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Abstract
Real-time quality assessment (rtQA) of functional magnetic resonance imaging (fMRI) based on blood oxygen level-dependent  
(BOLD) signal changes is critical for neuroimaging research and clinical applications. The losses of BOLD sensitivity because 
of different types of technical and physiological noise remain major sources of fMRI artifacts. Due to difficulty of subjec-
tive visual perception of image distortions during data acquisitions, a comprehensive automatic rtQA is needed. To facilitate 
rapid rtQA of fMRI data, we applied real-time and recursive quality assessment methods to whole-brain fMRI volumes, as 
well as time-series of target brain areas and resting-state networks. We estimated recursive temporal signal-to-noise ratio  
(rtSNR) and contrast-to-noise ratio (rtCNR), and real-time head motion parameters by a framewise rigid-body transformation 
(translations and rotations) using the conventional current to template volume registration. In addition, we derived real-time 
framewise (FD) and micro (MD) displacements based on head motion parameters and evaluated the temporal derivative of 
root mean squared variance over voxels (DVARS). For monitoring time-series of target regions and networks, we estimated 
the number of spikes and amount of filtered noise by means of a modified Kalman filter. Finally, we applied the incremental 
general linear modeling (GLM) to evaluate real-time contributions of nuisance regressors (linear trend and head motion).  
Proposed rtQA was demonstrated in real-time fMRI neurofeedback runs without and with excessive head motion and real-time  
simulations of neurofeedback and resting-state fMRI data. The rtQA was implemented as an extension of the open-source 
OpenNFT software written in Python, MATLAB and C++ for neurofeedback, task-based, and resting-state paradigms. We 
also developed a general Python library to unify real-time fMRI data processing and neurofeedback applications. Flexible 
estimation and visualization of rtQA facilitates efficient rtQA of fMRI data and helps the robustness of fMRI acquisitions 
by means of substantiating decisions about the necessity of the interruption and re-start of the experiment and increasing the  
confidence in neural estimates.

Keywords Real-time quality assessment · Recursive · Functional MRI · Task · Rest · Neurofeedback paradigms · 
OpenNFT · rtspm Python library

Introduction

Real-time quality assessment (rtQA) of functional mag-
netic resonance imaging (fMRI) is essential to improve 
research in cognitive and clinical neurosciences, including 

the developments of therapeutic approaches based on neu-
roimaging. There are different types of noise affecting fMRI 
data quality, including the system noise originating from the 
inhomogeneity and instability of the magnetic field, back-
ground noise and, typically the strongest, physiological noise 
(Diedrichsen & Shadmehr, 2005; Friedman & Glover, 2006; 
Goto et al., 2016; Greve et al., 2011; Kasper et al., 2017; 
Triantafyllou et al., 2011). The fMRI quality assurance was 
suggested to facilitate the consistency of fMRI experiments 
across different sites, explore stability of MR scanners, clas-
sify data quality and detect artifacts (Friedman & Glover, 
2006; Lu et al., 2019; Stöcker et al., 2005). While quality 
assurance typically suggests an improvement of consist-
ency of data acquisitions and identification of noise sources, 
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quality control suggests a post-hoc evaluation of the fMRI 
data acquisition and processing workflows and exclusion of 
corrupted acquisitions (Alfaro-Almagro et al., 2018; Esteban 
et al., 2017). Most recent developments on quality assur-
ance and control employ data-driven and machine learning 
methods to separate noise sources and evaluate the quality 
of (f)MRI data and data processing based on trained clas-
sifiers (Alfaro-Almagro et al., 2018; Astrakas et al., 2016; 
Esteban et al., 2017).

Several estimates have been proposed for MRI quality 
assurance and control, including signal-to-noise ratio (SNR), 
contrast-to-noise ratio (CNR), percent signal change (PSC), 
correlation and quantification of specific artifacts depending 
on the applied MRI contrast mechanisms (Alfaro-Almagro 
et al., 2018; Esteban et al., 2017; Friedman & Glover, 2006; 
Lu et al., 2019; Stöcker et al., 2005). SNR remains the fun-
damental and most widely used parameter for assessment of 
the fMRI data quality, various noise affecting data quality, 
and data processing approaches (Friedman & Glover, 2006; 
Koush et al., 2012; Maziero et al., 2020; Triantafyllou et al., 
2011; van der Zwaag et al., 2012; Zilverstand et al., 2017). 
CNR is preferred if noise is inflated by fMRI activation 
during the physiological stimulation (Geissler et al., 2007; 
Koush et al., 2012) and in case of referential phantom-based 
quality evaluations when the contrast between the signal of 
interest and the noise is defined (Lu et al., 2019; Simmons 
et al., 1999; Stöcker et al., 2005). Alternatively, SNR could 
be also used in task-related studies when paradigm-related 
activation is removed after regression (Murphy et al., 2007; 
Zilverstand et al., 2017). When applied to fMRI time-series, 
temporal SNR (tSNR) is often implied (Murphy et  al., 
2007). For consistency, the term temporal CNR (tCNR) is 
also used here.

Head motion remains one of the major sources of artifacts 
in fMRI data, which is hard to eliminate completely (Bolton 
et al., 2020; Parkes et al., 2018; Satterthwaite et al., 2013; 
Scheinost et al., 2014). The sensitivity and specificity of fMRI 
acquisitions can be diminished due to susceptibility-induced 
T2* signal dropouts, head motion, and motion-by-susceptibility 
interaction during head motion (Fair et al., 2020; Koush et al., 
2012; Wu et al., 1997). Head motion can be associated with 
heterogeneity of fMRI data smoothness leading to inter-subject 
head motion confounds (Scheinost et al., 2014) and with reduc-
tion of statistical sensitivity leading to false negative results 
(Kasper et al., 2017). Besides, retained head motion in the pre-
processed fMRI data can predict anthropomorphic, behavioral 
and clinical factors (Bolton et al., 2020). Larger head motion is 
also associated with reduced SNR in resting-state fMRI runs 
(Van Dijk et al., 2012). Most commonly, the direct and indirect 
effects of head motion are suppressed along with those of other 
noise sources using data preprocessing pipelines based on mul-
tiple linear regression and/or principal/independent component 
analysis (Glover et al., 2000; Parkes et al., 2018). In particular, 

framewise (FD) and micro (MD) displacements based on com-
bination of head motion parameters, as well as volume censor-
ing based on scrubbing and spike motion identification are used 
to improve the robustness of fMRI activity and connectivity 
estimates (Parkes et al., 2018; Power et al., 2012, 2014; Van 
Dijk et al., 2012).

Real-time fMRI data processing is used to reliably correct 
fMRI data contaminations in neurofeedback studies (Heunis 
et al., 2020; Koush et al., 2017a). Recursive multiple linear 
regression, i.e., incremental general linear model (iGLM), 
is proposed to perform fMRI data regression in real-time to 
evaluate whole-brain activation maps and to reduce physi-
ological noise (Bagarinao et al., 2003; Nakai et al., 2006). 
Incremental GLM for processing whole-brain data and its 
less methodologically demanding cumulative GLM for pro-
cessing time-series are implemented in OpenNFT (Koush 
et al., 2017a). Of note, iGLM also outperforms exponential 
moving average and sliding-window algorithms for linear 
detrending (Kopel et al., 2019), which highlights the poten-
tial of iGLM solutions for rtQA.

The fMRI data quality is typically evaluated after all 
experimental data is acquired and data-processing is per-
formed, which imposes the risk of losing data for entire 
participants if it is of insufficient quality or substantially 
reduced after artifact removal (Dosenbach et al., 2017). 
Manual identification of artifacts (e.g. image distortions 
and spatial inconsistencies) is tedious and often not consist-
ent; therefore, automatic comprehensive quality assessment 
methods are necessary to efficiently maintain an awareness 
of acquired fMRI (Alfaro-Almagro et al., 2018; Astrakas 
et al., 2016) and real-time fMRI (Dosenbach et al., 2017; 
Heunis et al., 2020; Ros et al., 2020; Weiskopf et al., 2007) 
data quality. For real-time fMRI, currently available quality 
assurance/control tools include, e.g., the Functional Real-
time Interactive Endogenous Neuromodulation and Decod-
ing (FRIEND) software (Basilio et al., 2015; Sato et al., 
2013), Framewise Integrated Real-time MRI Monitoring 
software (FIRMM) (Dosenbach et al., 2017; Fair et al., 
2020), Turbo-Brain Voyager (TBV) and Pyneal (MacInnes 
et al., 2020) software, and real-time Analysis of Functional 
NeuroImages (AFNI) plugin (Cox & Jesmanowicz, 1999).

