
1 of 16Human Brain Mapping, 2025; 46:e70125
https://doi.org/10.1002/hbm.70125

Human Brain Mapping

RESEARCH ARTICLE OPEN ACCESS

TR(Acking) Individuals Down: Exploring the Effect 
of Temporal Resolution in Resting- State Functional 
MRI Fingerprinting
Barbara Cassone1,2  |  Francesca Saviola1,3 |  Stefano Tambalo1,4,5 |  Enrico Amico3,6,7,8 |  Sebastian Hübner1 |  
Silvio Sarubbo9,10 |  Dimitri Van De Ville3,6 |  Jorge Jovicich1

1CIMeC, Center for Mind/Brain Sciences, University of Trento, Rovereto, Trento, Italy | 2Department of Psychology, University of Milano-Bicocca, 
Milan, Italy | 3Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland | 4Department of Physics, University of Torino, 
Torino, Italy | 5Department of Molecular Biotechnology and Health Sciences, University of Trento, Torino, Italy | 6Department of Radiology and Medical 
Informatics, University of Geneva, Geneva, Switzerland | 7School of Mathematics, University of Birmingham, Birmingham, UK | 8Centre for Human 
Brain Health, University of Birmingham, Birmingham, UK | 9Department of Physics, University of Torino, Torino, Italy | 10Department of Molecular 
Biotechnology and Health Sciences, University of Torino, Torino, Italy

Correspondence: Jorge Jovicich (jorge.jovicich@unitn.it)

Received: 3 April 2024 | Revised: 6 November 2024 | Accepted: 20 December 2024

Funding: This work was supported by ISMRM Exchange Award, Provincia Autonoma di Trento, Ministero dell'Istruzione, dell'Università e della Ricerca, 
Swiss National Science Foundation, Ambizione project, PZ00P2_185716, and Municipality of the City of Rovereto.

Keywords: brain fingerprinting | brain networks | functional connectivity | resting- state fMRI | temporal resolution

ABSTRACT
Functional brain fingerprinting has emerged as an influential tool to quantify reliability in neuroimaging studies and to identify 
cognitive biomarkers in both healthy and clinical populations. Recent studies have revealed that brain fingerprints reside in the 
timescale- specific functional connectivity of particular brain regions. However, the impact of the acquisition's temporal resolu-
tion on fingerprinting remains unclear. In this study, we examine for the first time the reliability of functional fingerprinting de-
rived from resting- state functional MRI (rs- fMRI) with different whole- brain temporal resolutions (TR = 0.5, 0.7, 1, 2, and 3 s) in 
a cohort of 20 healthy volunteers. Our findings indicate that subject identifiability within a fixed TR is successful across different 
temporal resolutions, with the highest identifiability observed at TR 0.5 and 3 s (TR(s)/identifiability(%): 0.5/64; 0.7/47; 1/44; 2/44; 
3/56). We discuss this observation in terms of protocol- specific effects of physiological noise aliasing. We further show that, irre-
spective of TR, associative brain areas make an higher contribution to subject identifiability (functional connections with highest 
mean ICC: within subcortical network [SUB; ICC = 0.0387], within default mode network [DMN; ICC = 0.0058]; between DMN 
and somato- motor [SM] network [ICC = 0.0013]; between ventral attention network [VA] and DMN [ICC = 0.0008]; between 
VA and SM [ICC = 0.0007]), whereas sensory- motor regions become more influential when integrating data from different TRs 
(functional connections with highest mean ICC: within fronto- parietal network [ICC = 0.382], within dorsal attention network 
[DA; ICC = 0.373]; within SUB [ICC = 0.367]; between visual network [VIS] and DA [ICC = 0.362]; within VIS [ICC = 0.358]). We 
conclude that functional connectivity fingerprinting derived from rs- fMRI holds significant potential for multicentric studies 
also employing protocols with different temporal resolutions. However, it remains crucial to consider fMRI signal's sampling 
rate differences in subject identifiability between data samples, in order to improve reliability and generalizability of both whole- 
brain and specific functional networks' results. These findings contribute to a better understanding of the practical application 
of functional connectivity fingerprinting, and its implications for future neuroimaging research.
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1   |   Introduction

In recent years, brain connectome fingerprinting has shown 
increased promise as a tool for understanding underlying 
mechanisms of the human brain, in particular those related to 
functional connectivity (FC), which represents the statistical 
interdependency between brain regions' activity across time 
(Friston  1994). In their seminal work, Finn et  al.  (2015) were 
among the first to show that an individual's FC profile is not 
only unique, but also reliable enough to be identified and dis-
tinguished with high accuracy from a larger sample of similar 
healthy individuals. Following studies expanded on the topic 
by showing that functional patterns are useful to detect subject- 
level biomarkers of behavioral outcome and cognitive perfor-
mance (Amico and Goñi 2018; Romano et al. 2022; Sorrentino 
et  al.  2021; Svaldi et  al.  2021; Troisi Lopez et  al.  2023), open-
ing up the possibility to predict clinical scores and contributing 
to personalized treatments planning (Castellanos et  al.  2013; 
Fernandes et al. 2017; Smith et al. 2015) and biometric systems 
(Fraschini et al. 2015; Rocca et al. 2014).

Another relevant application of the study of brain fingerprints 
relates to one essential aspect and source of concern for numer-
ous domains of scientific research (Begley and Ioannidis 2015), 
that is reproducibility and generalizability of results. In par-
ticular, Amico and Goñi  (2018) introduced the “identifiability 
framework” for assessing and increasing subject identification 
across visits, by running principal component analysis (PCA) 
on a group's functional connectomes, and removing “noise” 
components while retaining only components necessary for 
subject identification. This procedure has been shown to in-
crease test–retest reliability across different tasks (Amico and 
Goñi 2018; Rajapandian et al. 2020), scanning lengths (Amico 
and Goñi  2018), magnetic resonance imaging (MRI) scanners 
and sites (Bari et  al.  2019), network properties (Rajapandian 
et  al.  2020), imaging modalities, namely functional magnetic 
resonance imaging (fMRI) and magnetoencephalography, FC 
measures and frequency bands (Sareen et al. 2021). Moreover, 
specific brain regions have been found to give a different con-
tribution to fingerprinting (Amico and Goñi  2018; Romano 
et al. 2022; Sorrentino et al. 2021; Svaldi et al. 2021; Troisi Lopez 
et  al.  2023; Van De Ville et  al.  2021), which is maximized at 
specific timescales, consistently with intrinsic neural firing pat-
terns (Gao et  al.  2020) and underlying mental processes (Van 
De Ville et al. 2021). This raises the question of how functional 

acquisition timescales may affect subject identification within 
this functional fingerprinting framework.

