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Abstract

Diffusion MRI is a well established imaging modality providing a powerful way
to probe the structure of the white matter non-invasively. Despite its poten-
tial, the intrinsic long scan times of these sequences have hampered their use in
clinical practice. For this reason, a large variety of methods have been recently
proposed to shorten the acquisition times. Among them, spherical deconvolu-
tion approaches have gained a lot of interest for their ability to reliably recover
the intra-voxel fiber configuration with a relatively small number of data sam-
ples. To overcome the intrinsic instabilities of deconvolution, these methods use
regularization schemes generally based on the assumption that the fiber orienta-
tion distribution (FOD) to be recovered in each voxel is sparse. The well known
Constrained Spherical Deconvolution (CSD) approach resorts to Tikhonov regu-
larization, based on an `2-norm prior, which promotes a weak version of sparsity.
Also, in the last few years compressed sensing has been advocated to further
accelerate the acquisitions and `1-norm minimization is generally employed as
a means to promote sparsity in the recovered FODs. In this paper, we provide
evidence that the use of an `1-norm prior to regularize this class of problems is
somewhat inconsistent with the fact that the fiber compartments all sum up to
unity. To overcome this `1 inconsistency while simultaneously exploiting spar-
sity more optimally than through an `2 prior, we reformulate the reconstruction
problem as a constrained formulation between a data term and and a sparsity
prior consisting in an explicit bound on the `0 norm of the FOD, i.e. on the
number of fibers. The method has been tested both on synthetic and real data.
Experimental results show that the proposed `0 formulation significantly re-
duces modeling errors compared to the state-of-the-art `2 and `1 regularization
approaches.

Keywords: diffusion MRI, HARDI, reconstruction, compressed sensing

∗Corresponding author. Postal address: EPFL STI IEL LTS5, ELD 232, Station 11,
CH-1015 Lausanne (Switzerland). Phone: +41 (0) 21 6934622

Email address: alessandro.daducci@epfl.ch (A. Daducci)

1



1. Introduction

Fiber-tracking is probably one of the most fascinating applications in dif-
fusion MRI (dMRI), gathering a lot of attention since its introduction because
of its ability to reconstruct the main neuronal bundles of the brain from the
acquired data. In fact, the random movement of the molecules in the white
matter can be exploited for mapping brain connectivity, and structures oth-
erwise invisible with other imaging modalities can be highlighted. The study
of this structural connectivity is of major importance in a fundamental neuro-
science perspective, for developing our understanding of the brain, but also in a
clinical perspective, with particular applications for the study of a wide range
of neurological disorders.

The most powerful acquisition modality is diffusion spectrum imaging (DSI)
(Wedeen et al., 2005). It relies on cartesian signal sampling and is known to
provide good imaging quality, but it is too time-consuming to be of real in-
terest in a clinical perspective. Diffusion tensor imaging (DTI) (Basser et al.,
1994) is always preferred instead. DTI is a very fast model-based technique
providing valuable diagnostic information but, on the contrary, it is unable to
model multiple fiber populations in a voxel. In a global connectivity analysis
perspective, this constitutes a key limiting factor. Accelerated acquisitions re-
lying on a smaller number of samples while providing accurate estimations of
the intra-voxel fiber configuration thus represent an important challenge.

Recently, an increasing number of high angular resolution diffusion imag-
ing (HARDI) approaches have been proposed for tackling this problem. In
particular, spherical deconvolution (SD) based methods formed a very active
area in this field (Tournier et al., 2004; Alexander, 2005; Tournier et al., 2007;
Dell’acqua et al., 2007). These methods rely on the assumption that the signal
attenuation acquired with diffusion MRI can be expressed as the convolution
of a given response function with the fiber orientation distribution (FOD). The
FOD is a real-valued function on the unit sphere

(
S2
)

giving the orientation and
the volume fraction of the fiber populations present in a voxel. The response
function, or kernel, describes the dMRI signal attenuation generated by an iso-
lated single fiber population; it can be estimated from the data or represented by
means of parametric functions. SD approaches represented a big step in reduc-
ing the acquisition time of diffusion MRI, but are known to suffer heavily from
noise and intrinsic instabilities in solving the deconvolution problem. For this
reason, a regularization scheme is normally employed. A variety of approaches
have been proposed, which are generally based on the two assumptions that the
FOD is (i) a non-negative function and (ii) sparse, i.e. with only a few nonzero
values, either explicitly or implicitly. In fact, at the imaging resolution available
nowadays, diffusion MRI is sensitive only to the major fiber bundles and it is
commonly accepted that it can reliably disentangle up to 2-3 different fiber pop-
ulations inside a voxel (Jeurissen et al., 2010; Schultz, 2012). Hence, the FOD
can reasonably be considered sparse in nature. In particular, the state-of-the-art
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Constrained Spherical Deconvolution (CSD) approach of Tournier et al. (2007)
resorts to Tikhonov regularization, based on an `2-norm prior. While its pri-
mary purpose is to ensure the positivity of the FOD, it actually also implicitly
promotes sparsity, but only a weak version of it.

The recent advent of compressed sensing (CS) theory (Donoho, 2006; Candès
et al., 2006; Baraniuk, 2007) provided a mathematical framework for the recon-
struction of sparse signals from under-sampled measurements mainly in the
context of convex optimization. CS has inspired new advanced approaches in
the last few years for solving the reconstruction problem in diffusion MRI and
allowed a further dramatic reduction in the number of samples needed to accu-
rately infer the fiber structure in each voxel, by promoting sparsity explicitly.
For instance, Tristán-Vega and Westin (2011) and Michailovich et al. (2011)
recovered the orientation distribution function (ODF) by using different repre-
sentations for the response function, while Merlet et al. (2011) and Rathi et al.
(2011) focused on the full ensemble average propagator (EAP) of the diffusion
process. In this work, however, we focus on spherical deconvolution based-
methods and the quantity of interest is the FOD. In general these methods are
based on `1 minimization, where the `1 norm is defined as ||x||1 =

∑n
i |xi| for

any vector x ∈ Rn, and the common goal is to recover the FOD with fewest
non-zeros that is compatible with the acquired dMRI data (Ramirez-Manzanares
et al., 2007; Pu et al., 2011; Landman et al., 2012; Mani et al., 2012). However,
a minimum `1-norm prior is inconsistent with the physical constraint that the
sum of the volume fractions of the compartments inside a voxel is intrinsically
equal to unity.

