indicates a dephasing of brain activity in the orbi-
tofrontal prefrontal cortex with respect to the areas activated in its real
part. Subsequent DMs are shown in Fig. S1.
3.3. Dynamic modes in task fMRI

The dominant DMs of fMRI time series acquired during five different
motor task experiments are shown in Fig. 4.

The five tasks involve moving left and right feet, left and right hands,
and the tongue. The real parts of the dominant modes are consistent
across tasks with the activation of the visual areas and the medial part of
the posterior parietal cortex. Activations corresponding to classical
activation maps of the tasks (Yeo et al., 2011; Barch et al., 2013) are
encoded in the imaginary parts of the DMs along the motor and so-
matosensory cortex. This suggests the presence of a dephasing between
specific task-related activity and the less specific activity observed in the
real parts of the five dominant DMs. The identification of the task-related
activity in the imaginary parts of the dominant DMs is robust to changes
of parameters, as illustrated in Fig. S4. The temporal properties of the
dominant DMs are similar in the five experiments, with a characteristic
damping time around 2.5 s and an oscillatory period on the order of 12 s.
The second DMs in each task are presented in Fig. S2.
3.4. Linking resting-state DM's temporal characteristics to behavior

In order to further explore the information carried by the temporal
properties of DMs, we perform a canonical correlation analysis (CCA)
between, on the one hand, the subject-specific loadings -from which
temporal characteristics are computed, seeMethods-of group-level spatial
47
modes, and on the other hand, 158 HCP behavioral and demographic
subject measures (SMs).

We find two statistically significant (p < 0:05) canonical modes
linking SMs and temporal characteristics of resting-state DMs with cor-
relations of r ¼ 0:71 and r ¼ 0:69. SMs that most positively or negatively
correlate with the two canonical modes are shown in Fig. 5. The exact
values of the correlations with the CCA modes as well as the full HCP
denominations are reported in Table S1.

4. Discussion

In this study, we propose a data-driven approach to identify dynamic
modes (DMs) in rest and task fMRI time series. In the same way new
methods have been recently developed to exploit the dynamic nature of
FC time series (Hutchison et al., 2013a; Preti et al., 2017), the proposed
framework can be seen as a dynamic extension of classical component
analysis, allowing to identify dynamic brain networks -or dynamic
modes-that offer a richer characterization of the main patterns shaping
brain activity.
4.1. Related methodological approaches

Various component analysis methods such as principal component
analysis (PCA) or independent component analysis (ICA) have been
applied to fMRI time series in order to identify the main interaction
patterns driving functional connectivity (FC) (Viviani et al., 2005;
Ulfarsson and Solo, 2007; Calhoun et al., 2009; Smith et al., 2012; Eavani
et al., 2015; Hirayama et al., 2016). Importantly, these component
analysis frameworks are static in the sense that they treat successive time
points of multivariate time series as independent observations. For
example, PCA relies on the eigendecomposition of the correlation matrix
of time series which is a static measure of FC (Jolliffe, 1986; Theiler et al.,
1992) and ICA uses static measures such as kurtosis to maximize
non-gaussianity of independent components (Hyvarinen et al., 2001). In
contrast, the proposed framework is based on a first-order multivariate
autoregressive (AR-1) model of fMRI time series which is dynamic
because it exploits the statistical link between successive time points
(Theiler et al., 1992). Building upon this key property, multivariate AR-1
models were shown to capture much more dynamic FC information as
compared to their static counterparts on which classical components
frameworks are based (Li�egeois et al., 2017). Component analysis
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frameworks were also used to provide representations of the data in
terms of temporal basis functions, thereby allowing to specifically explore
these properties (Park et al., 2018).

Recently, new methods were developed with the aim to exploit the
spatiotemporal structure of neuroimaging time series. For example,
quasi-periodic patterns are defined as sequences of images that most
often occur in functional time series (Thompson et al., 2014; Belloy et al.,
2018; Gutierrez-Barragan et al., 2018; Abbas et al., 2019). In this sense,
they can be seen as a spatiotemporal variant of co-activation patterns (Liu
et al., 2013) where the pattern is matched to specific timepoints. The
method is controlled by several user-defined parameters (e.g., the win-
dow length or the thresholds of pattern activations). DMD, from its side,
relies on a dynamic generativemodel that summarizes the time series in a
compact set of parameters.