To facilitate rapid analyses of key fMRI quality param-
eters, we applied real-time and recursive methods of rtQA. 
The real-time aspect refers to handling all processing steps 
before the next acquisition (i.e., fMRI volume) becomes 
available. Recursive methods update an estimate of inter-
est using the current acquisition only, without revisiting the 
previous measurements. Therefore, the computational load is 
fixed per acquisition and does not increase during the scan-
ning session. Specifically, we implemented recursive mean 
and variance estimates (Welford, 1962) to derive recursive 
tSNR and tCNR for time-series of whole-brain volumes 
and averaged within single regions of interest (ROIs) and 
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resting-state networks (RSNs). We also derived FD (Power 
et al., 2012) and MD (Van Dijk et al., 2012) real-time esti-
mates using the conventional current to template volume 
registration (Koush et al., 2017a). We estimated the amount 
of filtered high-frequency noise and the number of spikes 
in time-series of interest using a recursive method based 
on modified Kalman filter (Koush et al., 2012). In addition, 
we provided the real-time estimate of the rate of intensity 
change across the entire brain using temporal derivative of 
root mean squared variance over voxels (DVARS) (Power 
et al., 2012). Finally, for modelled whole-brain and time-
series regressors of interest and confounds, we extended a 
conventional application of iGLM by calculating GLM esti-
mates as quality parameters in real-time. The estimation and 
visualization of all rtQA parameters were implemented as 
an extension of OpenNFT – an open-source Python, MAT-
LAB and C++ framework developed for real-time fMRI 
data processing and neurofeedback training (Koush et al., 
2017a, b). The proposed rtQA was demonstrated in real-time 
fMRI neurofeedback runs of a single participant without and 
with excessive head motion and in a group of participants 
using real-time data export simulations of neurofeedback 
and resting-state fMRI data (Koush, Meskaldji, et al., 2017c; 
Krylova et al., 2021).

Methods

For neurofeedback and resting-state fMRI runs, we evalu-
ated the similar sets of rtQA parameters: (i) whole-brain and 
time-series recursive tSNR and tCNR, (ii) real-time head 
motion translations, rotations, framewise and micro dis-
placements, (iii) DVARS, (iv) whole-brain and time-series 
parameters based on iGLM estimates for nuisance regres-
sors, and (v) time-series number of spikes and the amount 
of filtered high-frequency noise. Task-related variance was 
regressed out from tSNR using iGLM (Murphy et al., 2007), 
and tCNR was not evaluated for resting-state runs due to the 
lack of pre-specified conditions. Because the purpose of the 
present work was to demonstrate the feasibility of recursive 
rtQA estimation, we refrained from linking between qual-
ity estimates and experimental findings reported elsewhere 
(Koush, Meskaldji, et al., 2017c; Krylova et al., 2021), as well 
as between evaluated neurofeedback and resting-state rtQA 
estimates. Aggregated estimates are expressed as mean ± std.

Recursive Mean, Variance, tSNR and tCNR

The recursive estimation implies exploiting temporal recur-
sion that only requires the current acquisition for updating 
the estimator. In contrast, the cumulative estimation implies 
that all data acquired up to the current time point is used 

for estimation based on conventional equations. For recur-
sive estimations of mean and variance, we used the Welford 
online algorithm (Welford, 1962). Recursive and cumulative 
estimations were applied to time-series and whole-brain data 
for both neurofeedback and resting-state runs,

where x1..t—cumulative mean, xt—signal value,—v1..t
cumulative variance, �̃�1..t—cumulative standard deviation, 
xt—recursive mean, M2,t—recursive sum of squares,—vt
recursive variance,—�̃�trecursive standard deviation. Recur-
sive estimations were compared to cumulative estimators 
(Koush et al., 2012), using mean squared error (MSE). For 
neurofeedback runs, we also computed separate recursive 
mean and variance for the baseline and regulation blocks.

As rtQA estimates, we computed recursive tSNR (rtSNR) 
for neurofeedback and resting-state runs, as well as recursive 
tCNR (rtCNR) for neurofeedback runs using recursive tem-
poral mean and variance estimates given condition (cond) 
and baseline (bas) indices (Koush et al., 2012):
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Head motion parameters

The three translation (X, Y, Z) and rotation (pitch, roll, yaw) 
head motion parameters were provided using the realign-
ment routines of SPM12 adapted for real-time applications 
(Koush et al., 2017a). The FD was estimated based on the 
six head motion parameters (Power et al., 2012), and the 
MD estimation was based on 3 translations (Van Dijk et al., 
2012):

where Tt,i—X, Y, Z translations, Rt,i—pitch, roll, yaw rota-
tions, r – radius of the sphere. Rotations for FD estima-
tion were converted from radians to millimeters given the 
approximate 50 mm radius of the sphere defined as the dis-
tance from the cerebral cortex to the center of the head for 
a healthy adult participant (Power et al., 2012). As rtQA 
parameters, head motion parameters, FD and MD were 
calculated in real-time. In addition, we estimated recursive 
temporal average of  FDt and  MDt using recursive mean 
equations. As rtQA parameters, we also estimated thresh-
olded FD (at 0.2 mm and 0.5 mm) and MD (at 0.1 mm) and 
counted the number of volumes exceeding corresponding 
thresholds.

DVARS

In addition, distortions in real-time fMRI data due to other 
sources of movements, e.g. chest movements, can be con-
trolled using temporal DVARS (Fair et al., 2020; Power 
et al., 2012), which represents the change of the whole-brain 
signal intensity between current and previous timepoints:

where It
(
�⃗x
)
 – volume intensity at locus x, ⟨⟩ – spatial average 

over whole-brain mask. Real-time DVARS implementation 
in OpenNFT is based on the whole-brain mask defined at 
the fixed template brain volume used for real-time realign-
ment and reslicing of the acquired real-time fMRI volumes 
(Koush et al., 2017a). This ensures real-time DVARS esti-
mation across completely sampled voxels. The whole-brain 
mask is defined automatically based on the least-squares 
histogram fitting of the non-scaled voxel intensities (thres-
holded at < 30 to exclude zeros and very small intensity 
values). For fitting, we modeled exponential (low intensity 
values primarily outside the brain) and Gaussian (primarily 
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brain intensity values) functions, as implemented in MAT-
LAB. Voxels above the half of the fitted Gaussian peak 
center intensity fall well within the whole-brain mask. The 
intensity of the real-time realigned, resliced and smoothed 
volumes was scaled to the median of the voxel intensities 
within the mask, and resultant DVARS estimates were mul-
tiplied by 100. We counted the number of volumes exceed-
ing the 5a.u. DVARS threshold (Power et al., 2012). Note 
that real-time implementation of DVARS could deviate from 
offline estimates due to the scaling to median intensity based 
on the single template volume and relatively coarse auto-
matic definition of the whole-brain mask as compared to 
masking based on the segmentation of structural volumes.

Kalman Filter Denoising Parameters

In fMRI time-series, spike-like artifacts are not always related 
to physiological noise. Thereby, alternative non-linear recur-
sive approaches, e.g., modified Kalman filter, can be efficiently 
applied in real-time to simultaneously remove high-frequency 
noise and identify/correct spike-like artifacts after iGLM 
denoising (Koush et al., 2012, 2017a; Koush, Meskaldji, et al., 
2017c). The linear Kalman filter is an adaptive estimation algo-
rithm that allows extraction of the desired signal from the input  
through a filtering operation. It was extended for detection  
of the spike-like fluctuations by thresholding a discrepancy  
between an a priori predicted and an a posteriori estimate 
(Koush et al., 2012):

where yt – observation value, xt – state value, K – Kalman 
gain factor, R/Q – update rate, R,Q – noise covariance matri-
ces, ycorr

t
 – corrected value. The Kalman filter update rate 

controls for the reduction of the high-frequency noise and 
implicitly defines the cutoff frequency. For time-series, we 
used the update rate R/Q = 4 and threshold 0.9 ⋅ �̃�1..t as the 
difference between predicted and posterior estimates.