In this paper, we propose to exploit the versatility of compressed sensing and
convex optimization to solve what we understand as the `1 inconsistency , while
simultaneously exploiting sparsity more optimally than the approaches based on
the `2 prior, and improve the quality of FOD reconstruction in the white matter.
Our approach is as follows. Strictly speaking, the FOD sparsity is the number of
fiber populations, thus identified by the `0 norm of the FOD. `0-norm problems
are generally intractable as they are non convex, which explains the usual convex
`1-norm relaxation in the framework of compressed sensing. To this end, some
greedy algorithms have been proposed to approximate the `0 norm through
a sequence of incremental approximations of the solution, such as Matching
Pursuit (Mallat and Zhang, 1993) and Orthogonal Matching Pursuit (Pati et al.,
1993). However, the greedy and local nature of these algorithms, i.e. in the
sense that compartments are identified sequentially, makes them suboptimal
as compared to more robust approaches based on convex optimization, which
are global in nature. In particular, a reweighted `1 minimization scheme was
developed by Candès et al. (2008) in order to approach `0 minimization by a
sequence of convex weighted-`1 problems. We thus solve the `0 minimization
problem by making use of a reweighting scheme and evaluate the effectiveness of
the proposed formulation in comparison with state-of-the-art aprroaches based
on either `2 or `1 priors. We report results on both synthetic and real data.
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2. Materials and methods

2.1. Intra-voxel structure recovery via spherical deconvolution

As shown by Jian and Vemuri (2007), spherical deconvolution methods can
be cast into the following computational framework:

S(b, q̂)/S0 =

∫
Rq̂(p̂) f(p̂) dΩ(p̂), (1)

where f is the FOD to be estimated, Rq̂ the response function rotated in di-
rection q̂ ∈ S2 and the integration is performed over the unit sphere with
p̂ = (φ, θ) ∈ S2 and dΩ = sinφdφ dθ. S(b, q̂) represents the dMRI signal
measured on the q-space shell acquired with b-value b in direction q̂ ∈ S2, while
S0 is the signal acquired without diffusion weighting. The FOD f is normally
expressed as a linear combination of basis functions, e.g. spherical harmonics, as
f(p̂) =

∑
j wjfj(p̂). The measurement process can thus be expressed in terms

of the general formulation:
y = Φx+ η, (2)

where x ∈ Rn+ are the coefficients of the FOD, y ∈ Rm is the vector with the
dMRI signal measured in the voxel with yi = S(b, q̂i)/S0 for i ∈ {1, . . . ,m},
η represents the acquisition noise and Φ = {φij} ∈ Rm×n is the observation
matrix modeling explicitly the convolution operator with the response function
R, with φij =

∫
Rq̂i(p̂) fj(p̂) dΩ(p̂). Several choices for the convolution kernels

and basis functions exist in the literature; more details will be provided on the
specific Φ used with each algorithm considered in this work.

2.2. `2 prior

In the original formulation of Tournier et al. (2004), the FOD x and the
measurements y were expressed by means of spherical harmonics (SH), and
the deconvolution problem was solved by a simple matrix inversion. To reduce
noise artifacts, a low-pass filter was applied for attenuating the high harmonic
frequencies. The method was improved in Tournier et al. (2007) by reformulat-
ing the problem as an iterative procedure where, at each iteration, the current
solution x(t) is used to drive to zero the negative amplitudes of the FOD at the
next iteration with a Tikhonov regularization (Tikhonov and Arsenin, 1977):

x(t+1) = argmin
x

||Φx− y||22 + λ2||L(t)x||22, (3)

where ||·||p are the usual `p norms in Rn, the free parameter λ controls the degree
of regularization and L(t) can be understood as a simple binary mask preserving
only the directions of negative or small values of x(t). The `2-norm regularization
term therefore tends to send these values to zero, as probably spurious, hence
favoring large positive values. Interestingly, beyond the claimed purpose of
enforcing positivity , the operator L thus also implicitly promotes a weak version
of sparsity. However, this `2 prior does not explicitly guarantee either positivity
or sparsity in the recovered FOD. In Alexander (2005) a maximum-entropy
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regularization was proposed to recover the FOD as the function that exhibits the
minimum information content. The method showed higher robustness to noise
than previous approaches, but was limited by the very high computational cost
and did not promote sparsity. Other regularization schemes have been proposed
in the literature, but FOD sparsity has never been addressed with a rigorous
mathematical formulation.

2.3. `1 prior

Compressed sensing provides a powerful mathematical framework for the
reconstruction of sparse signals from a low number of data (Donoho, 2006;
Candès et al., 2006), mainly in the context of convex optimization. According
to this theory, it is possible to recover a signal from fewer samples than the
number required by the Nyquist sampling theorem, provided that the signal
is sparse in some sparsity basis Ψ. Let x ∈ Rn be the signal to be recovered
from the m � n linear measurements y = Φx ∈ Rm and α ∈ Rn a sparse
representation of x through Ψ ∈ Rn×n. If the observations y are corrupted by
noise and Φ obeys some randomness and incoherence conditions, then the signal
x = Ψα can be recovered by solving the convex `1 optimization problem:

argmin
α

||α||1 subject to ||Φ Ψα− y||2 ≤ ε, (4)

where ε is a bound on the noise level. Assuming Gaussian noise, the square `2
norm of the residual represents the log-likelihood of the data and follows a χ2

distribution. For a sufficiently large number of measurements, this distribution
is extremely concentrated around its mean value. This fact is related to the well-
known phenomenon of concentration of measure in statistics. Consequently, ε
can be precisely defined by the mean of the χ2.