Our approach should also be distinguished from the time-resolved
frameworks consisting in performing classical component analysis
within sliding windows (Kiviniemi et al., 2011; Leonardi et al., 2013).
Indeed, these methods exploit the sample variability of static measures
along time series to derive the temporal fluctuations of these measures;
i.e., within a window only static measures of connectivity are used. On
the contrary, our framework does not provide time-resolved information
and instead exploits the whole time series in order to provide the most
accurate estimates of the dynamical connectivity patterns shaping the
time series. This distinction is reminiscent of the distinction between
time-varying and dynamic measures of FC mentioned in the Introduction
and detailed in previous work (Li�egeois et al., 2017). For the same
reason, activation time series that can be associated to principal or in-
dependent components (e.g., Calhoun et al., 2009) are essentially
different from the proposed framework as they carry time-resolved in-
formation of static components.

As for principal components, DMs are most often ordered by
decreasing absolute value of the associated eigenvalues. In the context of
PCA, the eigenvalue carries information about the amount of variance of
the original data explained by a component (Jolliffe, 1986). In the case of
DMs, the absolute value of the associated eigenvalues finds an interpre-
tation in terms of damping time, which is why the DMs with highest
absolute eigenvalue; i.e., the ones with longest damping times, are
ranked first. The distribution of damping times of the first 100 DMs
Figure is shown in S6. Note that other ordering rules exploiting the
amplitude of the noise in the AR-1 model (1) have been proposed
(Neumaier and Schneider, 2001).

4.2. Dynamic modes in rest and task

The dominant resting-state DMs presented in Fig. 3 and Fig. S1 all
have connections with known resting-state networks and are reproduced
from single runs (Fig. S11). We also find that the number of DMs most
importantly contributing to brain dynamics is around 12 (Fig. S3), in line
with previous findings identifying around 10–20 principal brain net-
works (Yeo et al., 2011; Rosazza andMinati, 2011). The first resting-state
DM contains two anti-correlated networks: the default mode network
(DMN - warm colors in Fig. 3) and a set of ROIs (cool colors) overlapping,
but not exactly matching, with the task positive network (TPN) defined
by Fox and colleagues (Fox et al., 2005). Identifying the DMN in the least
damped DM might contribute to explain its robust identification in
resting-state fMRI data (Van Den Heuvel and Pol, 2010; Moussa et al.,
2012), as well as its central role in the macroscale cortical organization
(Margulies et al., 2016; Gu et al., 2017). The second DM shows strong
activations in lateral parts of the DMN that were not activated in the first
DM, with anti-correlation localized around the visual network. This
suggests that DMs 1 and 2 capture different sub-networks of the DMN and
might shed a new light into the complex organization of the DMN and its
interactions with other networks (Uddin et al., 2009; Raichle, 2015;
Karahano�glu and Van De Ville, 2015). The next DMs show activations in
the motor and somatosensory areas around the central sulcus (DMs 3 and
4), in the visual area (DMs 4 and 5) and in subregions of the DMN (DM 5),
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thereby also providing a characterization of the interactions between
known resting-state networks. Finding neurologically interpretable
dominant DMs suggests that the proposed decomposition and the cor-
responding ranking of DMs based on their damping times exploit
important features of fMRI time series. In comparison, independent
components of fMRI time series cannot be ranked and need to be clas-
sified as being of neurological origin or not (Tohka et al., 2008; Beck-
mann, 2012; Griffanti et al., 2017).

Atop of the spatial properties of resting-state DMs, each mode is also
associated with a damping time and a period. This temporal character-
ization of the modes is not directly available for static components as
they are not computed from a dynamic model of fMRI time series. The
utility of the spatial properties of resting-state DMs has been illustrated in
Figs. 3 and 4. We further discuss in a later subsection the use of their
associated temporal properties by linking them to demographic and
behavioral subject measures.

In task condition, the dominant DM is complex and shows activations
in the motor and somatosensory cortex that are dephased with the visual
area and the posterior parietal cortex (Fig. 4). The DMN is partially found
in the second task DM and seems decoupled from its anti-correlated
network found in the dominant resting-state DM. Unlike in the resting-
state, the DMN is not the dominant DM which is consistent with the
known decreased activity of the DMN during externally-oriented tasks
(Fox et al., 2005). Interestingly, some of the regions that were
anti-correlated with the DMN in resting-state DMs, such as the primary
visual area, are consistently activated in task DMs which suggests they
might play a key role in the transition between rest and task conditions.