Understanding the effect of temporal resolution (TR) on fin-
gerprinting of resting- state fMRI (rs- fMRI) holds relevance 
for several reasons. First, rs- fMRI has gained widespread use 
in both basic and clinical research, making it crucial to com-
prehend the factors influencing its outcomes (Lee, Smyser, 
and Shimony  2013a; Smitha et  al.  2017). Second, the growing 
influence of the open- science policy has encouraged access to 
multicentric rs- fMRI datasets acquired using different TRs, 
emphasizing the need to examine the implications of this fac-
tor on data interpretation and integration (e.g., https:// openf mri. 
org, https:// adni. loni. usc. edu, http:// www. human conne ctome 
proje ct. org, http:// www. devel oping conne ctome. org, https:// 
www. ukbio bank. ac. uk, https://fcon_1000.projects.nitrc.org/
indi/CoRR/html/ among various other public rs- fMRI data 
sources). Lastly, advancements in rapid parallel imaging tech-
nologies (Larkman et  al.  2001) have enabled neuroscientists 
to obtain whole- brain images with sub- second sampling rates, 
thus allowing the investigation of neural dynamics with greater 
precision and flexibility (Akin et  al.  2017; Lee et  al.  2013b; 
Zalesky et  al.  2014). However, the reliability of fast fMRI re-
mains unclear. On the one hand, acquiring a higher number of 
timepoints without increasing the scanning duration enhances 
statistical power (Dowdle et al. 2021; Feinberg et al. 2010; Posse 
et al. 2012; Smith et al. 2013). On the other hand, speed comes 
at the cost of lower signal- to- noise ratio per time frame (Barth 
et al. 2016; Boubela et al. 2014; Edelstein et al. 1986; Feinberg 
and Setsompop 2013; Preibisch et al. 2015) with respect to con-
ventional fMRI protocols (TR ~2–3 s), with the ultimate result 
of decreasing the statistical validity of inferences about intrin-
sic FC (Corbin et al. 2018). To the best of our knowledge, very 
few studies have assessed test–retest reliability in fast fMRI 
(Jahanian et al. 2019) or in comparisons between different TRs. 
In the few instances where such comparisons were made, data 
were downsampled (Birn et al. 2013; Huotari et al. 2019; Shah 
et al. 2016) rather than acquired in distinct fMRI runs with dif-
ferent TRs, which is not equivalent. Consequently, the impact 
of acquisition's TR on rs- fMRI fingerprinting remains largely 
unexplored.

The relevance of this research question lies not only in the 
potential implications for the reproducibility and generaliz-
ability of fMRI results, but it is also linked to the open field of 
investigation of the temporal aspects of brain fingerprints. In 
general, fast fMRI has been proven to better capture complex 
temporal features of the fMRI signal which carry meaningful 
information about brain states (Dowdle et  al.  2021; Yang and 
Lewis 2021). Interestingly, in the specific framework of connec-
tome fingerprinting, fast fMRI has provided insights into which 
specific time scales of connectivity patterns are more highly re-
lated to the individuality of cognitive functions (Van De Ville 
et al. 2021). Evaluating how brain fingerprints are affected by 
TR may shed light on what exactly is the information encoded 
in brain connectomes that ultimately makes us unique, and, 
specifically, weather this information unfolds in possibly pref-
erential windows in time, when one individual's brain is max-
imally identifiable (Van De Ville et al. 2021). In this scenario, 
exploring which TR can optimize the investigation of brain fin-
gerprints' time scales, in a network-  and region- specific fashion, 

Summary

• Intrinsic functional brain activity fingerprints have 
valuable applications in both basic neuroscientific re-
search and precision medicine.

• Reproducibility of functional fingerprints is robust 
across various temporal resolutions, with higher sub-
ject identifiability at TR 0.5 and 3 s.

• Associative brain areas (fronto- parietal, default mode 
and attention networks) mostly contribute to subject 
identifiability regardless of TR, while sensory- motor 
regions are more sensible to differences in temporal 
resolution.

 10970193, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.70125 by Schw
eizerische A

kadem
ie D

er, W
iley O

nline L
ibrary on [02/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://openfmri.org/
https://openfmri.org/
https://adni.loni.usc.edu/
http://www.humanconnectomeproject.org/
http://www.humanconnectomeproject.org/
http://www.developingconnectome.org
https://www.ukbiobank.ac.uk
https://www.ukbiobank.ac.uk
https://fcon_1000.projects.nitrc.org/indi/CoRR/html/
https://fcon_1000.projects.nitrc.org/indi/CoRR/html/


3 of 16

could advance our knowledge on mental process and cognition, 
with potential applications in the emerging fields of precision 
medicine.

In this study, we extend the investigation of temporal features 
of spontaneous brain fMRI fingerprints by addressing the 
question of whether the TR of rs- fMRI acquisitions' influences 
healthy subject identification. We thus present the application 
of the “identifiability framework” (Amico and Goñi 2018) to a 
nowadays still unexplored scenario. Specifically, for each sub-
ject (N = 20), we collected rs- fMRI data with five different TRs, 
ranging from 0.5 to 3 s. Our analyses focused on evaluating the 
test–retest reliability at the whole- brain level by considering the 
following aspects: (i) the impact of TR on subject identifiabil-
ity when comparing data acquired with the same TR; (ii) the 
influence of TR on subject identifiability when comparing data 
acquired with different TRs; (iii) the effect of the number of ac-
quired timepoints (i.e., volumes) on test–retest reliability; (iv) 
the differential contribution of specific brain regions and func-
tional networks to subject identifiability, regardless of TR, and 
to TR identifiability across subjects.

2   |   Materials and Methods

A subset of the data used in the current study was also employed 
in a previous work (Saviola et  al.  2022), available on bioRxiv. 
Therefore, participants' demographics, data acquisition, and 
pre- processing steps were already partially described there but 
are reiterated here for the sake of completeness and with the 
necessary modifications.

2.1   |   Participants

A total of 20 healthy volunteers (10 females, age: 24 ± 3 years, 
4 left- handers) without neurological and/or psychiatric disease 
history gave written informed consent to participate in this 
study, which was approved by the Ethical Committee of the 
University of Trento, Italy.

2.2   |   MRI Acquisition

Neuroimaging data were acquired with a 3 Tesla Siemens 
Magnetom Prisma (Siemens Healthcare, Erlangen, Germany) 
whole body MRI scanner equipped with a 64- channel receive- 
only head–neck RF coil. Each participant underwent one struc-
tural T1- weighted standard MPRAGE (TR/TE = 2.31 s/3.48 ms, 
1 mm isotropic voxels), and five runs of resting- state functional 
MRI (rs- fMRI, TE = 28 ms, 3 mm isotropic voxels, FA = 59°, si-
multaneous multi slice acceleration factor = 6, 56 slices, fat 
suppression, interleaved slice acquisition, 0 mm slice gap, 
anterior- to- posterior phase- encoding) during the same day. 
Acquisition parameters for the five rs- fMRI runs were identical 
except for TR, which was manipulated such that the total scan-
ning time was kept constant (7.4 min), thus affecting the total 
number of brain functional volumes (NoV acquired) per run: 
TR(s)/NoV = 0.5/905; 0.7/646; 1/452; 2/226; 3/150. Nine partici-
pants underwent the five acquisition runs from the shortest to 
the longest TR, while the remaining 11 participants underwent 

the acquisitions from the longest to the shortest TR. The order 
of the five TR runs was not fully randomized across partici-
pants in order to avoid potential biases due to the coil heating 
and amount of movement, which are higher for shorter than for 
longer TRs. Finally, a phase and magnitude double- echo gra-
dient echo structural sequence was used to derive a magnetic 
field map for geometric distortion correction (TR = 682 ms, 
TE1 = 4.2 ms, TE2 = 7.4 ms, 3 mm isotropic voxels).

2.3   |   Data Preprocessing and Functional 
Connectivity Matrices

Brain rs- fMRI data were preprocessed using FSL (Jenkinson 
et  al.  2012) and following standard steps: (i) slice timing and 
head motion correction (see Section  S5 for DVARS); (ii) T1- 
weighted image tissue segmentation; (iii) co- registration of the 
rs- fMRI time- series to the T1- weighted image; (iv) rs- fMRI tem-
poral band- pass filtering; (v) nuisance regression of the six head 
motion, white matter, and cerebrospinal fluid signals; (vi) nor-
malization to standard MNI template space; (vii) spatial smooth-
ing with a 6 mm FWHM kernel size. Instead of applying one of 
the traditional temporal band- pass filters (i.e., [0.01–0.08] Hz or 
[0.01–0.1] Hz), we opted for a [0.01–0.3] Hz filter which could al-
lowed us to censor physiological noise at the fastest TRs, where 
the denoising procedure is more effective (Jahanian et al. 2019). 
We then applied the same filter to the other TRs in order to avoid 
introducing a variability factor which would potentially bias the 
main analysis. Specifically, the band- pass filter we applied al-
lowed us to avoid the frequency bands (i.e., ∼0.9 Hz at TR 0.5 s, 
and ∼0.3 Hz at TR 0.7 s) at which the cardiac noise aliases at our 
fastest TRs, without removing relevant neural frequencies.