In the context of FOD reconstructions, the sparsity basis Ψ boils down to
the identity matrix, thus x = α. In Ramirez-Manzanares et al. (2007) and Jian
and Vemuri (2007) the sensing basis Φ, also called dictionary, is generated by
applying a set of rotations to a given Gaussian kernel (i.e. diffusion tensor)
and the sparsest coefficients x of this linear combination best matching the
measurements y are recovered by solving the following constrained minimization
problem:

argmin
x≥0

||x||1 subject to ||Φx− y||2 ≤ ε, (5)

where the positivity constraint on the FOD values was directly embedded in the
formulation of the convex problem. For SNR > 2 the noise in the magnitude
dMRI images can be assumed Gaussian-distributed1 (Gudbjartsson and Patz,
1995). However, a statistical estimation of ε is not reliable, precisely because
the number of measurements is very small and the χ2 is not really concentrated

1Since dMRI data is commonly normalized by the baseline S0, the S0 image must be
accurately estimated in order to keep the same noise statistics of the non-normalized signal.
This is normally the case, though, as multiple S0 volumes are commonly acquired in practice.
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around its mean value. Thus, ε becomes an arbitrary parameter of the algo-
rithm. At very low SNR, one can also extrapolate the choice of the `2 norm as
a simple penalization term independent of statistical considerations.

The reconstruction problem can also be re-formulated as a regularized (as
opposed to constrained) `1 minimization as in Landman et al. (2012) and Pu
et al. (2011):

argmin
x≥0

||Φx− y||22 + β ||x||1, (6)

where the free parameter β controls the trade-off between the data and the spar-
sity constraints. In general, β depends on the acquisition scheme and the noise
level and it must be empirically optimized. Following the general CS approach,
problems (5) and (6) consider an `1-norm prior on the FOD x. However, in
the dMRI context, a minimum `1-norm prior is inconsistent with the physical
constraint that the sum of the volume fractions of the compartments inside a
voxel is intrinsically equal to unity, i.e. ||x||1 ≡

∑
i xi = 1. For this reason, we

reckon that also these `1-based formulations are intrinsically suboptimal. Fig. 1
illustrates this inconsistency by reporting the `1 norm of reconstructed FODs
as a function of the amplitude of measurement noise.

Our main goal in this work is to demonstrate the suboptimalities of the
approaches based on `2 and `1 priors and to suggest a new formulation, based
on an `0 prior, adequately characterizing the actual sparsity lying in the FOD.

2.4. `0 prior

In the aim of adequately characterizing the FOD sparsity, we re-formulate
the reconstruction problem as a constrained `0 minimization problem:

argmin
x≥0

||Φx− y||22 subject to ||x||0 ≤ k, (7)

where || · ||0 explicitly counts the number of nonzero coefficients and k represents
an upper bound on the expected number of fiber populations in a voxel.

As already stated, the `0 problems as such are intractable. The reweight-
ing scheme proposed by Candès et al. (2008) proceeds by sequentially solving
weighted `1 problems of the form (7), where the `0 norm is substituted by a
weighted `1 norm defined as ||wα||1 =

∑
i wi |αi|, for positive weights wi and

where i indexes vector components. At each iteration, the weights are set as the

inverse of the values of the solution of the previous problem, i.e. w
(t)
i ≈ 1/x

(t−1)
i .

At convergence, this set of weights makes the weighted `1 norm independent of
the precise value of the nonzero components, thus mimicking the `0 norm while
preserving the tractability of the problem with convex optimization tools. Of
course, it is not possible to have infinite weights for null coefficients; so a stability
parameter τ must be added to the coefficients in the selection of the weights.

The main steps of the reweighted scheme are reported in the algorithm 1;
in the remaining of the manuscript we will refer to it as L2L0, as it is based
on a `0 prior. We empirically set τ = 10−3 and the procedure was stopped if
||x(t)−x(t−1)||1
||x(t−1)||1

< 10−3 between two successive iterations or after 20 iterations.
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Algorithm 1 Reweighted `1 minimization for intra-voxel structure recovery

Input: Diffusion MRI signal y ∈ Rm and sensing basis Φ ∈ Rm×n
Output: FOD x ∈ Rn

Set the initial status:
t← 0 and w

(0)
i ← 1, i = 1, . . . , n (the symbol← denotes assignment)

repeat
Solve the problem:

x(t) ← argmin
x≥0

||Φx− y||22 subject to ||w(t)x||1 ≤ k

Update the weights:
w

(t+1)
i = 1

|x(t)
i |+τ

t← t + 1
until stopping criterion is satisfied
x← x(t−1)

At the first iteration the weighted `1 norm is the standard `1 norm given w = 1,
and therefore the constraint ||w(0)x||1 ≤ k is a weak bound on the sum of the
fiber compartments and does not constitute a limitation in the procedure.

The proposed `0 approach thus strongly promotes sparsity (by opposition
with the `2 approach) and circumvents the `1 inconsistency. It is noteworthy
that our formulation at least partially addresses the problem of arbitrary pa-
rameters such as ε in (5) and β in (6), or λ in (3). Our parameter k indeed
explicitly identifies an upper bound on the number of fibers. As discussed before
and largely assumed in the literature, we can expect to have at maximum 2-3
fiber compartments in each voxel. The algorithm was found to be quite robust
to the choice of k, and differences were not observed for values up to k = 5.

Finally, an explicit constraint
∑
i xi = 1 might have been added, as it rep-

resents the physical property that the volume fractions must sum up to unity.
For the sake of simplicity, in this work this constraint was not included (as it
is always the case), assuming it is carried over by the data and well-designed
bases as pointed out by Ramirez-Manzanares et al. (2007). In sections 3.1.1 and
3.2.3 we will provide evidence that actually this physical constraint is not met
when using `2 or `1 priors, whereas it is correctly satisfied with our proposed `0
formulation. This might have severe consequences on the reconstruction quality.