4.3. Dephasing as a fingerprint of task-related activity

The activation maps of the five motor tasks considered in this work
have been studied previously, showing activations along the primary
motor and somatosensory cortex (Yeo et al., 2011; Barch et al., 2013).
The same ROIs are found to be active in the imaginary parts of the
dominant task DMs, together with activations in the visual cortex and in
the posterior parietal cortex encoded in the real parts of the DMs (Fig. 4).
The imaginary and real parts of a DM represent aspects of the mode that
share the same damping times and periods, but that are dephased by π=2
(von Storch and Zwiers, 1999; Neumaier and Schneider, 2001). Activa-
tions of the visual and posterior parietal cortices in the same DM as the
somatomotor cortex suggest that these areas are also involved in the
execution of the task. This might be explained by the known role of the
posterior parietal cortex as a sensorimotor interface transforming visual
information into motor commands (Andersen and Buneo, 2002; van Mier
et al., 2004; Buneo and Andersen, 2006; Dean et al., 2012). The
dephasing between the active areas of the real and imaginary parts of the
dominant DM could be due to latency differences of activations in these
ROIs, as previously found in a visuomotor task (Lin et al., 2013). A
change in the hemodynamic response function could also contribute to
this dephasing (Bellgowan et al., 2003; Handwerker et al., 2012; Orban
et al., 2015; Goelman et al., 2017) and delineating its exact causes would
require further examination, for example using multi-modal data (Lewis
et al., 2016).

Most studies use a general linear model to identify task-related acti-
vations (Yeo et al., 2011; De Guio et al., 2012; Barch et al., 2013; Kristo
et al., 2014). In the case of motor tasks such as the ones considered here,
this amounts to identifying task-related activity by comparing brain ac-
tivity at rest and during task. In contrast, the DMs presented in Fig. 4 and
Fig. S4 are computed only from the time series acquiredwhen performing
the task, and no comparisonwith a baseline condition is used. Recovering
the classical activationmaps of these tasks in the dominant DMs therefore
suggests that the proposed framework -and the associate ranking crite-
rion of the DMs-exploits relevant features of fMRI time series. This could
also explain why ROIs that are less directly related to the task execution,
and are therefore not found in classical activation maps, are found to be
active in the dominant DMs. Overall, dominant DMs showing strong



J. Casorso et al. NeuroImage 194 (2019) 42–54
dephasing across brain regions could be another element distinguishing
task from resting-state fMRI time series (Zhang et al., 2016), possibly
contributing to our understanding of the mechanisms associated with
various task conditions.

4.4. Behavioral counterparts of dynamic modes

The DMs have a spatial characterization, encoded in the eigenvectors
of the matrix A in model (1), and the corresponding eigenvalues provide
a temporal characterization of the DMs in terms of damping times and
periods (Eq. (3)). The previous analyses mainly explored the spatial
properties of the DMs. In Fig. 5, we test whether the temporal charac-
teristics of the DMs are linked to 158 HCP behavioral and demographic
subject measures (SMs) using CCA, and identify two significant CCA
modes. To this end we impose the subject-specific DMs to share the same
eigenvectors, i.e. the same spatial properties, as the group DMs, only
allowing for inter-subject variability of the corresponding temporal
properties. This is quite restrictive as individual network topography was
shown to be qualitatively different from group average estimates (Braga
and Buckner, 2017; Gordon et al., 2017; Kong et al., 2018). However, we
find that the distance between unconstrained and constrained estimates
of the subject-level AR-1 parameters is quite low (ρ ¼ 0:13� 0:08). We
also find that the subject-level ordering of the DMs closely follows the
group-level ordering (Fig. S9). Altogether, this suggests that imposing the
spatial properties of the DMs leads to reasonable approximations of the
subject-level DMs, while allowing to specifically explore the interpreta-
tion of their temporal properties in order to complement our previous
findings. A combined analysis linking SMs to both spatial and temporal
properties of DMs is left for future work, as detailed further.