After pre- processing, rs- fMRI images were parcellated using 
the Glasser multimodal parcellation atlas (Glasser et al. 2016), 
consisting of 360 cortical parcels. For full gray matter coverage 
(Amico and Goñi 2018), we added 19 parcels from a subcortical 
atlas provided by the Human Connectome Project (HCP; Van 
Essen et  al.  2013, release Q3, filename “Atlas_ROI2.nii.gz”). 
Since the choice and resolution of the parcellation atlas can af-
fect between- subject and within- session differences in FC esti-
mation (Ahrends et al. 2022; Pervaiz et al. 2020), we reran all 
analysis using the functional atlas of Schaefer et al. (2018) with 
100 parcels, instead of the Glasser atlas.

FC matrices were calculated for each subject and TR by estimat-
ing the Pearson's correlation coefficients between all parcels' rs- 
fMRI time courses. The FC matrices were symmetric and were 
kept neither thresholded nor binarized in the following analysis 
(Amico and Goñi 2018).

2.4   |   Group- Level PCA

In order to investigate the effect of TR on individual FC iden-
tifiability, we performed two types of fingerprinting analysis 
(Figure 1): (i) a within- TR analysis considering, for every subject 
and every TR separately, FC matrices computed on the first half 
of the rs- fMRI time course (half volumes) as test, and FC ma-
trices computed on the second half of the rs- fMRI time course 
as retest (Amico and Goñi  2018); (ii) a between- TR analysis 
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considering, for every subject and all TR pairwise comparisons 
(i.e., TR 0.5 vs. TR 0.7, TR 0.5 vs. TR 1, etc.), FC matrices com-
puted on one TR data as test, and FC matrices computed on the 
other TR data as retest. Note that since labeling a set of FC ma-
trices as test or retest in a specific comparison did not elicited 
differences in analysis and results, we here report findings only 
from one possible test–retest combination (e.g., only TR 0.5 vs. 
TR 0.7 s results are reported because they are identical to TR 0.7 
vs. TR 0.5 s results).

Since the rs- fMRI runs were identical in the total scanning time 
but they differed in TR, FC matrices were estimated on a differ-
ent number of brain volumes, which could affect subject identi-
fiability (Anderson et al. 2011; Birn et al. 2013; Noble et al. 2017, 
Van De Ville et al. 2021). To evaluate this, we repeated both the 
within- TR and the between- TR analysis using only the first 150 
volumes (i.e., the number of volumes of the slowest TR) of each 

TR time course. This disentangled the effect of number of vol-
umes from the effect of TR on individual FC identifiability.

For both the within-  and between- TR analysis, when using 
both all volumes and only the first 150 volumes, we applied 
the denoising procedure for maximizing connectivity finger-
prints in human connectomes first introduced by Amico and 
Goñi (2018). This procedure was based on a PCA (Jolliffe 2014) 
for extracting the optimal number of connectivity- based com-
ponents that maximizes subject identifiability. The rationale be-
hind this analysis is that high- variance components may carry 
cohort- level FC information, lower- variance components may 
carry individual- level FC information, and the lowest- variance 
components may carry noisy or artefactual FC information 
(Amico and Goñi 2018). By iteratively exploring the number of 
components used, individual- level components can be identified 
in a data- driven way while artefactual- level components can be 

FIGURE 1    |    Analysis workflow. Resting- state fMRI data were acquired for each subject during five runs differing in TR (TR = 0.5 s, 905 volumes; 
TR = 0.7 s, 646 volumes; TR = 1 s, 452 volumes; TR = 2 s, 226 volumes; TR = 3 s, 150 volumes). After preprocessing, parcellation was performed on the 
basis of an atlas combining Glasser parcellation (Glasser et al. 2016) and a subcortical parcellation provided by the Human Connectome Project. Two 
fingerprinting analyses were performed. Within- TR analysis: After parcellation, for each TR separately, time course was split in two halves, and 
two sets of functional connectivity (FC) matrices (test and retest) were computed as input for the group- level principal component analysis (PCA). 
FC matrices were then reconstructed using the optimal number of PCA components. Between- TR analysis: After parcellation, for each TR pairwise 
comparison, the whole time course from two different TR runs (test and retest) was used to compute FC matrices. The optimal number of components 
resulting from the group- level PCA were used to reconstruct back each FC matrix. For both the within- TR and the between- TR analysis, Pearson's 
correlation coefficients were computed between test and retest sets of FC matrices, in order to create an identifiability matrix for each TR condition 
and TR pairwise comparison. Finally, edgewise intraclass correlation (ICC) was computed in two different ways, resulting in a subject and a TR ICC. 
The whole fingerprinting analysis was repeated using all volumes and only the first 150 volumes of each TR run. CSF, cerebrospinal fluid; FC, func-
tional connectivity; ICC, intraclass correlation; PCA, principal component analysis; WM, white matter. *Glasser et al. (2016); **Human Connectome 
Project, release Q3.
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discarded. Briefly, for each subject, two FC matrices (test and 
retest as described in the previous paragraphs) were taken as 
input, their upper triangle was vectorized, and then added to 
a matrix having one test and one retest column for each sub-
ject, and FC edge weights as rows. Once extracted the main 
connectivity- based principal components (PCs), each individual 
FC matrix is reconstructed back based on its mean and the lin-
ear combination of the chosen PCs.

Except for data preprocessing, analysis was conducted using 
MATLAB (2017b). The code for performing the fingerprint-
ing analysis was adapted from the scripts publicly available at 
Enrico Amico's GitHub repository (https:// github. com/ eamico).

2.5   |   Whole- Brain Connectome Fingerprinting: 
Differential Identifiability and Success Rate

In order to assess the identifiability of FC profiles of single in-
dividuals among the entire sample at the whole- brain level, an 
identifiability matrix (Amico and Goñi 2018) was created where 
rows referred to subjects' test FCs, columns to retest subjects' 
FCs, and the Pearson's correlation coefficient was used to com-
pute their similarity. The average of the main diagonal elements 
of the identifiability matrix (multiplied by 100) is defined as 
“self- identifiability” or “Iself” since it is a measure of the similar-
ity of the same subject's FC profile between test–retest data. The 
average of the main off- diagonal elements of the identifiability 
matrix (multiplied by 100), instead, is defined as “Iothers” and 
represents the similarity of FC profiles between test–retest data 
across subjects. The assumption of the functional connectome 
fingerprint is that FC should be, overall, more similar between 
test–retest data of the same subject than between different sub-
jects. Thus, a “differential identifiability” or “Idiff” measure 
(Idiff  = Iself − Iothers) has been proposed as a group estimate of 
how much an individual FC profile is identifiable amongst the 
whole sample (Amico and Goñi 2018). With this formalism, Idiff 
represents a continuous score for the level of individual whole- 
brain fingerprinting present on a set of test–retest functional 
connectomes. We also computed a binary identification score, 
namely “success rate” (SR), which is defined as the percentage 
of subjects whose identity was correctly predicted out of the 
total number of subjects (Finn et al. 2015). Consistent findings 
between Idiff and SR would suggest the possibility to general-
ize our subject identification results to different identifiability 
scores (Sareen et al. 2021).