In addition, we evaluated the amount of high-frequency 
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where yi – input value, yi – filtered value. Cumulative cMSE 
estimation implies that all data acquired up to the current 
time point were used for the MSE estimation. Lower rMSE 
indicates lower high-frequency contamination of the signal 
given low-pass cutoff.

Incremental and Cumulative GLM

Linear regression remains one of the most common 
approaches used to estimate the weights of regressors in 
fMRI processing pipelines (Parkes et al., 2018). The recur-
sive linear regression, i.e., iGLM, has been proposed to per-
form fMRI data regression in real-time (Bagarinao et al., 
2003, 2006; Nakai et al., 2006). It is based on the orthogo-
nalization procedure to recursively estimate the coefficients 
of the regressors. For whole-brain data, we extended the 
iGLM application by means of using weights of modelled 
regressors as rtQA parameters. To evaluate the magnitude 
of target brain (de)activation and artifacts in specific brain 
areas, we visualized the whole-brain activation and deac-
tivation maps associated with the experimental design as 
well as activation maps associated with the nuisance head 
motion and linear trend regressors. We also visualized beta 
coefficients estimated for time-series as plots. We performed 
similar real-time estimations for time-series using cumula-
tive GLM, i.e. when data acquired up to the current time 
point was used for the GLM estimation.

Regions of Interest and Resting‑State Networks

Automatic rtQA can be applied to time-series extracted from 
regions of interest (ROIs). For task-related and neurofeed-
back paradigms, ROIs are typically known and could be 
used for rtQA. For resting-state paradigms, users can check 
time-series quality from specific resting-state networks and/
or combinations of ROIs. Since real-time fMRI volumes are 
realigned to the fixed template volume, all supported para-
digms in OpenNFT are complemented with time-series rtQA 
of the automatically defined whole-brain ROI (see DVARS).

During neurofeedback training runs, iGLM was used to 
dynamically re-define ROIs for neurofeedback estimation 
as the most active voxels within preselected anatomical 
MNI templates for bilateral amygdala and dmPFC (Koush, 
Meskaldji, et al., 2017c). The bilateral amygdala template was 
based on the Talairach Daemon atlas (Lancaster et al., 2000), 
and the dmPFC template was defined based on pilot data as 
a 14 mm radius sphere around the activation peak in dmPFC 
excluding voxels outside the brain (Koush, Meskaldji, et al., 
2017c). For resting-state runs, we used ten resting-state net-
work (RSN) masks created from the atlas of 90 functional  
ROIs (Shirer et  al., 2012): anterior salience, auditory,  
basal ganglia, dorsal default mode (dorsal DMN), higher vis-
ual, precuneus, primary visual, sensorimotor, ventral default 

mode (ventral DMN), and visuospatial RSNs. Regions of 
interest and RSN masks were transformed from the MNI 
space to the native space using individual structural volumes 
and DARTEL tools (Ashburner, 2007) and resliced to the 
first volume of the corresponding fMRI run as implemented  
in SPM12.

Real‑time fMRI Data Processing Using OpenNFT

OpenNFT is a GUI-based multi-processing open-source soft-
ware framework and library originally designed for real-time 
fMRI neurofeedback training (Koush et al., 2017a). The soft-
ware’s GUI, synchronization module and multi-processing 
core are implemented in Python, whilst modules for real-
time data processing including the computation of the neural 
signal are implemented in MATLAB. OpenNFT supports a 
broad functionality asset for real-time fMRI studies includ-
ing real-time fMRI data watchdog, conventional whole-brain 
and time-series data processing (e.g., realignment, reslicing, 
smoothing, incremental GLM, filtering, despiking), computa-
tion and presentation of neural signal. OpenNFT can provide 
the neural signal either as activity, functional connectivity 
(correlation) based on single or multiple areas, effective 
connectivity based on dynamic causal modelling (DCM), or 
classification based on pre-trained support vector machine 
(SVM) classifier. For non-neurofeedback task-related experi-
ments, OpenNFT functionality can be branched off and sim-
plified by means of disabling the feedback estimation and 
visualization routines.

OpenNFT Design and Implementation of rtQA 
Extension

OpenNFT is based on parallel architecture and contains 
multiple processes implemented in Python and MATLAB 
(Fig. 1). Parallel processes are maintained using the Python 
multiprocessing package and MATLAB Engine, which 
could be called (a)synchronously, i.e., with(out) waiting 
for launched procedures. Python Core Process controls all 
the other processes, the inter-process communication, and 
watches the data from the MR scanner. When the new MR 
export data file arrives, the Python watchdog module catches  
the corresponding file-system  notification generated by 
the operation system and waits until the file is completely 
written, which implies the indirect real-time fMRI-based  
triggering on new file arrivals. The MR scanner trigger pulse 
could be also monitored and applied using the Python syn-
chronization process, and potentially take over the indirect 
real-time triggering. After the volume data is read, pro-
cessed, denoised, the feedback signal could be estimated 
and displayed or sent to external software via UDP/COM 
ports. The Python GUI subprocess maintains GUI interac-
tions and data visualization for the experimenter. The Python 
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Helper process is now used to facilitate the GUI whole-brain 
navigation. As compared to the initially Matlab Helper pro-
cess for whole-brain navigation (Koush et al., 2017a), the 
transition to Python Helper process was accomplished with 
the help of our new python-rtspm library (see OpenNFT 
Python library) based on open-source SPM C scripts. The 
Matlab Core process performs fMRI data (pre)processing, 

time-series denoising, and feedback signal estimation. Mat-
lab Helper processes are reserved for experimental task and 
feedback visualization, as well as for heavy estimations. 
Further details about general OpenNFT functionality and 
architecture are described elsewhere (Koush et al., 2017a).

The rtQA extension supports neurofeedback, task-related, 
and resting-state fMRI paradigms, significantly extending 

Fig. 1  The rtQA extension as part of the OpenNFT framework archi-
tecture. A The rtQA extension contains navigable rtQA features as 
illustrated using an exemplary resting-state run, spike detection menu 
and whole-brain rtSNR with the overlaid dorsal DMN (blue) and 

whole-brain ROI (green). B The OpenNFT architecture and work-
flow. The rtQA extension is implemented using parallel Python and 
MATLAB subprocesses and can be completely disabled. It operates 
with real-time fMRI volumes and time-series of target ROIs/RSNs
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OpenNFT functionality (Fig. 1B). Implemented modes of 
rtQA allow flexible access to time-series and whole-brain 
fMRI data at different stages of (pre)processing using core 
Python and MATLAB processes. For instance, rtSNR and 
rtCNR could be estimated for raw, realigned, and smoothed 
volumes, as well as for raw, iGLM-filtered and despiked 
time-series. The rtQA extension can be used in a fully 
automated mode or configured for a particular paradigm. 
Fully automated rtQA mode implies no parameter Settings 
to facilitate rapid setup (for parameter Settings, see (Koush 
et al., 2017a)). This mode is limited to the selection of the 
export data folder, run number and series number to define 
the file names, and number of expected volumes, which is 
suitable for resting-state paradigms and could be used for 
task-related studies with certain limitations (e.g., no filter-
ing of the regulation/task-related activity in rtSNR and no 
rtCNR). A semi-automatic rtQA mode is also available to 
support more detailed parameter Settings, e.g. using Open-
NFT configuration files and modeling of regressors of inter-
est in time-series and volume processing for neurofeedback 
and task-based paradigms (Koush et al., 2017a). Assessed 
rtQA parameters are saved at the end of the fMRI run. The 
rtQA extension is implemented independently from the (pre)
processing, neural signal estimation and visualization and 
could be disabled when computational speed is at the edge 
of the repetition time of fMRI acquisitions (see Performance 
of rtQA extension). This independent implementation ena-
bles further extensions of rtQA modes and visualizations 
and implementations of rtQA estimators at different levels 
of volume and time-series (pre)processing.