We use the same SMs as Smith and colleagues (Smith et al., 2015) and
replicate their methodology step-by-step. Smith and colleagues found
one significant CCA mode relating a static measure of functional con-
nectivity and the SMs, we find two (Fig. 5). Interestingly, the three SMs
most positively correlated with our first CCA mode (Picture Vocabulary
Test, Delay Discounting and Oral Reading Recognition) are also strongly
positively correlated with Smith and colleagues' first CCA mode. Hence
these SMs are related to both static and dynamic aspects of functional
connectivity, which further evidences their links with brain functional
organization. The other SMs most strongly correlating with our first CCA
mode are different from Smith and colleagues’ and seem to draw a
distinction between measures related to a classical intelligence factor
(Spearman, 1904), which are positively correlated with the first CCA
mode, and measures closer to life satisfaction, which are negatively
correlated. The second CCA mode shows strongest correlations with SMs
such as the number of correct identification of various emotions, Fluid
Intelligence, Purpose of Life, Social Task Performance, and Positive
Affect which evaluates the level of pleasurable engagement including
happiness, joy, enthusiasm, and contentment (Van Essen et al., 2013). As
such, this CCA mode could be related to the concept of emotional intel-
ligence that refers to the cooperative combination of intelligence and
emotion (Salovey and Mayer, 1990; Roberts et al., 2001; Mayer et al.,
2008). This includes the ability to recognize emotions and use it to
enhance thoughts. Emotional intelligence was shown to be linked to
happiness (Furnham and Petrides, 2003), life satisfaction (Ciarrochi
et al., 2000) and quality of social relationships (Lopes et al., 2004) which
were all found to be strongly correlated to the second CCA mode. These
results offer a new perspective on the behavioral information encoded in
resting-state FC, complementing previous findings using classical (i.e.,
static) measures of brain functional organization.

4.5. Methodological limitations and future directions

Adding a dynamic dimension to the classically static component
analysis framework modifies the properties of the resulting components
that need to be interpreted accordingly (Neumaier and Schneider, 2001).
The features of DMs have been discussed along this study but some
49
interpretations in this application could be further investigated. For
example, Fig. S4 shows the dominant DMs computed from a subsection of
the fMRI time series used to compute the dominant DMs presented in
Fig. 4. The spatial distribution of the modes are very similar, with acti-
vations of the motor and somatosensory ROIs encoded in the imaginary
parts of the DMs, but the damping times and periods show substantial
differences in the two cases. In general, our experiments (not shown)
suggest that the period of the dominant DM increases with the length of
the time series used to perform the decomposition, sometimes leading to
a purely real dominant DM with infinite period for long fMRI time series
(e.g., when several runs are concatenated). As a consequence,
inter-subjects comparisons of these quantities should be performed using
time series of same length for each subject, as in our CCA analysis. This
effect is puzzling and its causes are unclear. One possible explanation is
that the frequencies of oscillating patterns are fluctuating along the fMRI
time series (Chang and Glover, 2010; He, 2011) which might affect the
correct identification of a single frequency to characterize the dominant
DM in long fMRI time series. Pre-filtering fMRI time series in specific
frequency bands might help to circumvent this limitation. Alternatively,
using spectral formulations of autoregressive models might also help
explore the interactions present in different frequency bands (e.g.,
Baccal�a and Sameshima, 2001).

The DMs are computed from BOLD time series that only indirectly
reflect the underlying neuronal activity due to the low-pass filtering ef-
fect of the hemodynamic response function. Hence, while DMs can be
used as dynamical markers of functional connectivity, their interpretation
in terms of effective connectivity should be cautious. We note here that a
similar limitation applies for the interpretation of classical correlation
analyses: two BOLD time series might be correlated while the corre-
sponding neuronal activities are not correlated (e.g., due to a π=2
dephasing following different blood arrival times). One way to overcome
this limitation would be to apply DMD on deconvolved time series
(Gaudes et al., 2012; Karahano�glu et al., 2013; Wu et al., 2013), as
illustrated in Fig. S10. We observe that the ‘deconvolved’ DMs are similar
to the original DMs shown in Fig. 3. However, the choice of the decon-
volution parameters influences these results and the way deconvolved
DMs are affected by different deconvolution strategies should be further
explored. Finally, alternative ways of accounting for the effects of the
hemodynamic response function include controlling for blood arrival
times (Erdo�gan et al., 2016) or using other measures of connectivity
(Achard et al., 2008; You et al., 2012).