2.6   |   Local Contributions to Fingerprinting: The 
Role of Individual Edges and Networks

The fingerprinting analysis described in the previous para-
graphs aimed at evaluating whether the whole brain FC could 
successfully lead to a subject identification between test and 
retest datasets acquired with the same or with different TRs. 
However, it does not mean that the same specific connectome 
edges (functional correlations between brain parcellation pairs) 
were equally responsible for identifiability in all the different 
test–retest comparisons. In fact, this does not even mean that 
the most stable edges between test–retest comparisons were 
the same edges that contributed most to successful subject 

identifiability (Dufford et al. 2021). In order to investigate which 
specific edges and networks (grouping edges) were the most re-
liable in identifying subjects across TRs (regardless of specific 
test–retest comparisons), we computed the intraclass correlation 
coefficient (ICC; Bartko 1966; McGraw and Wong, 1996), as in 
previous studies (Amico and Goñi 2018; Bari et al. 2019; Noble 
et al. 2017; Sareen et al. 2021; Van De Ville et al. 2021; Wang 
et al. 2021).

ICC is a statistical measure of the agreement between units of 
(or ratings/scores) of different groups (or raters/judges). The 
stronger the agreement, the higher its ICC value. ICC can be in-
terpreted as < 0.4 = poor; 0.4–0.59 = fair; 0.60–0.74 = good; and 
> 0.74 = excellent (Cicchetti and Sparrow  1981). We employed 
ICC to quantify the extent to which individual edges can sepa-
rate between subjects (raters) by remaining reliable within sub-
jects across the different TRs (units). Specifically, for each edge 
we computed the ICC(1,1) variant (Bari et al. 2019). The higher 
the ICC, the higher the edge contribution to subject identifiabil-
ity regardless of the TR. From now on, we will refer to this mea-
sure as “subject ICC.” Given the small sample size, a bootstrap 
procedure was applied when computing ICC, as suggested by 
Bari et al.  (2019): over 100 iterations, 75% of the subjects were 
randomly selected, and the ICC was calculated for each edge 
and stored in a square symmetric matrix having edges of size 
N2, where N is the number of edges. The resulting ICC matrices 
over all iterations were then averaged to obtain the final subject 
ICC values.

We then computed ICC considering TRs as raters and subjects 
as units. In this “TR ICC,” the higher an edge ICC, the higher 
the edge contribution to distinguish between TRs regardless of 
subjects.

2.7   |   Statistical Analysis

A permutation testing framework (Sareen et al. 2021) was em-
ployed to assess the statistical significance of the observed Idiff 
and SR values computed from the identifiability matrices: over 
1000 iterations, subjects' test–retest FC matrices were randomly 
shuffled, and the Idiff and SR were computed on the result-
ing randomized identifiability matrices, in order to create two 
non- parametric null distributions, respectively for Idiff and 
SR. Moreover, to correct for multiple comparisons, we merged 
the null distributions from all the five TRs in the within- TR 
analysis, and from all the TR pairwise comparisons in the be-
tween- TR analysis. The observed Idiff and SR values were then 
compared against their corresponding null distribution, such 
that the computed p- values are the proportion of values in the 
null distribution greater or equal to the observed values (Nichols 
and Holmes 2002).

Furthermore, distributions of Idiff, Iself, Iothers, and SR on a 
subject level (Bari et  al.  2019) were calculated in order to: (i) 
compare differential identifiability (Idiff) computed on the orig-
inal FC matrices (before PCA) to the Idiff computed on the PCA- 
reconstructed FC matrices (both within- TR and between- TR 
identifiability); (ii) compare FC identifiability in one TR against 
FC identifiability in all the other TRs (within- TR analysis); (iii) 
compare FC identifiability in one TR comparison against FC 

 10970193, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.70125 by Schw
eizerische A

kadem
ie D

er, W
iley O

nline L
ibrary on [02/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/eamico


6 of 16 Human Brain Mapping, 2025

identifiability in all the other TR pairwise comparisons (be-
tween- TR analysis); (iv) compare FC identifiability computed on 
all volumes against FC identifiability computed only on the first 
150 volumes (both within- TR and between- TR identifiability). 
In particular, the distributions of the subject- level values of Iself 
(main diagonal elements of the identifiability matrix), Iothers 
(average of the off- diagonal elements of the identifiability matrix 
computed for each subject) and Idiff (difference between subject- 
level Iself and subject- level Iothers values) were compared using 
a two- tailed Wilcoxon signed rank test, followed by a false dis-
covery rate (FDR) correction applied within each metric test. 
Statistical differences in SR, instead, were assessed by assigning 
a binary score to each subject (1 if the subject- level Iself value 
was higher than the subject- level Iothers value, meaning that the 
subject was correctly identified among the sample; 0 otherwise) 
and using the exact version of a two- tailed McNemar's test for 
proportions in paired samples, followed by an FDR correction.

Significance threshold after FDR correction was declared at α 
level = 0.05. Statistical analysis was performed using R Studio 
(R Core Team 2013).

3   |   Results

3.1   |   Whole- Brain Within- TR Connectome 
Fingerprinting: The Effect of Acquisition TR 
and Number of Volumes

We first investigated how the TR at which rs- fMRI data were ac-
quired affected the possibility to identify one individual among 
the whole sample only on the basis of whole- brain resting- state 
FC profiles (within- TR fingerprinting).

As a result of the group- level PCA, FC matrices for each subject 
and each TR were reconstructed using a number of PCs equal 
to the sample size (optimal number of PCs maximizing Idiff: 
m* = 20; Table 1; see also Section S1 and Figure S1A). We found 
that the SR at which subjects were identified based on their 
FC was equal to 100% within all TR runs except two (TR 0.7 s: 
SR = 97.5%; TR 2 s: SR = 95%). When comparing observed SR 
and Idiff computed on the single identifiability matrices against 
their correspondent null distributions (Sareen et  al.  2021; 
see Section  2), a statistically significant effect was obtained 
(permutation testing, p < 0.001) for each TR. Taken together, 
these results suggested that, independently of TR, PCA- based 

reconstruction of FC ensured a successful subject identifiability 
(Figure 2A).

However, pairwise within- TR Idiff comparisons (Figure 2B) re-
vealed that Idiff at TR 0.5 s was significantly higher than Idiff 
from all other TRs (pFDR < 0.05, Wilcoxon test, Table  2), and 
that TR 3 s significantly outperformed TR 0.7, 1, and 2 s in Idiff 
(pFDR < 0.05, Wilcoxon test, Table 2. See also Section S4 for effect 
sizes). To better explore what drove this U- shaped effect of TR in 
Idiff (Figure 2B), we looked at the trajectories of Iself and Iothers 
distributions separately. We found (Table 2) that at TR 0.5 s, Iself 
resulted to be significantly higher than at all other TRs. Instead, 
lothers were significantly lower at TRs 0.5 and 3 s, thus giving 
the inverse U- shaped trend with respect to Idiff. The compari-
sons of SR distributions between TRs, instead, did not reveal any 
significant effect.

Similar results were found when using only the first 150 volumes 
instead of the whole rs- fMRI time course for the fingerprinting 
analysis (Section S2, and Tables S3 and S4). No significant dif-
ferences were observed in any TR condition when comparing 
ldiff and SR in the 150 volumes with their corresponding dis-
tributions in the analysis encompassing the whole time series 
(Table 2). Iself and Iothers values, instead, significantly decreased 
in all TRs (Wilcoxon test, pFDR < 0.001, Table 2) when a lower 
number of volumes was used to estimate subject identifiability.

To summarize the whole- brain within- TR rs- fMRI fingerprint-
ing findings: (i) although subject identifiability is consistently 
high across the TRs evaluated, it is significantly maximized at 
TR 0.5 and 3 s, a pattern that appears driven by lower across- 
subjects variability at those TRs; (ii) the number of rs- fMRI 
volumes does not significantly affect identifiability, regardless 
of TR. These results were also replicated using the non- PCA- 
reconstructed FC matrices (Section S1) as well as a different par-
cellation resolution (Section S7).