OpenNFT Python Library

To unify real-time fMRI data processing and neurofeedback 
applications, we developed a general Python library based 
on key open-source SPM functions written in C, termed 
rtspm (github.com/OpenNFT/python-rtspm). We trans-
ferred original SPM functions to C++ and adapted them 
for using the pybind11 binding package and NumPy arrays. 
The binding implies interface functions for calling the com-
piled code (pybind11.readthedocs.io/en/stable). We created  
the automatic workflow for compiling, building and publish-
ing distribution packages for Linux, MacOS, and Windows 
platforms, compatible with Python (3.6–3.9). The rtspm 
library could be installed using the Python dependency man-
ager (python-poetry.org) and run under Python. The rtspm 
library performs the real-time realignment (spm_realign_rt) 
and reslicing (spm_reslice_rt) of real-time fMRI volumes, 
orthogonal volume slicing (spm_slice_vol), calculation of 
the affine transformation matrix (spm_matrix) and its param-
eters (spm_imatrix), and Gaussian smoothing of volumes 
(spm_smooth). Python library contributes to extension and 
unification of the OpenNFT parallel architecture based on 

further optimization of the inter-process communication 
and data flows. Availability of sophisticated estimation 
operations both in MATLAB and Python allows balancing 
between educational and performance aspects of the open-
source software, as well as paves the way for the develop-
ment of Python-based OpenNFT. For instance, the rtspm 
library was used to optimize the orthogonal volume slicing 
by transferring the GUI Helper Process from MATLAB to 
Python. Its realign, reslice and smooth modules can replace 
corresponding MATLAB counterparts for developing 
Python-based real-time fMRI applications.

Participants and Experimental Design

We demonstrated the rtQA performance in a single female 
participant (age 31 years) using neurofeedback runs with-
out and with excessive head motion, and in a group of 15 
participants (7 male, 8 female, age 26 ± 1 years) using real-
time fMRI data export simulations for neurofeedback and 
resting-state runs. All participants were without prior his-
tory of neurological or psychiatric diseases and with normal 
or corrected-to-normal vision. All participants gave written 
informed consent to participate in the experiment, and all 
methods used in this study were performed in accordance 
with the relevant guidelines and regulations of the Univer-
sity Hospital of Geneva approved by the Ethics Committee 
of the University Hospital of Geneva.

To demonstrate the rtQA performance during excessive 
head motion, a single participant performed a 2-run neuro-
feedback experiment. Specifically, we tested the ability of 
the participant to control the feedback signal by covertly 
shifting the visual-spatial attention. Each neurofeedback run 
consisted of nine regulation blocks interleaved with nine 
baseline blocks (20 s block duration). During regulation 
blocks, the participant was asked to covertly attend to the 
right side of the screen while fixating the eyes at the center 
of the screen. During baseline blocks, the participant was 
instructed to fixate at the central fixation cross and count 
backward from a random number that was briefly displayed 
at the onset of the block. The intermittent feedback signal 
was provided at the end of each regulation block as a differ-
ence between left and right primary visual cortex activations 
(4 s neurofeedback block duration). The visual cortex ROIs 
were localized using retinotopic flashing-checkerboard func-
tional localizer (Koush et al., 2013). During the first neuro-
feedback run, the participant was asked to remain as still as 
possible. During the second neurofeedback run, however, the 
participant was asked to specifically move three times when 
prompted (via headphones). During the first instruction, the 
participant was asked to moderately slide out of the coil. 
During the second instruction, the participant was asked to 
slide back into the coil and strongly tilt the head at least in 
two directions. During the last instruction, the participant 
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was asked to move to the opposite directions as compared 
to the previous instruction, i.e. to try to return to the initial 
head location.

To demonstrate rtQA in a group of participants that per-
formed a regular neurofeedback experiment complemented 
with the resting-state acquisition, we simulated real-time 
data export using previously acquired real-time fMRI data. 
Specifically, we selected the first neurofeedback training 
run (17.5 min run duration) and a pre-training eyes-closed 
resting-state run (6.1 min run duration) from our previous 
neurofeedback study targeting positive-social emotion regu-
lation (Koush, Meskaldji, et al., 2017c; Krylova et al., 2021). 
The neurofeedback run consisted of seven trials. Each trial 
was composed of four regulation blocks interleaved with 
five baseline blocks of 12 s duration (2.5 min trial duration). 
During baseline blocks, participants were instructed to pas-
sively observe images of neutral objects. During regulation 
blocks, images with moderately positive-social content were 
presented, and participants were asked to control their posi-
tive emotions to maximize the feedback signal. At the end 
of each neurofeedback trial participants rested with their 
eyes open for 38 s, followed by a 4 s display of a feedback 
value and a monetary reward. The feedback signal was based 
on a comparison of how well two alternative effective con-
nectivity models fitted the data acquired during the trial. 
The two models were modeled as top-down and bottom-up 
interactions between dorsomedial prefrontal cortex (dmpFC) 
and bilateral amygdala, estimated using dynamic causal 
modeling (DCM) (Friston et al., 2003) and compared using 
Bayesian model comparison (Koush et al., 2013; Koush, 
Meskaldji, et al., 2017c; Penny et al., 2004). During the 
resting-state run, participants were instructed to remain as 
still as possible, breathe steadily, avoid specific thinking and 
falling asleep, which was verified during debriefing. Com-
prehensive experimental details and findings are reported  
in the original publications (Koush, Meskaldji, et al., 2017c; 
Krylova et al., 2021).

Real fMRI Data and Real‑time Data (pre)Processing

For neurofeedback experiment also testing the effect of exces-
sive head motion, real-time fMRI data were acquired on a 3 T 
whole-body MRI system equipped with a 16-channel head 
receive coil (Trio Tim, Siemens Medical Solutions, Erlangen, 
Germany). For both neurofeedback runs, 290 whole-brain 
fMRI volumes were acquired using a single-shot gradient-
echo  T2*-weighted EPI sequence (TR = 1.76 s, TE = 30 ms, 
32 slices with 25% distance factor, 64 × 64matrix,  3mm3 
isotropic voxels, flip angle α = 90°, bandwidth = 2.004 kHz/
pixel, GRAPPA, iPAT = 2).

For the simulations, the data has been previously acquired 
on the same scanner equipped with a 32-channel head 

receive coil. For neurofeedback training runs, 1050 fMRI 
volumes with partial brain coverage were acquired using 
a single-shot gradient-echo  T2*-weighted EPI sequence 
(TR = 1.1 s, TE = 30 ms, 18 slices with 25% distance fac-
tor, 120 × 120 matrix, 1.8  mm3 isotropic voxels, flip angle 
α = 70°, bandwidth = 1.54 kHz/pixel, GRAPPA, iPAT = 3). 
Resting-state runs were acquired using a multi-band  
gradient-echo  T2*-weighted EPI sequence (333 volumes, 
TR = 1.1 s, TE = 30 ms, 45 slices with 25% distance factor, 
120 × 120 matrix, 1.8mm3 voxels, flip angle α = 70°, band-
width = 1.49 kHz/pixel, multi-band acceleration factor = 3, 
GRAPPA with iPAT = 3). EPI protocols were designed to 
ensure a precise subdivision of the target prefrontal and lim-
bic brain areas, and a short TR. For each scanning session, a 
 T1-weighted structural volume was acquired (3D MPRAGE, 
voxel size = 1  mm3 isotropic, flip angle α = 9°, TR = 1.9 s, 
TI = 900 ms, TE = 2.27 ms).

The real-time fMRI data export was simulated using trig-
gered data copy at a rate of a single volume per 1.1 s. Real-
time data (pre)processing included registration and spatial 
filtering using a 5 mm full width at half maximum (FWHM) 
smoothing as implemented in OpenNFT. Various data enter 
rtQA estimations during real-time fMRI (pre)processing 
(Fig. 1). Head motion parameters and derived head motion 
estimates (FD, MD) were calculated from the raw fMRI vol-
umes. Volume rtSNR and rtCNR were estimated based on 
smoothed volumes that were realigned to the fixed template 
volume and resliced. DVARS, whole-brain iGLM, and time-
series rtQA estimates were generated based on the smoothed 
volumes. Time-series GLM and Kalman filter were applied 
during temporal processing. The same GLM was used for 
real-time fMRI data filtering, rtQA, and neurofeedback 
signal estimation (Koush et al., 2017a). For neurofeedback 
data per trial, GLM included regressors for the experimental 
design (i.e., neurofeedback regulation blocks convolved with 
hemodynamic response function), six head motion, linear 
trend, high-pass filter, and constant. For resting-state data, 
the model included the same set of regressors except the 
experimental condition. We used the same set of regressors 
for analyzing the whole-brain and time-series data extracted 
from ROIs and RSNs.