2.5. Comparison framework

We compared our `0 approach based on problem (7) against state-of-the-art
`2 and `1 approaches respectively based on problems (3) and (6), and referred
to as L2L2 and L2L1. To run L2L2 reconstructions we made use of the original
mrtrix implementation of Tournier et al. (2012), setting the optimal parameters
as suggested by the software itself. To solve the L2L1 and L2L0 problems we
used the SPArse Modeling Software (SPAMS)2, an open-source toolbox written
in C++ for solving various sparse recovery problems. SPAMS contains a very

2http://spams-devel.gforge.inria.fr
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fast implementation of the LARS algorithm (Efron et al., 2004) for solving
the LASSO problem and its variants as the L2L1 problem in equation (6) and
the weighted `1 minimizations required for our L2L0 approach in equation (7).
Numerical simulations on synthetic data were performed to quantitatively assess
the performance of L2L2, L2L1 and L2L0 under controlled conditions. The
effectiveness of the three priors was also assessed in case of real human brain
data.

2.6. Numerical simulations

Independent voxels with two fiber populations crossing at specific angles
(30◦−90◦ range) and with equal volume fractions were synthetically generated.
The signal S corresponding to each voxel configuration was simulated by using
the exact expression given in Soderman and Jonsson (1995) for the dMRI signal
attenuation from particles diffusing in a restricted cylindrical geometry of radius
ρ and length L with free diffusion coefficient D0. The following parameters were
used (Özarslan et al., 2006; Jian and Vemuri, 2007): L = 5 mm, ρ = 5 µm,
D0 = 2.02 × 10−3 mm2/s, ∆ = 20.8 ms, δ = 2.4 ms. The signal S was
contaminated with Rician noise (Gudbjartsson and Patz, 1995) as follows:

Snoisy =
√

(S + ξ1)2 + (ξ2)2, (8)

where ξ1, ξ2 ∼ N (0, σ2) and σ = S0/SNR corresponds to a given signal-to-
noise ratio on the S0 image. We assumed S0 = 1 without loss of generality.
Because of this assumption, we have implicitly considered a constant echo-time
for acquisitions with different b-values, thus ignoring the fact that higher b-
values normally require longer echo-times and therefore the images have a lower
signal-to-noise ratio. The study of the impact of the echo-time on different
regularization priors is beyond the scope of our investigation.

For each voxel configuration, the signal was simulated at different b-values,
b ∈ {500, 1000, . . . , 4000} s/mm2, and seven q-space sampling schemes were
tested, respectively with 6, 10, 15, 20, 25, 30 and 50 samples equally distributed
on half the unit sphere using electrostatic repulsion (Jones et al., 1999) assuming
antipodal symmetry in diffusion signal. Six different noise levels were consid-
ered, SNR = 5, 10, . . . , 30. For every SNR, 100 repetitions of the same voxel
were generated using different realizations of the noise. In our experiments, the
actual signal-to-noise ratio in the simulated signal was always in a range where
the Gaussian assumption on the noise holds. In the extreme setting with a
SNR = 5 on the S0 and b = 4000 s/mm2 the actual signal-to-noise ratio in the
diffusion weighted signal was about 1.4.

2.7. Evaluation criteria

As one of the aims of this work is to improve SD reconstructions, we adopted
standard metrics widely used in the literature (Ramirez-Manzanares et al., 2008;
Landman et al., 2012; Michailovich et al., 2011) to assess the quality of the
reconstructions with respect to number and orientation of the fiber populations:
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• Probability of false fiber detection. This metric quantifies the correct as-
sessment of the real number M of populations inside a voxel:

Pd =
|M − M̃ |

M
· 100%, (9)

where M̃ is the estimated number of compartments. As Pd does not
distinguish between missed fibers and extra compartments found by the
reconstruction, we also make use of the following two quantities where
needed, n− and n+, explicitly counting the number of under- and over-
estimated compartments, respectively.

• Angular error. This metric quantifies the angular accuracy in the estima-
tion of the directions of the fiber populations in a voxel:

εθ =
180

π
arccos( |d · d̃ |), (10)

where d is a true direction and d̃ is its closest estimate. The final value
is an average over all fiber compartments by first matching the estimated
directions to the ground-truth without using twice the same direction.

Peaks detection was performed using a local maxima search algorithm on the
recovered FOD, considering a neighborhood of orientations within a cone of 15◦

around every direction. For this reason, evaluation metrics are not sensitive for
small crossing angles and results are reported in a conservative range 30◦–90◦.
To filter out spurious peaks, values smaller than 10% of the largest peak were
discarded; in the case of L2L2 we had to increase this threshold to 20%, as
suggested in Tournier et al. (2007), in order to compare with the other methods.

2.8. Real data

The human brain data have been acquired from 3 young healthy volun-
teers on a 3T Magnetom Trio system (Siemens, Germany) equipped with a
32-channel head coil using standard protocols routinely used in clinical prac-
tice. Each dataset corresponds to a distinct subject. Two DTI scans (referred
in the following as dti30 and dti20) were acquired at b = 1000 s/mm2 using 30
and 20 diffusion gradient directions, respectively, uniformly distributed on half
the unit sphere using electrostatic repulsion (Jones et al., 1999). Other acqui-
sition parameters were as follows: TR/TE = 7000/82 ms and spatial resolution
= 2.5×2.5×2.5 mm for dataset dti30, while TR/TE = 6000/99 ms and spatial
resolution = 2.2× 2.2× 3 mm for dataset dti20. One HARDI dataset (referred
as hardi256) was acquired at b = 3000 s/mm2 using 256 directions uniformly
distributed on half the unit sphere (Jones et al., 1999), TR/TE = 7000/108 ms
and spatial resolution = 2.5 × 2.5 × 2.5 mm. To study the robustness of the
three algorithms to different under-sampling rates, the hardi256 dataset has
been retrospectively under-sampled and two additional datasets (hardi50 and
hardi20) have been created, consisting of only 50 and 20 diffusion directions, re-
spectively. These subsets of directions were randomly selected in order to be as
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much equally distributed on half the unit sphere as possible. The actual SNR in
the b = 0 images, computed as the ratio of the mean value in a region-of-interest
placed in the white matter and the standard deviation of the noise estimated in
the background, was about 60 in dti30, 30 in dti20 and 30 in hardi256.