3.2   |   Whole- Brain Between- TR Connectome 
Fingerprinting: The Effect of Acquisition TR 
and Number of Volumes

Next, we proceeded to investigate the impact of TR on subject 
identifiability across different TR runs. FC matrices for each 
TR pairwise comparison were reconstructed using a number of 
PCs close to the sample size (m* = 20.7 ± 0.68, Table 3; Section S1 

TABLE 1    |    Within- TR analysis summary table.

TR (s) m* R2 Idifforig Idiffrecon Iselfrecon Iothersrecon SRorig SRrecon

0.5 20 0.84 38.52 64.19 96.34 32.15 100.00 100.00

0.7 20 0.85 27.32 46.45 91.15 44.71 97.50 97.50

1 20 0.86 25.57 44.07 92.83 48.76 97.50 100.00

2 20 0.87 25.20 43.77 91.44 47.67 95.00 95.00

3 20 0.84 32.03 56.23 93.36 37.13 100.00 100.00

Note: For each TR, values of the percentage differential identifiability (Idiff), self- identifiability (Iself ), others- identifiability (Iothers), and success rate (SR) are reported 
for the all volumes condition. Orig values were computed on the identifiability matrices derived from the original (before principal component analysis reconstruction) 
functional connectivity matrices, while Recon values were extracted from the FC matrices reconstructed by using the optimal number of principal components (m*), 
for which explained variance (R2) is also reported.

 10970193, 2025, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.70125 by Schw
eizerische A

kadem
ie D

er, W
iley O

nline L
ibrary on [02/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



7 of 16

and Figure  S1C). The comparison between observed SR and 
Idiff against their corresponding null distributions (Sareen 
et al. 2021; see Section 2) resulted in a statistically significant 
effect (permutation testing, p < 0.001). As a consequence, even 
if identifiability metrics showed lower values than in the with-
in- TR analysis, PCA- based reconstruction of FC still proved to 
allow a successful subject identifiability.

Additionally, we explored differences in identifiability metrics be-
tween TR pairwise combinations. Despite not always surviving 
FDR correction, we found a non- significant trend (pFDR > 0.28) ac-
cording to which higher similarity between TRs resulted in higher 
identifiability as measured by Idiff and SR (Figure 3 and Table 4; 
see also Section S4 for effect sizes). Moreover, Idiff and SR between 
close but slow TRs (i.e., 2 and 3 s) tended to be higher than between 
close but fast TRs (i.e., 0.5 and 0.7 s), despite the absolute difference 
in TR being higher in the former (1 s) rather than in the latter case 
(0.2 s) (Figure 3B,C). The same trend was observed when consid-
ering the separate contributions of Iself and Iothers to subject iden-
tifiability (Figure S5), with p values surviving FDR correction in 
several TR combinations (Table S5).

When using only the first 150 volumes, instead of the whole 
time course for the fingerprinting analysis, PCA- based 

reconstruction of FC still proved to allow a successful subject 
identifiability for all pairwise TR combinations (Section S3). 
However, relative to the use of the full time series, using only 
the first 150 rs- fMRI volumes had some identifiability costs: the 
variability of ldiff was higher (Table  3), and SR was on aver-
age lower (68.5% ± 20.35) with respect to the full time course 
(82.5% ± 11.49). Notably, when comparing the Idiff and SR of 
each TR pairwise combination in the 150 volumes with their 
corresponding values in the all volumes analysis, we found 
that, when using less timepoints, Idiff was significantly lower 
in most TR combinations involving fast TRs (i.e., TR 0.5 and 
TR 0.7 s), while no SR value comparison survive FDR correc-
tion (Table  4). A significant decrease of lself and lothers was 
observed in the 150 volumes condition (Table S5) for most TR 
combinations.

To summarize the whole- brain across- TR fingerprinting find-
ings: (i) subject identifiability tends to be higher for rs- fMRI 
acquisition protocols using similar TRs; (ii) using the first 150 
rs- fMRI volumes decreases identifiability performance with re-
spect to the use of the full acquired time series for each TR. These 
results were also replicated using the non- PCA- reconstructed 
FC matrices (Section S1) as well as a different parcellation reso-
lution (Section S7).

FIGURE 2    |    Within- TR fingerprinting. (A) Identifiability matrices of PCA- reconstructed functional connectivity profiles, extracted from the 
whole scanning time course, separately for each TR run. (B) Box plots of differential identifiability (Idiff), self- identifiability (Iself), and others- 
identifiability (Iothers) distributions computed at a subject- level after PCA- reconstruction, when using all (white) and 150 (gray) volumes for the 
fingerprinting analysis.
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3.3   |   Local Contributions to rs- fMRI 
Fingerprinting: Identifiability of Subjects Across 
TRs and Identifiability of TRs Across Subjects

The within-  and between- TR analysis discussed in the previous 
paragraphs referred to the whole brain FC profiles. To explore 
whether specific edges or brain regions contributed more than 
others to subject identifiability over all TRs, we computed a 
subject ICC. Edges showed a subject ICC ranging from poor 
(−0.063) to fair (0.429), with a mean of −0.0028 ± 0.04. By av-
eraging ICC values according to Yeo functional networks, we 
found that within-  and between- network connections involv-
ing high- level associative areas—that is, brain regions belong-
ing to default mode network and ventral attention network 
(Damoiseaux et al. 2006)—had a more prominent role in sep-
arating between subjects, regardless of TR (Figure 4A,C,E).

Edgewise TR ICC values ranged from poor (−0.013) to excel-
lent (0.764), with a mean of 0.329 ± 0.114. As an opposite pat-
tern with respect to subject ICC, low- level areas—comprising 
visual and subcortical regions (Damoiseaux et  al.  2006; Xu, 

Hanganu- Opatz, and Bieler 2020)—appeared among the top 5 
networks implicated in distinguishing between TRs, regardless 
of subjects (Figure 4B,D,F). TR ICC values were overall signifi-
cantly lower with respect to subject ICC values (Wilcoxon rank 
sum test: p < 0.001), suggesting that variability in edgewise FC 
was more affected by differences in acquisition protocols than 
by between- subjects differences.

Finally, it is interesting to note that both subject and TR ICC 
results did not qualitatively change much when rerunning the 
analysis taking into account only the first 150 volumes of each 
run (Figure S7).

4   |   Discussion

In this study, we employed brain connectome fingerprinting en-
riched by group- level PCA to assess subject identifiability across 
rs- fMRI protocols with varying TR. We replicated the finding 
that intrinsic FC is unique and sufficient to identify an individ-
ual among a sample of healthy subjects (Amico and Goñi 2018; 

TABLE 2    |    Within- TR statistics summary table.

pFDR (Wilcoxon)