Results

Recursive and Cumulative Estimates

Although the proposed recursive estimators have been vali-
dated in original publications, we demonstrate the numerical 
similarity between recursive and cumulative estimates for 
neurofeedback runs without and with excessive head motion 
using time-series from the retinotopically localized right 
visual cortex. We found negligible difference MSEs <  1e−10 
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between cumulative and recursive estimates for mean, vari-
ance, tSNR and tCNR (Fig. 2). During the second neuro-
feedback run with excessive head motion, we observed 
increases of mean and variance and decreases of tSNR and 
absolute tCNR. Note that visual cortex in our neurofeedback 
runs was suppressed by the attention task, which resulted in 
a more negative tCNR for the run with low head motion, and 
a less negative tCNR in the run with excessive head motion.

For neurofeedback runs with different resolutions, we 
found gradual increase of cumulative tSNR estimation time 
as compared to recursive tSNR (Fig. 3). Since FD, MD and 
DVARS are based on the current and the previous fMRI 
volumes preprocessed in real-time, their estimations require 
fixed estimation time. In addition to detecting fMRI volumes 
with FD, MD and DVARS above the pre-selected thresh-
olds, we also estimated non-thresholded recursive temporal 
average of FD, MD and DVARS as rtQA parameters. The 
amount of high-frequency noise filtered using Kalman filter 

was also estimated recursively in terms of the MSE between 
unfiltered and filtered time-series. For average FD, MD, 
DVARS, and MSE of the filtered noise, we found negligible 
differences (MSEs <  1e−10) between recursive and cumula-
tive estimates (Fig. 4).

Real‑time Head Motion Estimates and DVARS

We also report head motion parameters, FD and DVARS for 
neurofeedback runs without and with excessive head motion 
(Fig. 5). The three distinct large head movements were evi-
dent in all head motion parameters, FD and DVARS. For 
neurofeedback runs, we evaluated translations/rotations both 
individually and at the group level (Fig. 6A,C; group aver-
age; translations: X = 0.02 ± 0.1 mm, Y = 0.18 ± 0.32 mm, 
Z = 0.26 ± 0.45  mm; rotations: pitch = 0.01 ± 0.00  mm, 
roll = -0.04 ± 0.19 mm, yaw = -0.06 ± 0.18 mm). Framewise 
(FD) and micro (MD) displacements were also calculated 

Fig. 2  Recursive and cumulative A tMean, B tVariance, C tSNR 
and D tCNR for neurofeedback runs without (“low motion”) and 
with (“high motion”) excessive head motion of the same participant. 
Recursive and cumulative temporal mean and variance were com-
putationally the same with a negligible MSEs <  1e−10. tCNR has not 
been estimated during the first rest phase (i.e., zero on the plots) due 
to the lack of variance in the real-time design. Black dashed lines rep-

resent the regressor of the experimental condition (grey blocks) mod-
eled as a boxcar function and convolved with the canonical hemo-
dynamic response function as implemented in SPM12 (thin dashed 
lines). r – recursive (solid lines), c – cumulative (thick dashed lines), 
“no reg” denotes time-series where activity associated with regulation 
conditions was regressed out to compute unbiased rtSNR (pink and 
yellow solid lines, respectively)
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in real-time. Based on these values, we calculated group 
average FD (0.10 ± 0.18 mm) and MD (0.04 ± 0.09 mm). We 
also calculated the individual and group average number of 
displacements above selected thresholds expressed in per-
centage from the total number of volumes (Fig. 7A,C; group 

average; FD, threshold 0.2 mm: 7.8 ± 9.2%; FD, threshold 
0.5 mm: 1.2 ± 1.9%; MD, threshold 0.1 mm: 5.1 ± 6.5%).

For resting-state runs, we evaluated translations/rotations 
both individually and at the group level (Fig. 6B,D; group 
average; translations: X: 0.00 ± 0.11 mm, Y: 0.06 ± 0.10 mm, 

Fig. 3  Recursive and cumula-
tive tSNR estimation times 
for neurofeedback runs with 
different volume dimensions 
(64 × 64 × 32 and 100 × 100 × 35 
voxels, 210 volumes). Aver-
age time of recursive tSNR 
estimations was 0.58 ± 0.04 ms 
and 1.92 ± 0.09 ms, respec-
tively. However, for cumula-
tive tSNR, estimation time 
was substantially higher and 
gradually increased from 24 to 
217 ms and from 64 to 561 ms, 
respectively

Fig. 4  Recursive and cumulative temporal average A FD, B MD, 
C DVARS and D the amount of high-frequency noise by means of 
MSE for neurofeedback runs without ("low motion”) and with ("high 
motion”) excessive head motion of the same participant. Conven-

tional six head motion parameters were provided by SPM12 realign-
ment routines adapted for real-time application (Koush et al., 2017a). 
MSEs between all cumulative and recursive estimates were negligible 
(<  1e−10)
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Z: -0.04 ± 0.18 mm; rotations: pitch: 0.02 ± 0.12 mm, roll: 
-0.03 ± 0.10 mm, yaw: -0.06 ± 0.11 mm). We estimated group 
average FD (0.12 ± 0.08 mm) and MD (0.03 ± 0.03 mm), as 
well as the number of these displacements above selected 
thresholds (Fig. 7B,D; group average; FD, threshold 0.2 mm: 
9.2 ± 11.4%; FD, threshold 0.5 mm: 0.6 ± 0.5%; MD, thresh-
old 0.1 mm: 1.4 ± 2.2%).

We evaluated DVARS both individually and at the group 
level for time-series of the whole-brain ROI in neurofeed-
back runs (Fig. 7E; group average 1.6 ± 0.6) and resting-state 
runs (Fig. 7F; group average 1.2 ± 0.4). We also calculated 
individual and group average of number of volumes with 
DVARS values above selected threshold (5a.u.) expressed in 
percentage of the total number of volumes (< 3% in all runs).

Recursive tSNR and tCNR

For time-series of the target ROIs, we evaluated group 
average rtSNR in neurofeedback runs (Fig. 8A; left amyg-
dala: 92.2 ± 36.4, right amygdala: 108.2 ± 45.7, dmPFC: 
186.5 ± 118.7) and in resting-state runs (Fig. 8B; Table 1, 
RSNs). For an exemplary real-time fMRI resting-state 
run, we also illustrated voxel-wise rtSNR (Fig. 1A). We 

evaluated group average rtCNR for time-series of three tar-
get ROIs (Fig. 8C; left amygdala: 0.10 ± 0.32, right amyg-
dala: 0.16 ± 0.35, dmPFC: 0.25 ± 0.54). Of note, activity 
associated with regulation condition was regressed out from 
rtSNR for neurofeedback runs (Fig. 2C).

Kalman Filter Denoising and iGLM Confounds

We used Kalman filter to identify and count positive and 
negative spikes in time-series of ROIs and RSNs. For neu-
rofeedback runs, the group average number of positive and 
negative spikes was 10.4 ± 4.3 and 11.3 ± 4.2 for left amyg-
dala, 9.1 ± 2.2 and 10.7 ± 3.0 for right amygdala, 7.1 ± 4.1 
and 5.4 ± 3.0 for dmPFC, respectively (Fig. 9A,B). For 
resting-state runs, the group average number of identified 
spikes is also shortlisted (Fig. 9C,D; Table 1). Note that 
the sensitivity to spike identification was controlled by the 
discrepancy threshold of the Kalman filter, which could be 
set so that less spikes are identified (Koush et al., 2012). For 
neurofeedback time-series, we evaluated the amount of high-
frequency noise filtered by the Kalman filter using rMSE 
(Fig. 10A; group average, left amygdala: 11.0 ± 7.4, right 
amygdala: 8.7 ± 5.7, and dmPFC: 4.0 ± 8.4). For resting-state 

Fig. 5  Real-time fMRI neurofeedback runs without (“low motion”) 
and with ("high motion”) excessive head motion. A, B Head motion 
parameters as they appear in OpenNFT. C, D FD and DVARS. B, D 

Three head movements are seen as consistent step-like displacements 
in translations and rotations, as well as spike-like displacements in 
FD and DVARS
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time-series of RSNs, group average rMSE is also shortlisted 
(Fig. 10C; Table 1).