2.9. Implementation details

In all our experiments, the response function was estimated from the data
following the procedure described in Tournier et al. (2007). A different response
function was estimated for every combination of experimental conditions (num-
ber of samples, b-value, SNR), which was then used consistently in the three
reconstruction methods. Specifically, the 300 voxels with the highest fractional
anisotropy were selected as expected to contain only one fiber population, and
a tensor was fitted from the dMRI signal in each. In the case of numerical
simulations, an additional set of data containing 300 voxels with a single fiber
compartment was generated for this scope. The estimated coefficients were
then averaged to provide a robust estimation of the signal profile for the re-
sponse function. As we used the tool estimate response of mrtrix for these
operations, the estimated kernel was already suitable to be fed into the L2L2

algorithm. Note that the fiber directions rely on a maxima identification from
the SH coefficients, which can take any continuous position on the sphere. Con-
versely, in the case of both L2L1 and L2L0, the estimated kernel was used to
create the dictionary Φ by rotating it along 200 orientations uniformly dis-
tributed on half the unit sphere. Because of this discretization, the resulting
grid resolution is about 10◦ and thus the intrinsic average error when measuring
the angular accuracy is about 5◦. In other words, the precision of both L2L1

and L2L0 is limited by the resolution of the grid used to construct the dictio-
nary. For this reason differences between methods below this threshold will be
considered not significant. Note that, to improve the precision it would be suffi-
cient to increase the number of directions of the discretization which, however,
would have serious consequences on the efficiency and stability of the minimiza-
tion algorithm. Interestingly, recent works of Tang et al. (2012) and Candés
and Fernandez-Granda (2012) explored a novel theory of CS with continuous
dictionaries, in the context of which FOD peaks could be thought to be located
with infinite precision. This topic will be the subject of future research. Finally,
in order to model adequately any partial/full contamination with cerebrospinal
fluid (CSF) that may occur in real data, an additional isotropic compartment
has been considered by adding a column to Φ. This compartment was estimated
by fitting an isotropic tensor in voxels within the lateral ventricles.

The free parameter controlling the degree of regularization had to be esti-
mated for both L2L2 and L2L1 algorithms. For the former we used the default
values suggested in the original implementation available in the mrtrix software.
For the latter, the regularization parameter β was empirically estimated follow-
ing the guidelines of Landman et al. (2012), in order to place the method in
its best conditions. In numerical simulations, we created an additional training
dataset for every combination of experimental conditions (number of samples,
b-value, SNR) and 50 reconstructions were performed varying the parameter
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β from 10−4 β∗ to β∗, with β∗ = ||2ΦTy||∞ computed independently in each
voxel. The value providing the best reconstructions (according to the above
metrics) was then used to run L2L1 on the actual data used for the final com-
parison. We did not observe any improvement in the reconstructions outside
this range. In real data, we tested different values for β but, as the ground-truth
is unknown, the optimal value was chosen on the basis of a qualitative inspection
of the reconstructions considering their shape, spatial coherence and adherence
to anatomy. Nonetheless, we found that the algorithm was quite robust to the
choice of β and the value providing visually the best results was always very
close to β = 0.1 · β∗, as suggested in the same work. Therefore this value was
used in all real data experiments. This stability might be probably due to the
adaptive strategy of estimating β∗ in each voxel from the signal y. As already
emphasized, L2L0 does not require any free parameter to be tuned. In fact, in
numerical simulations k can be fixed in all iterations to 3 while we can safely
assume k = 5 in real data, hence larger than the 2-3 fibers normally assumed.

3. Results and discussion

3.1. Numerical simulations

We quantitatively compared the three approaches on synthetic data with
the aim of assessing the impact on the reconstructions of each regularization
scheme (i.e. `2, `1 and `0 priors) under controlled conditions. In particular, the
quality of the reconstructions was evaluated using the metrics introduced above
and selectively varying (i) the number of samples and (ii) the b-value of the
acquisition scheme, (iii) the noise level and (iv) the crossing angle between the
fiber compartments. Results are reported independently for each experimental
condition.

3.1.1. Volume fractions and `1 norm

As previously stated, the physical constraint that the volume fractions sum
to unity is normally omitted in every problem formulation, as it is expected to
be carried over by the data and properly designed bases (Ramirez-Manzanares
et al., 2007). In Fig. 1 we explicitly tested whether this property is actually
satisfied by the algorithms considered in this work. A more detailed analysis of
the performance of each prior is performed in the following sections.

The figure reports the average value for the sum of the volume fractions of
the reconstructed FODs (i.e. ||x||1), as a function of the noise level, for two
acquisition schemes with 30 samples at b = 1000 s/mm2 and b = 3000 s/mm2,
respectively. The impact on the reconstructions is shown by means of the nor-
malized mean-squared error NMSE = ||y − ỹ||22/||y||22 (Michailovich et al., 2011)
between the measured signal y and its estimate ỹ. The image clearly demon-
strates that both L2L2 and L2L1 reconstructions do not fulfill the

∑
i xi = 1

physical constraint, as the sum of the recovered volume fractions always tends
to be over-estimated by L2L2 and under-estimated by L2L1. This is a clear effect
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Figure 1: Sum of volume fractions and impact on the reconstructions. Top plots report the
||x||1 of the FODs reconstructed by L2L2 (blue boxes), L2L1 (red diamonds) and L2L0 (green
circles), while the NMSE of the recovered signal is shown at the bottom. The reference
value ||x||1 = 1 is plotted in magenta. Results are reported as a function of the SNR in 2
experimental settings with 30 samples: b = 1000 s/mm2 (left) and b = 3000 s/mm2 (right).

of the weakness of the sparsity constraint in the L2L2 approach and of the in-
consistency of the `1 prior in L2L1. On the contrary our L2L0 approach appears
to correctly satisfy the constraint, with deviations from unity only with very
high noise levels (SNR ≈ 5). With high quality data this over/under-estimation
behavior is fairly mild (at SNR = 30, ||x||1 ≈ 0.7 for L2L1 and ||x||1 ≈ 1.2 for
L2L2), but it progressively intensifies as the noise level increases. The trend is
even amplified with high b-value data, in which case the ||x||1 can be as high
as ≈ 2.1 for L2L2 and as low as ≈ 0.25 for L2L1.