TR (s) 0.5 0.7 1 2

All volumes Idiff 0.7 1.26 × 10−4** — — —

Iself 0.02* — — —

Iothers 1.91 × 10−5** — — —

SR 1.00 — — —

Idiff 1 4.77 × 10−6** 0.43 — —

Iself 0.04* 0.99 — —

Iothers 4.77 × 10−6** 5.37 × 10−4** — —

SR 1.00 1.00 — —

Idiff 2 4.77 × 10−6** 0.99 0.43 —

Iself 0.02* 0.99 0.99 —

Iothers 4.77 × 10−6** 0.17 0.14 —

SR 1.00 1.00 1.00 —

Idiff 3 5.37 × 10−4** 4.50 × 10−3* 4.77 × 10−6** 4.77 × 10−6**

Iself 0.01* 0.99 0.99 0.99

Iothers 1.79 × 10−3* 1.21 × 10−3* 4.77 × 10−6** 4.77 × 10−6**

SR 1.00 1.00 1.00 1.00

All vs. 150 volumes Idiff 0.76 0.76 0.76 0.76

Iself 2.29 × 10−5** 1.09 × 10−4** 9.54 × 10−5** 7.23 × 10−4**

Iothers 2.54 × 10−6** 2.54 × 10−6** 2.54 × 10−6** 9.56 × 10−5**

SR 1.00 1.00 1.00 1.00

Note: For each TR comparison, pFDR values are reported for the all volumes analysis (*pFDR < 0.05, **pFDR < 0.001). Moreover, for each TR, pFDR values resulting from 
the comparison between the all volumes and the 150 volumes distributions are summarized. Wilcoxon signed rank was used for differential identifiability (Idiff), self- 
identifiability (Iself ) and others- identifiability (Iothers), while McNemar's test for proportions in paired samples was employed for success rate (SR). Statistics refer to 
functional connectivity matrices reconstructed by using the optimal number of principal components.
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Bari et  al.  2019; Finn et  al.  2015; Romano et  al.  2022; Sareen 
et al. 2021; Sorrentino et al. 2021; Svaldi et al. 2021; Troisi Lopez 
et al. 2023; Van De Ville et al. 2021). We further extended these 
results by proving that, despite the high identifiability achieved 
regardless of the TR at which data were acquired, fingerprinting 
analysis was still sensitive to the fMRI acquisition protocol, and 
in particular to TR. This allowed us to dig into the still unre-
solved question of test–retest reliability in fast fMRI approaches 
(Jahanian et al. 2019; Polimeni and Lewis 2021), and to make 
specific considerations about pooling data acquired with differ-
ent BOLD signal sampling rates, which has useful applications 
in neuroscientific research, in both clinical and computational 
neuroimaging. In particular, based on our evidence on func-
tional fingerprinting, we recommend (i) pooling data acquired 
using the same TR rather than different TRs; (ii) if condition (i) 

can be met, preferably acquire data using very fast (TR 0.5 s) or 
very slow (TR 3 s), although intermediate TRs also guarantee a 
successful subject identifiability; (iii) if condition (i) cannot be 
met, pooling data with close TRs and better if they are slow; 
(iv) increasing scanning length only if data are acquired using 
different TRs; (v) mainly relying on higher- level cognitive brain 
areas for subject identifiability.

4.1   |   Within- TR Subject Identifiability Is 
Maximized at TR 0.5 and 3 s

Although in the within- TR analysis subject identifiability was 
successful regardless of TR, we showed that Idiff was maximized 
at TR 0.5 and 3 s, while significantly decreasing at TR 0.7, 1, and 

TABLE 3    |    Between- TR analysis summary table.

TR (s) m* R2 Idifforig Idiffrecon Iselfrecon Iothersrecon SRorig SRrecon

[0.5, 0.7] 21 0.85 17.95 30.25 75.39 45.14 70.00 67.50

[0.5, 1] 20 0.84 16.19 28.70 76.24 47.54 70.00 77.50

[0.5, 2] 20 0.84 13.32 25.87 73.47 47.61 67.50 72.50

[0.5, 3] 20 0.81 12.93 26.37 69.56 43.19 50.00 62.50

[0.7, 1] 21 0.89 23.02 35.26 88.26 53.00 87.50 92.50

[0.7, 2] 21 0.89 19.63 32.22 85.11 52.89 85.00 90.00

[0.7, 3] 22 0.87 17.98 31.73 77.35 45.63 72.50 87.50

[1, 2] 20 0.89 22.73 36.23 92.29 56.05 92.50 92.50

[1, 3] 21 0.86 19.39 35.24 84.47 49.24 82.50 92.50

[2, 3] 21 0.87 20.61 35.78 85.20 49.42 85.00 90.00

Note: For each TR combination, values of the percentage differential identifiability (Idiff), self- identifiability (Iself ), others- identifiability (Iothers), and success rate (SR) 
are reported for the all volumes condition. Orig values were computed on the identifiability matrices derived from the original (before principal component analysis 
reconstruction) functional connectivity matrices, while Recon values were extracted from the FC matrices reconstructed by using the optimal number of principal 
components (m*), for which explained variance (R2) is also reported.

FIGURE 3    |    Between- TR fingerprinting. (A) Identifiability matrices of the PCA- reconstructed functional connectivity profiles, extracted from the 
whole scanning time course, separately for each TR combination. (B) Confusion matrices of the differential identifiability (Idiff) values computed 
from the between- TR identifiability matrices (A). (C) Confusion matrices of the success rate (SR) values computed from the between- TR identifiabil-
ity matrices (A).
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2 s. These findings can be explained by considering that test–re-
test reliability of resting state fMRI data is largely affected by 
the noise introduced by scanner artifacts, subject movements, 
changes in cognitive or emotional states, and, importantly, by 
physiological factors (Caballero- Gaudes and Reynolds  2017). 
Cardiorespiratory brain pulsations are temporally correlated 
with the BOLD fMRI signal, which means that in typical rs- 
fMRI protocols with TRs ∼2 s, these confounding components 
are added up to and can mask the intrinsic neural signal (Özbay 
et  al.  2019). In fact, FC BOLD fluctuations predominantly lie 
below 0.1 Hz frequencies (Cordes et  al.  2001), thus a low- pass 
filter is commonly applied to retain only frequencies below this 
threshold, and to remove signal from non- neuronal sources, 
such as respiratory rate (0.2–0.3 Hz; Kiviniemi et al. 2016) and 
cardiac pulsations (0.8–1.2 Hz; Kiviniemi et al. 2016). However, 
this denoising procedure is effective only when TR is short 
(< 0.5 s; Jahanian et  al.  2019; Liu  2016; Reynaud et  al.  2017), 
reducing the noise components in the signal and thus improv-
ing test–retest reliability (Jahanian et  al.  2019). Instead, when 
TR is higher than 0.5 s, cardiac fluctuations are undersam-
pled and aliased into the lower frequency range, which makes 

physiological noise difficult to remove with band- pass filtration 
(Lowe, Mock, and Sorenson 1998; Huotari et al. 2019). The con-
sequent increase of aliased noise in the signal is consistent with 
the significantly lower differential identifiability we registered 
in TR 0.7, 1, and 2 s runs. As further evidence, not applying any 
band- pass filter significantly decreased identifiability at TR 
0.5 s, while it increased at TRs higher than 0.5 s (see Section S6). 
Finally, at TR 3 s, according to the Nyquist theorem, the BOLD 
signal is sampled at ∼0.16 Hz, implicitly low- pass filtering respi-
ratory and cardiovascular noise (Huotari et al. 2019), which is 
consistent with the improved test–retest reliability. A simulation 
is included in the Supporting Information Appendix to further 
support this explanation.

4.2   |   Between- TR Subject Identifiability Is 
Maximized When TRs Are More Similar

Subject identifiability was successful even when considering 
rs- fMRI acquisitions with different TRs. However, identifiabil-
ity gradually decreased as TRs became more dissimilar. This 

TABLE 4    |    Between- TR statistics summary table.