For time-series and whole-brain iGLM analysis, head 
motion parameters and linear trend beta coefficients were 
estimated and visualized using contrasts for nuisance 
regressors. For neurofeedback and resting-state time-series, 
we evaluated group average linear trend beta coefficients 
(Fig. 10B,D; linear trend beta per neurofeedback trial, left 
amygdala: -0.2 ± 1.6, right amygdala: -0.4 ± 1.6, dmPFC: 
0.1 ± 2.3; for linear trend betas of RSNs, see Table 1).

Performance of rtQA Extension

The performance of rtQA extension was assessed using 
real-time data export simulations on a desktop PC with 
Intel Core i7-8700 (3.2 GHz, 6 cores, 16 GB RAM with 
2666 MHz), SSD disk (writing speed 550 Mb/s, reading 
speed 525 Mb/s), Windows 10, MATLAB R2021b and 
Python 3.9.7. The rtQA extension moderately increased 
group average data processing time by 88.2 ± 20.9  ms 

for neurofeedback runs (120 × 120 × 18 volumes) and by 
209.2 ± 24.4 ms for resting-state runs (120 × 120 × 45 vol-
umes) (Table 2). Data processing time represents the time in 
core Python process for processing a single fMRI volume, 
updating the OpenNFT GUI, and transferring data between 
the concurrent processes.

Discussion

To facilitate an efficient fMRI data collection and decide 
about the quality of fMRI volumes in real-time, we applied 
recursive and real-time methods of rtQA and developed the 
rtQA extension of the OpenNFT software. Specifically, we 
implemented recursive mean, variance, tSNR, tCNR, quality 
parameters based on GLM estimates and denoising of time-
series, as well as real-time DVARS, head motion parameters 
and derived estimates. The feasibility of applied rtQA was 
demonstrated in real-time fMRI neurofeedback and resting-
state runs.

Fig. 6  Individual head motion parameters. Translations and rotations averaged per neurofeedback A, C and resting-state B, D runs. Head motion 
parameters were estimated using the realignment routine of SPM12 as implemented in OpenNFT. Error bars denote standard deviation
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Recursive tSNR and tCNR

We found only negligible difference between recursive and 
cumulative mean, variance, tSNR and tCNR. These dif-
ferences are also negligible in the presence of excessive 
head movements because these methods are independent 
of it. The low errors between recursive and cumulative 
estimates confirm the feasibility of recursive methods for 

rtQA and confirm that they can preserve the precision and 
informativeness of the original cumulative methods with 
a much lower computational cost. Specifically, the esti-
mation time of cumulative tSNR progressively increased 
as compared to recursive tSNR, because cumulative esti-
mations were applied to all data up to each time point. 
In contrast, recursive estimations facilitate fixed memory 
and computation time because the contribution of new 

Fig. 7  Individual head motion parameters. For neurofeedback A, C, E and resting-state B, D, F runs, we illustrated thresholded FD and MD 
evaluated per run, as well as DVARS averaged per run, respectively. Error bars denote standard deviation
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data was directly incorporated into the estimated values 
at each time point (Bagarinao et al., 2003; Welford, 1962). 
Thereby, recursion allows computationally heavy estima-
tions for real-time fMRI applications, such as whole-brain 
tSNR, tCNR, and GLM (see Incremental GLM). Of note, 
rtSNR and rtCNR could fluctuate during the initial vol-
umes and stabilize towards the end. These intrinsic insta-
bilities could be due to the shortcoming of the recursive 
estimation in small data samples.

It has been shown that tSNR could be applied to assess 
the quality of task-related fMRI runs when considering the 
residual of the GLM fit (Murphy et al., 2007), which was 
used to investigate quality differences between control and 
neurofeedback groups (Zilverstand et al., 2017). Specifi-
cally, tSNR in dorsal ACC was substantially higher in the 

neurofeedback group (145) as compared to the control group 
(98) due to more extensive head motion in the control group. 
Consistently, activity associated with regulation condition 
was regressed out from tSNR for neurofeedback time-series, 
and the resulted rtSNR varied from 92.2 ± 36.4 in left amyg-
dala to 186.5 ± 118.7 in dmPFC.

Average rtCNR in bilateral amygdala (0.10 ± 0.32, 
0.16 ± 0.35) and dmPFC (0.25 ± 0.54) during emotion regu-
lation were also consistent with previously reported rtCNR 
in medial frontal and middle temporal gyrus during audi-
tory/visual imagery, and anterior cingulate cortex (ACC) 
during emotion regulation (0.1–0.5) (Koush et al., 2012). 
Of note, tCNR is strongly individual and highly sensitive to 
task complexity (Welvaert & Rosseel, 2013), e.g., it varied 
from -0.1 to 1.8 in a few participants during motor imagery 
in the supplementary motor area (Koush et  al., 2012). 
Whole-brain rtCNR maps provide very similar information 
as whole-brain activation maps, which is not surprising con-
sidering that its estimation is also based on GLM but with a 
simple model. The whole-brain rtCNR maps, however, are 
confounded by noise typically explained away by means of 
nuisance regressors; therefore, these maps can inform about 
the magnitude of signal relative to the noise. For this com-
parison, whole-brain rtCNR estimation is provided in our 
rtQA extension.

The rtSNR in the resting-state time-series varied from 
170.8 ± 88.7 in the primary visual network to 303.2 ± 124.7 
in the visuospatial network. This is overly consistent with 
previously reported resting-state tSNR values averaged 
across all voxels (ca. 100 – 280, TR = 3 s) (Van Dijk et al., 
2012), as well as in the default mode network, the subcortical 
areas, and the global grey matter (ca. 130 – 200, TR = 2 s; ca. 
60 – 160, TR = 1.1 s) (DeDora et al., 2016), and with tSNR 
across non-activated voxels in frontal cortex (ca. 132 – 203, 

Fig. 8  Time-series rtCNR and rtSNR. Group average rtSNR for 
A neurofeedback runs in bilateral amygdala and dmPFC, and B for 
resting-state runs in target networks. For neurofeedback runs, activity 

associated with regulation condition was regressed out from rtSNR 
using real-time GLM. C rtCNR in bilateral amygdala and dmPFC. 
Error bars denote standard deviation

Table 1  Group average rtQA parameters for time-series of the RSNs 
in the resting-state runs, (mean ± std)

network rtSNR  + spikes - spikes rMSE trend

auditory 268.0 ± 99.6 4.2 ± 3.3 4.4 ± 2.8 0.7 ± 0.6 1.1 ± 2.7
anterior 

salience
217.3 ± 92.2 4.0 ± 3.6 3.3 ± 2.5 1.0 ± 0.6 1.0 ± 3.1

basal  
ganglia

229.6 ± 72.6 4.8 ± 2.4 5.3 ± 3.6 1.2 ± 0.6 0.6 ± 1.9

dorsal 
DMN

250.5 ± 90.4 3.3 ± 3.9 3.0 ± 1.8 0.7 ± 0.5 0.6 ± 2.0

higher 
visual

239.6 ± 149.5 3.0 ± 3.4 3.5 ± 2.9 1.0 ± 1.2 0.8 ± 2.3

precuneus 191.6 ± 70.1 3.7 ± 3.7 3.1 ± 2.4 1.2 ± 0.8 0.4 ± 2.9
primary 

visual
170.8 ± 88.7 3.4 ± 4.1 3.8 ± 2.2 1.8 ± 1.9 1.1 ± 3.5

sensorimotor 289.6 ± 123.9 4.5 ± 3.8 4.1 ± 3.0 0.6 ± 0.5 0.7 ± 2.0
ventral 

DMN
259.6 ± 113.3 4.3 ± 4.0 2.5 ± 1.8 0.6 ± 0.4 0.5 ± 2.0

visuospatial 303.2 ± 124.7 4.1 ± 4.4 3.5 ± 3.1 0.5 ± 0.3 0.9 ± 2.1
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TR = 2 s) (Posse et al., 2012), while considering different 
acquisition parameters and head coils (Triantafyllou et al., 
2011; Welvaert & Rosseel, 2013).