A time-resolved computation of the DMs using a sliding window
approach could be considered (e.g., Kunert-Graf et al., 2018) but three
differences with the approach proposed here need to be emphasized.
First, the interpretation of DMs is more complex than classical static
components. Likewise, the interpretation of the temporal fluctuations of
DMs or of the DMs in different states obtained from clustering of these
fluctuations (e.g., Fig. S8) would be even more, possibly masking the
important properties carried by DMs. Second, the identification of an
AR-1 model of multivariate time series (Eq. (1)) requires at least as many
time points as variables (Stoica and Moses, 2005). Using this study's
parcellation, this would result in windows containing at least 400 fMRI
time points which is likely to be too long to capture meaningful temporal
fluctuations of DMs (Li�egeois et al., 2016; Preti et al., 2017). Note that
low rank approximations of A, the model matrix of the AR-1 model, can
be estimated using less time points, thereby identifying only the most
important DMs (Neumaier and Schneider, 2001). This might be sufficient
as only a small proportion of DMs have high damping times (Fig. S6). A
dimensionality-reduction step could also be used before applying DMD.
This would allow to identify AR models of higher orders but the in-
terpretations of the resulting DMs might need to be adapted. Finally, we
showed in previous work that a single AR-1 model of fMRI time series
captures a significant part of FC temporal fluctuations (Li�egeois et al.,
2017), thereby suggesting that a time-resolved computation of DMs
might not be necessary to capture the dominant spatio-temporal prop-
erties of functional connectivity.
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Since the AR-1 model captures linear dependencies between ROIs, one
way to extend the proposed framework is to use -in general more
complex-models of multivariate interactions accounting for non-
linearities. For example, nonlinear extensions of static frameworks such
as nonlinear PCA were proposed to analyze fMRI data (e.g., Friston et al.,
2000). More recently, dynamic mode decomposition was also adapted in
order to account for some forms of nonlinearities (Williams et al., 2015).
Another way to extend the proposed framework would be to use a
state-space representation of time series (Solo, 2016; Barnett and Seth,
2017). This formulation allows to cover not only AR models but also
moving-average (MA) and ARMA models, and could be used to explore
the multiscale nature of functional interactions (Faes et al., 2017a, b). We
should finally emphasize that the proposed decomposition of fMRI time
series relies on a model of the data, and as such the DMs cannot be
claimed to reveal a unique ground truth about brain functional organi-
zation. Even if our results suggest that this model encodes behavioral
information beyond classical static markers of functional connectivity,
further investigation involving alternative neuroimaging modalities or
behavioral experiences will be required in order to assess the relevance of
this decomposition.

We explore the link between the temporal properties of DMs, and
demographic and behavioral SMs in order to illustrate their utility and
complementarity with the spatial properties of DMs. Subsequent studies
focusing on the link between resting-state dynamic FC and SMs could use
both spatial and temporal properties of DMs in their analysis, and/or use
alternative methods to CCA (Grellmann et al., 2015). Using only the top
DMs might be another way to reduce the dimensionality of this multi-
variate analysis problem, but this depends on the ranking criterion of the
DMs. Even if the criterion we use seems to be meaningful in this appli-
cation, other rankings could be considered (Section 2.1, Neumaier and
Schneider, 2001).

5. Conclusion

This study uses a dynamic extension of component analysis to
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compute the main dynamic modes (DMs) shaping brain function in
different conditions. Using data of 730 HCP subjects, we compute the
dominant group DMs in resting-state and in five different motor-task
conditions. Resting-state DMs show similarities with classical (i.e.,
static) resting-state networks, but also significant differences that provide
further insight about their interactions and dynamical properties. The
dominant task DMs show activity in the areas of the primary somato-
motor cortex classically identified in activation maps of the five tasks.
The same DMs also consistently show dephased activity in other ROIs
including the visual and posterior parietal cortices, revealing the dy-
namic interactions between these brain areas during the execution of the
tasks. Finally, a CCA analysis identified two CCA modes linking the
temporal properties of DMs and 158 HCP SMs, thereby complementing
previous findings that identified a single mode of co-variation between
the same SMs and static markers of FC. Altogether, these results suggest
that dynamic mode decomposition is a promising tool to explore the
spatio-temporal properties of brain functional dynamics encoded in fMRI
time series.
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Appendix