[TRi, 
TRj] (s)

pFDR (Wilcoxon)

[0.5, 
0.7] [0.5, 1] [0.5, 2] [0.5, 3] [0.7, 1] [0.7, 2] [0.7, 3] [1, 2] [1, 3] [2, 3]

All volumes Idiff [0.5, 1] 0.57 — — — — — — — — —

SR 1.00 — — — — — — — — —

Idiff [0.5, 2] 0.29 0.35 — — — — — — — —

SR 0.75 1.00 — — — — — — — —

Idiff [0.5, 3] 0.34 0.78 0.60 — — — — — — —

SR 1.00 0.91 0.45 — — — — — — —

Idiff [0.7, 1] 0.57 0.43 0.28 0.28 — — — — — —

SR 0.07 0.16 0.23 0.07 — — — — — —

Idiff [0.7, 2] 0.71 0.71 0.34 0.35 0.28 — — — — —

SR 0.07 0.16 0.23 0.07 1.00 — — — — —

Idiff [0.7, 3] 0.74 0.71 0.34 0.43 0.57 0.86 — — — —

SR 0.07 0.16 0.23 0.07 1.00 1.00 — — — —

Idiff [1, 2] 0.43 0.57 0.28 0.28 0.90 0.43 0.60 — — —

SR 0.07 0.07 0.09 0.06 1.00 1.00 1.00 — — —

Idiff [1, 3] 0.60 0.47 0.28 0.28 0.60 0.72 0.85 0.53 — —

SR 0.06 0.07 0.07 0.06 0.75 0.75 0.75 1.00 — —

Idiff [2, 3] 0.58 0.53 0.28 0.28 0.73 0.28 0.53 0.70 0.28 —

SR 0.11 0.16 0.23 0.07 1.00 1.00 1.00 1.00 0.75 —

All vs. 150 
volumes

Idiff 0.12 0.01* 0.01* 0.01* 0.06 0.05* 0.01* 0.04* 0.39 0.39

SR 0.16 0.31 0.16 0.31 0.42 0.56 0.56 0.56 0.42 1.00

Note: For each comparison between TR combinations, pFDR values are reported for the all volumes analysis (*pFDR < 0.05, **pFDR < 0.001). Moreover, for each TR 
combination, pFDR values resulting from the comparison between the all volumes and the 150 volumes distributions are summarized. Wilcoxon signed rank was 
used for differential identifiability (Idiff), while McNemar's test for proportions in paired samples was employed for success rate (SR). Statistics refer to functional 
connectivity matrices reconstructed by using the optimal number of principal components.
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confirms the intuition that the more similar the signal sampling, 
the higher the test–retest reliability. We expanded on this quite 
trivial finding by showing that identifiability between close but 
slow TRs (i.e., 2 and 3 s) tended to be higher than identifiability 
between close but fast TRs (i.e., 0.5 and 0.7 s), despite the abso-
lute difference in TR being higher in the former (1 s) rather than 
in the latter case (0.2 s). In fact, previous results underlined that 
physiological (cardiac and respiratory) and low frequency fluc-
tuations reflecting FC exhibited maps increasingly correlated 
as a function of TR increase, both when considering spatial 
power and frequency power analysis (Huotari et al. 2019). As a 
consequence, at close but slow TRs noise is aliased into neural 

frequency more similarly than in close but fast TRs, which leads 
to a higher test–retest reliability, even though not significantly 
different.

4.3   |   The Number of rs- fMRI Volumes Affects 
Between- TR but Not Within- TR Subject 
Identifiability

Our experimental design used a constant acquisition time 
for each rs- fMRI run (7.4 min), which led to different num-
ber of brain volumes (NoV) for each TR (TR(s)/NoV = 0.5/905; 

FIGURE 4    |    Edgewise intra- class correlation (ICC) analysis of subject identifiability and task identifiability. (A, B) Edgewise subject (A) and TR 
ICC (B) matrices, showing only functional connections with ICC values significantly higher than the mean distribution (i.e., lying in the 95th per-
centile). The brain regions are ordered according to Yeo's (Yeo et al. 2011) functional resting state networks (FNs): visual (VIS), somato- motor (SM), 
dorsal attention (DA), ventral attention (VA), limbic system (L), fronto- parietal (FP), default mode network (DMN), and subcortical regions (SUB). 
The colored dots refer to within FNs networks edges, while gray dots refer to between FNs networks edges, as in Amico and Goñi (2018). (C, D) 
Violin plots of edgewise subject (C) and TR (D) ICC distributions for the five FNs with the highest mean ICC value. Each colored violin plot indicates 
a different within FN, while gray violin plots indicate between FNs ICC distributions. The horizontal solid black line within each violin plot indi-
cates the mean value of each distribution; the solid red line across the violin plots, instead, indicates the whole- brain mean ICC value, as in Amico 
and Goñi (2018). The most prominent FNs for subject's identifiability (C) resulted: SUB, DMN, and the DMN- SM, VA- DMN, VA- SM interactions. 
For TR identifiability (D) the most relevant FNs were: FP, DA, SUB, VIS and the VIS- DA interactions. (E, F) Brain renders of nodal ICC, computed 
as the column- wise mean of the edgewise ICC matrices for both subject (E) and TR (F) ICC, and represented at 5th–95th percentile threshold. Nodal 
ICC gives an assessment of the overall prominence of each brain region for subject's and TR identifiability. All plots refer to the all volumes analysis. 
Brain renders were created by running the Matlab code available in the Surface projection GitHub repository (https:// github. com/ rudyv dbrink/ Surfa 
ce_ proje ction , Alexander- Bloch et al. 2018).
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0.7/646; 1/452; 2/226; 3/150). We investigated the effect of 
number of volumes on identifiability by using the full time 
series of each protocol and the first 150 volumes. In both with-
in-  and between- TR analysis, subjects could be correctly iden-
tified even when a limited number of volumes was used, in 
agreement with previous literature (Amico and Goñi  2018). 
However, when comparing data acquired with different TRs, 
Idiff computed on the whole time course was significantly 
higher than when considering only a subset of volumes. This 
supports prior evidence that reproducibility improves with 
longer scanning length, and thus with a larger amount of data 
(Anderson et al. 2011; Birn et al. 2013; Noble et al. 2017, Van 
De Ville et al. 2021). When comparing same TR data, instead, 
the number of volumes did not have any significant impact 
on Idiff. In other words, connectome fingerprinting enriched 
by group- level PCA was robust enough to guarantee a good 
test–rest reliability regardless of TR and number of volumes 
here tested, and, in the most extreme case, even across the 
equivalent of two acquisitions lasting 1.25 min each at TR 
0.5 s (150 volumes). Our findings differ from previous studies 
suggesting that long scanning acquisitions, ranging from 30 
(Gordon et al. 2017; Mueller et al. 2015; Noble et al. 2017) up 
to 90 min (Laumann et al. 2015), are needed for achieving reli-
able FC estimates. This disagreement could be due to our use 
of PCA for group- level fingerprinting denoising and to the fact 
that our data were collected in a single session. In contrast, 
previous studies concatenated rs- fMRI data acquired across 
different days or even months. Indeed, within- session iden-
tifiability was found to be significantly higher than between- 
session identifiability (Dufford et al. 2021).

In addition, our results also challenge the evidence that about 
5–10 min of data are sufficient to ensure a stable measurement 
of connectivity (Choe et al. 2015; Jahanian et al. 2019; Shehzad 
et  al.  2009; Tomasi, Shokri- Kojori, and Volkow  2017; Van Dijk 
et al. 2010). Instead, our study shows that, even with very short 
scanning duration, the richness of information coming with 
higher TR, and thus higher number of acquired timepoints, guar-
anteed a test–retest reliability as good as when data were acquired 
with standard protocols (∼2–3 TRs). This is consistent with pre-
vious findings generated by randomly (Shah et al. 2016) or sys-
tematically (Birn et al. 2013; Huotari et al. 2019) downsampling 
BOLD signal, and by employing feedforward neural networks on 
an even more limited number of timepoints in fast fMRI acquisi-
tions (TR(s)/NoV = 0.72/100, Sarar, Rao, and Liu 2021).

4.4   |   The Contribution of Specific Brain Networks 
to Edgewise Connectivity to rs- fMRI Fingerprinting

In addition to assessing fingerprinting at whole- brain level, we 
employed ICC to investigate whether some specific edges will 
play a differential role in making each individual's functional 
profile unique. We found that connections within and between 
DMN and ventral attention network (classically classified as as-
sociative areas, Damoiseaux et al. 2006) were the main drivers of 
subject identifiability. This was in line with prior results (Amico 
and Goñi 2018; Finn et al. 2015; Van De Ville et al. 2021), but 
we extended this result by showing that this effect was not im-
pacted by the variability in the TR of the rs- fMRI acquisition 
protocols.