Head Motion Parameters

Head motion parameters are commonly estimated post-hoc 
when fMRI data is completely acquired, imposing the risk 
of losing data of entire participants. Real-time head motion 
analysis monitors fMRI data quality and reduces experi-
mental risks and costs by means of reducing the amount of 
overscanning required to collect sufficient data under low-
movement criterion, e.g. 20 min resting-state runs given 
FD < 0.2 mm (Dosenbach et al., 2017). Along with prevent-
ing MRI data distortions by head motion (e.g., by optimizing 
head and body fixations and experimental instructions to the 
participants), real-time head motion analysis allows substan-
tiated interruptions and timely re-scans of experimental runs 

instead of complete exclusion of individual data with large 
head displacements.

The post-hoc FD estimate was proposed to detect the 
motion-related effects in fMRI data (Power et al., 2012, 
2014). Its real-time characterization is based on real-time 
calculation of head motion parameters during fMRI data 
acquisition (Dosenbach et  al., 2017). In our real-time 
fMRI data, low-movement criterion (FD < 0.2 mm) was 
exceeded in 7.8% of the neurofeedback runs with a dura-
tion of 17.5 min and in 9.2% of the resting-state runs with 
a duration of 6.1 min, which is consistent with above 90% 
data surveillance under the same criterion (Dosenbach et al., 
2017). As compared to FD, MD estimation is based only on 
the three translation parameters (Van Dijk et al., 2012), how-
ever, its real-time estimation could facilitate disentangling 
artifacts from head translations and rotations.

OpenNFT implements accurate real-time realignment 
based on the recommended rigid body spatial transformation 

Fig. 9  Detection of spikes using Kalman filter. For neurofeedback 
runs, we A estimated the group average number of positive and nega-
tive spikes for three ROIs and B illustrated an exemplary spike detec-
tion for the dmPFC time-series. Similarly, for resting-state runs, we C 
estimated the group average number of spikes for the target RSNs and 
D illustrated an exemplary spike detection for the dorsal DMN time-

series. B, D Red circles and blue rhombs mark positive and negative 
spikes, respectively. B Green lines demark separations between three 
exemplary trials, the blue dashed line illustrates the regulation regres-
sor, and grey bars indicate condition blocks. Error bars denote stand-
ard deviation
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and interpolation using B-splines of the  4th order, and the 
quality of the real-time implementation comes close to that 
of the conventional offline realignment in SPM (Koush 
et  al., 2012, 2017a). Although optimized for real-time, 
these estimations are not recursive and may require 300-
600 ms depending on the algorithm complexity and data 
size (Koush et al., 2017a). Due to the high precision level, 
rigid body preprocessing of fMRI volumes takes most of 
the processing time in OpenNFT. To minimize the number 
of iterations and reduce the computation time, the template 
volume should have the same dimensions as the real-time 

fMRI volumes. This is typically accomplished by acquir-
ing the template volume with the same fMRI sequence and 
acquisition parameters. Computationally less extensive (e.g., 
cubic) interpolations may be substantially faster, however, 
at the potential expense of accuracy.

DVARS

DVARS is a framewise data quality index that reflects the 
rate of volume intensity change across whole-brain. DVARS 
is similar to FD and can be used for data scrubbing, although 
it has no explicit relation to the head motion parameters 
(Power et al., 2012). It can capture distortions in fMRI data 
also due to other sources of motion, e.g. chest motion (Fair 
et al., 2020). We applied DVARS as rtQA parameter using 
(i) intensity average within the whole-brain mask defined 
based on the fixed template volume used for the realign-
ment, (ii) realignment and reslicing procedures to ensure that 
voxels within the fixed mask are identically sampled, and 
(iii) whole-brain data scaling based on the median of voxel 
intensities within the mask. The threshold definition for 

Fig. 10  Kalman filter recursive MSE and linear trend beta values. For 
neurofeedback runs, we illustrated group average A rMSE between 
raw and filtered time-series and B linear trend iGLM beta values for 

three ROIs. For resting-state runs, we illustrated group average C 
rMSE between raw and filtered time-series and D linear trend beta 
values for target RSNs. Error bars denote standard deviation

Table 2  Group average data processing time per acquired volume, 
(mean ± std) ms

OpenNFT mode neurofeedback
(120 × 120x18)

resting-state
(120 × 120x45)

rtQA ON 446.3 ± 55.5 1091.3 ± 51.3
rtQA OFF 357.7 ± 41.4 842.6 ± 21.2
difference 88.2 ± 20.9 209.2 ± 24.4
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DVARS-based fMRI volume scrubbing is usually arbitrary 
as changes in signal intensity could vary across scanners and 
sequences. Given that DVARS estimates were multiplied by 
100 after scaling, we applied coarse 5a.u. threshold for an 
exemplary volume censoring. This threshold could be set 
based on local site settings for offline data processing or 
box-plot right-outliers (1.5 interquartile range above the 75% 
percentile; as implemented in FSL, the FMRIB Software 
Library) (Jenkinson et al., 2012). Recently, a more formal 
approach for DVARS has been proposed that showed it to be 
a part of the sum of squares decomposition of the 4D fMRI 
data along with the thresholding based on DVARS infer-
ence testing (Afyouni & Nichols, 2018). These methods may 
require additional adaptation for real-time data processing.

Incremental GLM

We extended iGLM (Bagarinao et al., 2003) for rtQA using 
weights of modelled regressors as quality estimators. For 
time-series and whole-brain data, results of iGLM are shown 
to the experimenter in real-time as plots and whole-brain 
maps to evaluate the strength of the specific contamination 
and to identify brain regions with significant contamina-
tion from specific sources. Multiple nuisance GLM regres-
sors typically include at least six head motion parameters, 
white matter and cerebrospinal fluid regressors, high-pass 
filter and linear trend regressors, regressors based on vol-
ume censoring, physiological noise, as well as their derived 
estimates, principal components, and various combinations 
(Parkes et al., 2018). Although iGLM is a flexible tool for 
real-time fMRI data processing, the necessity to process data 
during its acquisition, as compared to post-hoc processing, 
substantially limits the number of regressors, because iGLM 
precision takes a substantial time to stabilize if the number 
of regressors is large (Misaki et al., 2015). Nevertheless, 
six head motion, high-pass filter and linear trend regressors 
are often used as nuisance regressors for processing time-
series and whole-brain volumes in real-time as implemented 
in OpenNFT (Koush et al., 2017a). A certain extension of 
the nuisance regressors based on recommendations can be 
feasible given the lower number of regressors of the interest, 
however, it requires a more systematic evaluation (Misaki 
et al., 2015; Parkes et al., 2018).

Kalman Filter Denoising

A non-linear modified Kalman filter is feasible to filter 
high-frequency noise and to correct spike-like artifacts in 
real-time fMRI time-series (Koush et al., 2012; Koush, 
Meskaldji, et al., 2017c; Lorenz et al., 2016). Here, we dem-
onstrated that recursive MSE between raw and Kalman-
filtered time-series could be used as the real-time estimate 
of the amount of filtered high-frequency noise. In addition, 

identified spikes could be counted and highlighted in real-
time. Notably, for real-time fMRI analysis, modified Kalman 
filter provides more effective spikes detection and correc-
tion in comparison to conventional filtering methods, such 
as EMA and Butterworth filter (Koush et al., 2012). The 
modified Kalman filter is feasible for different event- and 
block-related designs and is efficient if applied before signal 
averaging, however, its parameters need to be justified based 
on simulations. This includes the approximate cutoff fre-
quency and threshold between predicted and posterior esti-
mates to control for the identification of outliers given the 
repetition time (Koush et al., 2012). Stability of the Kalman 
filter depends on the steady state of model parameters and 
may require about 5–10 iterations to provide the reliable 
filtered output or rtQA estimate (Koush et al., 2012). Data 
scrubbing approaches also inspired further real-time spike 
detection and correction techniques, such as that using vari-
ous statistical scores (Heunis et al., 2020) and that modeling 
identified spikes as regressors of no interest in iGLM. More 
advanced methods, such as despiking based on wavelets 
(Patel et al., 2014) and Schrödinger filtering (Benigno et al., 
2021) are also promising but may require additional adapta-
tion for real-time data processing either based on recursion 
or sliding-window.