Despite showing quite different behaviors with respect to the ||x||1, L2L2

and L2L0 exhibit very similar NMSE values. On the contrary, L2L1 shows sig-
nificantly higher reconstruction errors than both L2L2 and L2L0, pointing to
the aforementioned `1 inconsistency. Debiasing methods (Zou, 2006) have been
proposed with the aim to correct the magnitude of the recovered coefficients and
mitigate this effect. Nonetheless, a critical step for applying these techniques
consists in the proper identification of the support of the solution, otherwise this
procedure can lead to really bad results. As we will show in the next sections,
this is the case in this work, as the three methods differ significantly in their
ability to estimate the number of fiber populations. As the very same data
and reconstruction basis have been used for all the methods, we can conclude
that any deviation from the unit sum has to be attributed to the different reg-
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ularization employed in each algorithm. In the following we will investigate the
consequences on the reconstructions of using different regularization schemes.

3.1.2. Comparison as a function of the number of samples

Fig. 2 reports the performance of the three reconstruction methods as the
number of samples changes. We considered seven acquisition schemes from 6
to 50 samples and results are reported for a standard scenario, specifically a
shell at b = 2000 s/mm2 with a SNR = 25. The dependence on the b-value and
the robustness to noise will be investigated in detail in the following sections.
The quality metrics are reported here as the average value computed over all
simulated crossing angles (30◦–90◦).

nnuummbbeerr ooff ssaammppll eess nnuummbbeerr ooff ssaammppll eess

nnuummbbeerr ooff ssaammppll eess nnuummbbeerr ooff ssaammppll eess

L2L2

L2L1

L2L0

Figure 2: Quantitative comparison as a function of the number of samples. The values of the
four quality metrics are reported for L2L2 (blue boxes), L2L1 (red diamonds) and L2L0 (green
circles) as the number of samples changes. Values shown here correspond to an experimental
setting with b = 2000 s/mm2 and SNR = 25.

Looking at the plots the benefits of using an `0 prior are clear: L2L0 always
outperforms both L2L2 and L2L1 in identifying the correct number of fiber
populations (Pd) and results are consistent for all number of samples consid-
ered. The main benefit of L2L0 seems to be the drastically decreased number
of missed fibers (smaller n−), even though also the number of over-estimated
compartments (n+) is significantly reduced. Concerning the angular accuracy
of the recovered fiber populations (εθ), reconstructions with L2L0 always re-
sulted in smaller errors as compared to both L2L2 and L2L1. Although the
difference with respect to L2L1 is not significant as always within the intrin-
sic grid precision, both methods showed a substantial improvement over L2L2,
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which appeared to suffer from a sudden and significant deterioration of the re-
constructions (≈ 10◦–15◦) for less than 30 samples. This can be explained with
the SH representation used internally by L2L2. In fact, even though the FOD
is a function on the sphere containing high-resolution features by definition, a
maximum SH order lmax = 4 (or less) can be used for acquisitions with less
than 30 samples, hence drastically reducing the intrinsic angular resolution of
the recovered FOD. At least 30 to 60 samples are normally advised for using
L2L2, so in our experiments we have actually tested L2L2 beyond its applica-
bility range. On the contrary, L2L1 and L2L0 do not make use of SH and the
reconstruction quality degrades more smoothly with the under-sampling rate of
the dMRI data. In the following we will focus on two acquisition schemes to
further analyze the performance of three methods: (i) in a normal setting with
30 samples and (ii) in a regime of high under-sampling with only 15 samples.

3.1.3. Comparison as a function of the crossing angle

In Fig. 3 the performances of L2L2, L2L1 and L2L0 are plotted in detail as a
function of the crossing angle between the fiber populations. Results are shown
for two acquisitions with 30 and 15 samples, both simulated at b = 2000 s/mm2

and SNR = 25.
With 30 samples, the major source of errors for both L2L2 and L2L1 is

represented by under-estimation (n−), although spurious orientations are not
negligible (n+ ≈ 0.2). In particular, both methods start to severely miss fibers
for crossing angles below 60◦, where they tend to recover a single peak lying
between the two real fiber directions. In these situations, the maximum angular
error for the sole estimated peak is generally upper bounded by half the angle
separating the two fibers; for this reason the overall εθ performances of L2L2

and L2L1 do not differ significantly from L2L0 despite the drastic improvement
in terms of Pd, n

− and n+. On the other hand, in an under-sampling scenario
with 15 samples L2L2 and L2L1 exhibit much higher Pd values and a stronger
tendency to over-estimate compartments, usually in completely arbitrary ori-
entations not even close to the true fiber directions. The overall improvement
in the angular accuracy of L2L0 is more evident, with an average enhancement
up to 5◦ with respect to L2L1, whereas L2L2 exhibits a severe drop of the per-
formance mainly due to modeling limitations, as previously pointed out.

These differences can have dramatic consequences for fiber-tracking applica-
tions. In fact, tractography algorithms are particularly prone to these estima-
tion inaccuracies, i.e. number and orientation of fiber populations, because the
propagation of these (perhaps locally small) errors can lead to completely wrong
final trajectories. For instance, a missed compartment might stop prematurely
a trajectory, while a spurious peak might lead to create an anatomically incor-
rect fiber tract. Hence, the ability to accurately recover the intra-voxel fiber
geometry is of utmost importance.

3.1.4. Comparison as a function of the b-value

So far L2L2, L2L1 and L2L0 have been compared for given acquisition schemes
at a fixed b = 2000 s/mm2. Fig. 4 reports the quality of the reconstructions
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Figure 3: Quantitative comparison as a function of the crossing angle. The performances
of the three reconstruction methods are detailed separately for each crossing angle used in
the simulations. Results are reported for 30 and 15 samples, using the same experimental
configuration of Fig. 2, i.e. b = 2000 s/mm2 and SNR = 25.
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with the three approaches as a function of the b-value. The results are shown
for 30 and 15 samples with a SNR = 25.
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Figure 4: Quantitative comparison as a function of the b-value. The dependence of the
reconstruction quality on the b-values used in the acquisition is reported here for 30 and 15
samples with a SNR = 25.