In order to explain this resting state networks' specific role in 
subject identifiability, a link can be speculated with the intrinsic 
neural activity profile and the cognitive processes characterizing 
these brain circuits (Van De Ville et al. 2021). Previous studies 
concurred to distinguish between two sets of cortical regions. 
On one hand, visual, auditory, somatosensory, and motor corti-
ces are mainly responsible for detecting real- time rapid and po-
tentially dangerous changes in the environment. On the other 
hand, frontal, temporal, and parietal regions, are involved in 
sustain activity related to working memory (Zylberberg and 
Strowbridge  2017), decision- making (Gold and Shadlen  2007), 
hierarchical reasoning (Sarafyazd and Jazayeri 2019), language 
(Binder et al. 2009), emotion regulation (Laird et al. 2011), and, in 
general, cognitive processes which require a multimodal integra-
tion of information. This differentiation is supported by evidence 
about synaptic receptor and ion channel gene expression (Cioli 
et al. 2014), cytoarchitectonic profiles (Gao et al. 2020), gray mat-
ter myelination gradients (Huntenburg et  al.  2017), functional 
and anatomical network properties (see Mesmoudi et al. 2013), 
behavioral gradients (Margulies et al. 2016), and notably, neuro-
nal time scales, with somatomotor regions exhibiting short fir-
ing patterns, and associative areas showing longer intrinsic time 
scales (Gao et al. 2020; Hacker et al. 2017; Runyan et al. 2017).

A relationship between these gradients and human brain iden-
tifiability can be hypothesized, by considering that low- level 
sensory- motor areas are involved in the fast processing of po-
tentially dangerous information coming from the external en-
vironment. Thus, they code for a primitive and almost merely 
evolutionary function, common to all human (and non- human) 
brains. As such, no fundamental role in distinguishing between 
single individuals can be attributed to these circuits (Van De Ville 
et  al.  2021). On the contrary, subject connectome uniqueness 
mainly resides in high- level associative areas, where functional 
patterns are more decoupled, and thus less predictable on the 
basis of the structural organization of brain anatomy (Preti and 
Van De Ville 2019). Moreover, interesting insights might come 
in the future by investigating the relationship between myelin 
gradients (higher myelin content in somatomotor that in associa-
tive areas, Huntenburg et al. 2017) and brain plasticity (Bonetto 
et al. 2020): frontal areas are among the last regions to the brain 
where myelin- associated factors contribute to closing the criti-
cal period in the transition between adolescence and adulthood 
(Crews, He, and Hodge 2007), and play a fundamental role in FC 
fingerprinting during early brain development (Hu et al. 2022). 
It is intriguing to think that areas which make us unique are the 
ones more likely to be affected by experience- based learning and 
more responsible for reasoning, goal setting, and emotional reg-
ulation, but these are only speculations which need fact- based 
and data- driven investigation (St- Onge et al. 2023).

ICC also allowed us to explore the role of each edge to distinguish 
between different TR runs. An opposite pattern with respect to 
edgewise subject identifiability emerged: connections within and 
between sensory and subcortical areas were shown to contribute 
to the separation between TRs. These findings can be explained 
by considering that low- level cognition areas are characterized 
by a brief transient neural activity which is registered by faster 
but not by slower TRs. Some contribution to TR identifiability 
was also shown by high- level circuits, which have longer intrin-
sic time scales. In other words, information in associative areas 
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unfolds over a longer period of time, and differences in how often 
the signal is sampled according to different TRs could affect the 
amount and type of information registered in these areas at dif-
ferent acquisition TRs. In addition, as discussed in previous para-
graphs, aliasing of high frequency noise into lower frequencies 
spectra is an important factor in separating between TRs, and 
could specifically interfere with the relevant neural signal from 
associative areas, characterized by longer time scale activity.

In conclusion, we replicated previous fingerprinting results 
(Amico and Goñi 2018; Finn et al. 2015; Van De Ville et al. 2021) 
distinguishing two sets of brain networks which provide differ-
ent contributions to identifiability. These findings are also con-
sistent with studies investigating the temporal organization of 
large- scale brain activity, and assigning a key role to dynamic 
spontaneous transitions between two metastates, a sensorimo-
tor/perceptual and a cognitive/associative one (Vidaurre, Smith, 
and Woolrich 2017). Our work extends this notion by emphasiz-
ing how these metastates affect subject and TR identifiability, 
and how this identifiability is affected by the fMRI TR.

4.5   |   Limitations and Future Directions

This study has a number of limitations. First, the sample size 
of 20 subjects is limited, despite the fact that each subject un-
derwent five different acquisition runs, thus actually having 100 
observations. Second, we did not collect peripheral physiologi-
cal measures such as cardiac and respiration activity, to verify 
a uniform physiological state of the subjects across acquisitions 
with different TRs. Future studies are needed to validate our 
findings and our explanation of the results, in particular ap-
plying band- pass filters (and other denoising pipelines, such as 
AROMA, FIX, etc.) optimized for the intermediate TRs we here 
took into account. Moreover, it still remains to be systematically 
evaluated whether the advantage of applying PCA reconstruc-
tion to increase subject identifiability can be generalized, espe-
cially to between- group fingerprinting designs with a higher 
heterogeneity within the cohort's functional connectome pro-
files (e.g., cross- sectional studies in clinical populations, where 
the potentially limited shared variance in FC—due to the dis-
ease—between patients at different stages and healthy controls, 
would make it more appropriate to perform PCA on each group 
separately). As a further matter, we found that brain associative 
areas gave the highest contribution to fingerprinting regardless 
of TR. However, Van De Ville et al.  (2021) showed that “burst 
of identifiability” can be detected at fast timescales also in low- 
level regions. Future work should explore the relationship be-
tween fMRI acquisition TR and fingerprinting by employing a 
sliding windows approach (Van De Ville et  al.  2021) or other 
models assessing dynamic FC (Keilholz et al. 2017; Preti, Bolton, 
and Van De Ville 2017). Finally, our study only evaluates resting- 
state fMRI data. Applying the same framework to task- based 
data could provide interesting insights on whether functional 
connectomes derived by different TR acquisitions can explain 
different cognitive dimensions (Sareen et al. 2021). In fact, it has 
been proven that the temporal scales of fingerprinting can be 
linked to behavior, with faster time scales more related to, for 
instance, multisensory stimulation and visuospatial attention, 
and slower time scales more related, for example, to language, 
social cognition and working memory (Van De Ville et al. 2021). 

Following this rationale, subject identifiability might be more or 
less successfully achieved according to the different tasks sub-
jects perform in the MRI scanner (Amico and Goñi 2018; Finn 
et al. 2015; Van de Ville et al. 2021), and to the protocols' TR.

5   |   Conclusion

This study demonstrates the robustness and reliability of FC fin-
gerprinting derived from rs- fMRI across a wide range of TRs, in-
cluding “fast” (TR 0.5 s) and “slow” (TR 3 s) full brain coverage, 
with intermediate values within the same group of healthy vol-
unteers. Interestingly, while always high, subject identifiability 
was influenced by the TR. In fact, our work shows that the fast-
est and slowest TRs improved identifiability relative to the other 
intermediate TRs, which is consistent with a relatively lower 
contribution of physiological noise. The study also confirms that 
FC fingerprints have different timescales across the brain. In 
particular, high- level associative areas being more stable across 
protocols with different TRs, contributed more to subject identi-
fiability. Instead, low- level sensorimotor networks were mostly 
responsible for differentiating subjects between different TR ac-
quisitions. Overall, these findings suggest that pooling rs- fMRI 
data for large- sample fingerprinting analyses is feasible, but TR 
differences should be taken into consideration to reduce identi-
fiability biases and to understand the contribution of different 
functional networks to the fingerprints and related biomarkers.
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