A1. Unicity of complex eigendecomposition

Let us denote v ¼ ða1 eiϕ1 ;…; aN eiϕN Þ a complex eigenvector of a square matrix A of size N, with ai and ϕi denoting the amplitude and phase of its ith

entry. By definition, v has unit norm and we have Av ¼ λv, where λ is the eigenvalue associated to v. Any vector vα ¼ v � eiα also has a unit norm and
verifies Avα ¼ λvα. In order to have a unique representation of each eigenvector, we follow the convention of Neumaier and Schneider imposing that the
real and imaginary parts of all eigenvectors are orthogonal, and that the amplitude of the imaginary part is smaller than or equal to the amplitude of the
real part (Neumaier and Schneider, 2001). First, we identify the phase α0 that leads to orthogonality between the real and imaginary parts of vα0 :

Reðvα0 Þ � Imðvα0 Þ ¼
1
2

X
i¼1

N

a2i sinð2ðϕi þ α0ÞÞ (A1)

¼ 1
2

 
cosð2α0Þ

X
i¼1

N

a2i sinð2ϕiÞ þ sinð2α0Þ
X
i¼1

N

a2i cosð2ϕiÞ
!

(A2)

¼ 0; (A3)

which leads to:

α0 ¼ 1
2
arctan

 
2 �ReðvÞ � ImðvÞ��ImðvÞj2 � ��ReðvÞj2

!
: (A4)
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Since α0 is defined up to shifts of π=2, the real and imaginary parts of vα0 can be interchanged in order to make the absolute value of its real part larger
or equal to its imaginary part.
A2. Identification of spatially matched DMs

We solve the following optimization problem:

min
d1 ;…;dNR

XT
t¼2

������
������S
2
4 d1 … 0

⋮ ⋱ ⋮
0 … dNR

3
5S�1 � xt�1 � xtk2 ¼ min

d1 ;…;dNR
Fðd1;…; dNR Þ; (A5)

where S is a square matrix of size NR. Denoting un (vn) the nth column (line) of S (S�1), we can write:

S

2
4 d1 … 0

⋮ ⋱ ⋮
0 … dNR

3
5S�1 ¼

XNR

n¼1

dnunvn: (A6)

Using Eq. (A6), the argument of the minimization problem (A5) writes

Fðd1;…; dNR Þ ¼
XT
t¼2

�����
�����
 XNR

n¼1

dnunvn

!
xt�1 � xt

�����
�����
2

(A7)

¼
XT
t¼2

xTt�1Mxt�1 � 2xTt

"XNR

n¼1

dnunvn

#
xt�1 þ xTt xt (A8)

where M is given by:

M ¼
XNR

n1¼1

XNR

n2¼1

dn1dn2v
T
n1
vTn2un1un2 :

The solution of the convex problem (A5) is found by finding the zeros of its partial derivatives with respect to di; 8i 2 f1;…;NRg:

δF
δdi

¼
XT�1

t¼1

xTt�1

" XNR

n1¼1

n1 6¼i

vTn1u
T
n1
dn1uivi

!
þ
 XNR

n2¼1

n2 6¼i

vTi u
T
i dn2un2vn2

!
þ 2divTi u

T
i uivi

#
xt�1 � 2xTt uivixt�1 (A9)

which leads to a system of NR linear equations providing the optimal value of the NR unknowns:

2
664

d1
d2
⋮
dNR

3
775 ¼

2
664

c1;1 c1;2 … c1;NR

c2;1 c2;2 … c2;NR

⋮ ⋮ ⋱ ⋮
cNR ;1 cNR ;2 … cNR ;NR

3
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�12
664
b1
b2
⋮
bm

3
775 (A10)

where

ck1 ;k2 ¼
8<
:
XT

t¼1
2 xTt�1v

T
k1
uTk1uk1vk1xt�1; if k1 ¼ k2;XT

t¼1
xTt�1

�
vTk2u

T
k2
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T
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�
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(A11)

bk1 ¼
XT
t¼2

2 xTt uk1vk1xt�1: (A12)
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