L2L2 tends to miss compartments for low b-values and over-estimate them at
higher b (n+ and n− are not shown here for brevity). This is even more apparent
when decreasing the number of samples in the acquisition to 15, where L2L2

estimates a lot of spurious peaks at high b-values (high n+) and thus the angular
accuracy of the estimated fiber directions drops considerably. Interestingly, L2L1
shows the opposite behavior, under-estimating at high b and over-estimating at
low b, although at a smaller rate thus preventing the performance to degrade
significantly. Again, in comparison, L2L0 shows a very stable estimation of
the number of fibers. Concerning the angular accuracy, all methods showed a
minimum for εθ corresponding to b ≈ 1500 − 2500 s/mm2, representing a sort
of trade-off between the loss in angular resolution happening at small b-values
and the stronger noise influence at higher b. In fact, as in this work we report
the noise level as the SNR of the S0 dataset, images at high b-values will have
lower actual signal-to-noise ratio, and thus the noise effects will be inherently
stronger. Overall, L2L0 always results in smaller angular errors than the other
two methods. The improvement with respect to L2L1 is not significant, while
the difference with L2L2 is much more pronounced (up to 20◦) especially as the
b-value increases.
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Figure 5: Quantitative comparison as a function of the SNR. The robustness to noise of the
three reconstruction methods in shown for 30 and 15 samples at b = 2000 s/mm2. Reported
values for the SNR correspond to the signal-to-noise ratio of the S0 dataset.

3.1.5. Comparison as a function of the SNR

Finally, Fig. 5 compares the robustness to noise of the three methods. Six
noise levels have been considered, with the SNR of the S0 dataset varying from
5 to 30. The comparison is reported for 30 and 15 samples at b = 2000 s/mm2.
The results show that L2L0 clearly outclasses the other two methods concerning
the estimation of the number of compartments (Pd) and results are consistent as
the SNR changes, both with 30 and 15 samples. In terms of angular accuracy,
L2L0 and L2L1 have very similar εθ performances, almost indistinguishable from
one another. On the contrary, L2L2 systematically obtains significantly higher
εθ values at all considered SNRs (up to 6◦ with 30 samples). In a high under-
sampling regime (right plots), the angular accuracy drastically degrades in the
case of L2L2 and it appears almost independent of the noise level. This is again
consistent with the limitations of the SH representation for acquisitions with
very few samples.
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Figure 6: Qualitative comparison on DTI human brain data. Reconstructions of the FODs in
the corona radiata region are shown for: L2L2 (A and D), L2L1 (B and E) and L2L0 (C and F).
FODs in subplots A–C correspond to dMRI images acquired using 30 samples, superimposed
on the ADC map, while D–F are relative to the acquisition with 20 samples, superimposed on
the FA map. All images have been acquired at b = 1000 s/mm2.
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Figure 7: Qualitative comparison on HARDI human brain data. Reconstructions of the FODs
in the corona radiata region are shown for: L2L2 (A, D and G), L2L1 (B, E and H) and L2L0 (C,
F and I). Subplots A–C correspond to the fully-sampled dataset hardi256 (256 samples), D–F
to the dataset hardi50 (50 samples) while G–I are relative to hardi20 (20 samples). Images
have been acquired at b = 3000 s/mm2.
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3.2. Real data

3.2.1. Qualitative evaluation on DTI data

Fig. 6 compares the reconstructions3 obtained with the three regularization
schemes in the case of real data acquired with a typical DTI protocol. Subplots
A, B and C correspond to the dti30 dataset acquired using 30 samples. Even
though the acquisition scheme used for this dataset is not the setting where our
numerical simulations highlighted the most substantial differences between the
three methods, important conclusions can be drawn in favor of L2L0. Looking
at the regions in the white circles, the ability of both L2L1 and L2L0 to properly
model the isotropic compartment in voxels with full or partial contamination
with CSF is clearly visible. On the contrary, as L2L2 does not explicitly model
any CSF compartment, it appears unable to adequately characterize the signal
in these cases, but it rather approximates any isotropic contribution with a
set of random and incoherent fiber compartments. Besides, comparing B and
C we can observe that L2L0 successfully differentiates gray matter (light gray
regions) from CSF voxels with pure isotropic and fast diffusion (very bright
areas), whereas L2L1 appears unable to distinguish them.

The yellow frames highlight the corona radiata, a well-known region in the
white matter containing crossing fibers. As expected from our simulations at
this still relatively high number of samples, differences are not obvious between
the three methods. However, we observe that L2L0 clearly results in sharper and
more defined profiles than L2L1, whereas the improvements with respect to L2L2

are confined only to few voxels. The not so good performance of L2L1 might
be related to the value chosen for β. In contrast, no free parameter has to be
empirically optimized in our approach. When decreasing the acquisition samples
to 20 (subplots D, E and F corresponding to dti20 dataset), fiber directions are
definitely much better resolved with L2L0 than with both L2L2 and L2L1. In
fact L2L2 clearly breaks, missing many fiber compartments probably due to
the aforementioned limitations of the SH representation. The same happens to
L2L1, whose reconstructions appear very blurred and noisy.

3.2.2. Qualitative evaluation on HARDI data

The comparison with high b-value data is reported in Fig. 7. The figure
shows also the robustness to different under-sampling rates of each scheme.
Subplots A, B and C correspond to the fully-sampled dataset hardi256. In this
situation, no evident differences between the three approaches can be observed
as they perform essentially the same. With moderate under-sampled data (sub-
plots D, E and F corresponding to hardi50) both L2L2 and L2L0 do not show
any significant difference in the quality of the reconstructions, so far exposing
neat and sharp profiles. On the other hand, the FODs reconstructed by L2L1

show some signs of progressive degradation, appearing a little more blurred as

3The images have been created using the tool mrview of mrtrix. As a consequence, the
FODs from L2L1 and L2L0 had to be converted to SH, and this operation caused some blur
in the sparse reconstructions of these two methods.
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compared to those reconstructed from fully-sampled data (compare subplots E
and B). The situation changes drastically with highly under-sampled data, as
easily noticeable by comparing the subplots G, H and I, which correspond to
the reconstructions performed with only 8% of the original data. In fact, while
L2L0 does not show yet any significant degradation of the FODs, both L2L2 and
L2L1 clearly do not provide as sharp and accurate reconstructions as in the case
of fully-sampled data (compare G to A and H to B). In addition, in the case of
L2L2 we can observe a higher incidence of negative peaks (identified in the plots
by small yellow spikes), a clear sign of augmented modeling errors.

3.2.3. Quantitative comparison: volume fractions and `1 norm

In Fig. 8 we tested whether the physical constraint of unit sum is satisfied
also in case of real data. The images confirm the observations previously made
with synthetic data (cf. Fig 1). In fact, the sum of the recovered volume
fractions tends to be over-estimated by L2L2 (subplots A and B) and under-
estimated by L2L1 (subplots C and D), whereas L2L0 reconstructions (subplots
E and F) appear to meet the property of unit sum as expected. All methods
coherently show a mild over-estimation in the corpus callosum, compatible with
the highly-packed axonal structure in this region. Finally, L2L2 seems to suffer
from over-estimation more with fully- than with under-sampled data, which
might be related to the SH order employed for different number of samples.
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Figure 8: Sum of volume fractions in real data. The sum of the volume fractions of the FODs
reconstructed with L2L2 (A and B), L2L1 (C and D) and L2L0 (E and F) is reported in a
representative slice of the high b-value data. The top row corresponds to the fully-sampled
dataset (hardi256) while the bottom to the under-sampled one with 20 samples (hardi20).
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3.2.4. Quantitative comparison: fully- vs under-sampled data

We compared the reconstructions obtained from under-sampled data (i.e.
hardi50 and hardi20) to those with fully-sampled data (i.e. hardi256), consid-
ering this latter as ground-truth, as done by Yeh and Tseng (2013). In agree-
ment with the results from numerical simulations, no significant difference was
found between the three approaches in terms of angular accuracy. The average
error using 50 samples was 10.9◦ ± 9.9◦ (mean ± standard deviation) for L2L2,
8.8◦ ± 8.1◦ for L2L1 and 10.0◦ ± 11.3◦ for L2L0. The reconstructions using 20
samples clearly showed higher angular errors. The differences between L2L1 and
L2L0 were below the resolution of the sphere discretization used in this study:
11.6◦ ± 9.1◦ and 12.6◦ ± 12.4◦ respectively. L2L2 revealed significantly higher
εθ values: 17.2◦ ± 12.8◦. On the other hand, results definitely confirmed the
superior performance of L2L0 in terms of Pd that was previously observed in syn-
thetic experiments. With 50 samples L2L0 had an average Pd = 4.0%±13.9% as
opposed to sensibly higher values for L2L2 and L2L1, respectively 17.8%±32.6%
and 17.3%± 24.3%. For 20 samples, the performance of L2L2 and L2L1 visibly
deteriorated, 42.1% ± 43.6% for the former and 21.3% ± 27.7% for the latter.
L2L0 reconstructions appeared very stable with an average Pd = 5.5%± 15.8%.
These enlightening results are illustrated in Fig. 9.
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Figure 9: Comparison between fully- and under-sampled real data. The performance of L2L2

(A and B), L2L1 (C and D) and L2L0 (E and F) was quantified by considering hardi256 as
ground-truth and computing Pd for the reconstructions on under-sampled data. The top row
corresponds to the dataset with 50 samples (hardi50) and the bottom to 20 (hardi20).
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3.3. Limitations and future work

Our proposed formulation represents an extension of classical spherical de-
convolution and sparse reconstruction methods (Tournier et al., 2007; Landman
et al., 2012) and, as such, it also inherits all the intrinsic limitations and short-
comings of this class of techniques. Like all its predecessors, in fact, our method
is based on the assumption that the response function can be estimated from the
data and especially that it is adequate for characterizing the diffusion process in
all the voxels of the brain. Moreover, the validity of these approaches has yet to
be properly assessed with more critical intra-voxel configurations (Sotiropoulos
et al., 2012) or pathological brain conditions. Yet, as these methods are cur-
rently widely used in this field, we have shown in this work that by expressing
adequately the regularization prior used for promoting sparsity the quality of the
reconstructions can significantly be improved, with no additional cost.

Some of the aforementioned limitations might be addressed by enhancing
the estimation of the dictionary accounting for more complex configurations,
such as using different response functions for different brain regions and/or
pathological tissues and including specific kernels which explicitly model fiber
fanning/bending. In addition, even though we focused here on single voxel
experiments, future work will be devoted to study the applicability and the
effectiveness of our approach in more sophisticated frameworks exploiting the
spatial coherence of the data. Finally, future research will investigate the use
of the recently proposed continuous CS theory (Tang et al., 2012; Candés and
Fernandez-Granda, 2012) with the aim of further improving the accuracy of the
reconstructions and reducing the acquisition time.

4. Conclusion

In this paper we focused on spherical deconvolution methods currently used
in diffusion MRI for recovering the FOD and estimating the intra-voxel con-
figuration in white matter. In particular, we investigated the effectiveness of
state-of-the-art regularization schemes based on `2 and `1 priors and provided
evidence that these formulations are intrinsically suboptimal: the former be-
cause it does not explicitly promote sparsity in the FOD, the latter because
it is inconsistent with the fact that the fiber compartments must sum up to
unity. We proposed a formulation that rather places a strict bound on the
number of expected fibers in the voxel through a bound on the `0 norm of the
FOD, relying on a reweighted `1 scheme. We compared our L2L0 approach with
the state-of-the-art L2L2 and L2L1 methods, both on synthetic and real human
brain data. Results showed that our proposed formulation significantly improves
single-voxel FOD reconstructions, with no additional overheads. This evolution
is most remarkable in a high q-space under-sampling regime, thus driving the
acquisition cost of HARDI closer to DTI.
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