Practical Considerations

Recursive and real-time methods could be jointly applied 
for fMRI data processing to increase informativeness and 
optimize scanning time. For instance, iGLM could be used 
for brain activity estimation and visualization, for data filter-
ing, and for rtQA (e.g., to assess contributions of nuisance 
regressors). Versatile rtQA tools are particularly important 
to assess consequences of image distortions during data 
acquisitions due to technical and physiological noise. It 
provides a quick evaluation of the quality of fMRI data and 
allows informed decision to interrupt and/or restart data 
acquisitions if needed. In our excessive head motion exam-
ple, an operator could have interrupted the scanning session 
already after the first large motion of the participant.

Some QA parameters are related directly or indirectly. 
For instance, head motion is directly captured in the six head 
motion parameters, the derived FD and MD parameters, 
and changes in the whole-brain intensity values in terms of 
DVARS. Rather indirectly, excessive head motion may result 
in decreases of tSNR, tCNR, and (de)activation statistics, as 
well as in increases of the amount of noise to be filtered and 
weights of the corresponding nuisance regressors. Therefore, 
the effect of head motion on fMRI data quality could be also 
assessed using whole-brain tSNR (Van Dijk et al., 2012) and 
iGLM. Specifically, whole-brain (de)activation maps asso-
ciated with the experimental design as well as activation 
maps associated with the nuisance head motion and linear 
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trend regressors should be cross-checked in addition to head 
motion parameters to evaluate the magnitude of target brain 
(de)activation and artifactual activity in target brain areas.

The instantiation of the proposed recursive and real-time 
methods does not require additional adjustments in Open-
NFT. However, these methods could be further optimized 
through a pilot fMRI run to reach the best trade-off between 
the imaging parameters including the repetition time, data 
complexity, accuracy, and computational needs. The rtQA 
parameters could also be used to evaluate different preproc-
essing methods and fMRI volumes after different preproc-
essing stages (Heunis et al., 2020; Koush et al., 2012).

Although temporal dynamics of model parameters and 
intermediate estimates is largely neglected in neurofeedback 
studies, it often leads to underestimation of the feedback 
signal in the beginning of neurofeedback runs (Koush et al., 
2017a; Misaki et al., 2015). Time-series of mean, variance, 
rtSNR, rtCNR, and iGLM estimates provide insights into the 
temporal dynamic of the data and the derived estimates (e.g., 
percent signal change feedback signal based on cumulative 
average) and filtered feedback signal (e.g., based on cumula-
tive/recursive GLM) and inform about the reliability of the 
feedback signal and the filtering method. While systematic 

research is needed to improve the initial period of instability 
of recursive estimates, longer initial baseline blocks could 
partially compensate for some instability. Since iGLM and 
corresponding algorithms are implemented in the Open-
NFT pipeline, it allows the exploration of the model space 
to define, extend, and justify models based on pilot data.

OpenNFT rtQA and other Real‑time fMRI Quality 
Assessment Software

To the best of our knowledge, we shortlisted the available 
real-time fMRI quality assessment software (Table 3). We 
provided general details on the software availability, type, 
programming language, availability of parallel/multithread-
ing computing, support of the GPU computations, provided 
rtQA estimates and some other available key real-time 
estimates. It must be noted that despite strongly developed 
quality control/assurance/assessment software in neuro-
imaging and vast availability of quality control methods, 
real-time quality assessment is generally underrepresented 
in the literature. This is also true for neurofeedback and 
brain-computer-interface (BCI) literature, which historically 
pioneered the real-time data processing, yet did not really 

Table 3  rtQA software overview (alphabetically) focusing on their key rtQA and real-time estimates

Framework software – a software that provides tools (workflows, modules, libraries, functions) for developing user-defined modifications and 
extensions, standalone software – a software that does not require other software tools (workflows, modules, libraries, functions) to operate, 
library – a suite of generic tools (workflows, modules, functions) that is used to develop software programs and applications
 ParC parallel computing, GPU graphics processing unit, na not available/unknown, rt real-time, VOL whole-brain volume, ROI region of inter-
est, MP motion parameters (3 translations and 3 rotations), FD framewise displacement based on MP, MD micro displacement, ROIm ROI mean, 
ROIv ROI variance/std, ROI PSC ROI percent signal change, VOLv VOL variance/std, tSNR temporal SNR for rest paradigm, tSNRT tSNR for 
task paradigm with task regressor regressed out, tCNR temporal CNR for task paradigm, Spikes detection of spikes/outliers, AD absolute dis-
placement (compared to the first VOL), RD relative displacement (compared to the previous VOL), SVM support vector machine, FN amount 
of the filtered high-frequency noise evaluated using recursive MSE, RMS root mean square, WB ROI whole-brain fMRI ROI time-series and its 
rtQA estimates, DVARS temporal derivative of RMS variance over WB ROI voxels, LT linear trend, GLM general linear modeling, rLS recursive 
least squares, ICA independent component analysis, iGLM incremental GLM, corr (sliding-window) correlation

software availability type language ParC GPU rtQA estimates rt estimates source

FRIEND open-source framework C++ yes no MP, RMS of MP PSC, SVM, corr https:// nitrc. org/ proje cts/ friend
 (Basilio et al., 2015; Sato 

et al., 2013)
FIRMM commercial standalone Matlab, Python na no MP, FD na https:// nousi maging. com/

 (Dosenbach et al., 2017)
OpenNFT open-source framework,

library
Python, Matlab,
C++ 

yes no ROIm, ROIv, tSNR, tSNRT, 
tCNR, MP, FD, MD, 
Spikes, FN, WB ROI, 
DVARS

VOL/ROI iGLM, 
PSC, SVM, corr

https:// openn ft. org/
 (Koush et al., 2017a)

Pyneal open-source framework Python yes no AD, RD PSC, corr https:// github. com/  
jeffm acinn es/ pyneal

(MacInnes et al., 2020)
rt AFNI open-source plugin C,

Python
na yes MP PSC, SVM, corr https:// pypi. org/ proje ct/  

afniR TI
TBV commercial standalone C++ yes yes MP VOL/ROI rLS 

GLM, PSC, 
ICA, SVM, corr

https:// brain voyag er. com/ 
 produ cts/ turbo brain voyag er. 
 html

https://nitrc.org/projects/friend
https://nousimaging.com/
https://opennft.org/
https://github.com/jeffmacinnes/pyneal
https://github.com/jeffmacinnes/pyneal
https://pypi.org/project/afniRTI
https://pypi.org/project/afniRTI
https://brainvoyager.com/products/turbobrainvoyager.html
https://brainvoyager.com/products/turbobrainvoyager.html
https://brainvoyager.com/products/turbobrainvoyager.html
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get use of rtQA. Thus, just a few neurofeedback software 
developers noted that their tools could be used for rtQA as 
well, e.g. in FRIEND (Basilio et al., 2015; Sato et al., 2013), 
real-time AFNI plugin, TBV, and Pyneal (MacInnes et al., 
2020). Thereby, the present rtQA extension using OpenNFT 
appears as the tool that significantly extends the number of 
feasible rtQA estimates by means of various real-time and 
recursive methods. Further research and developments is 
needed to transfer the power of offline quality control meth-
ods to real-time applications (Alfaro-Almagro et al., 2018) 
and to improve the efficiency of real-time algorithms.

Conclusion

We developed an automatic rtQA extension of the Open-
NFT software to facilitate real-time analyses of key fMRI 
quality parameters. Specifically, we implemented the recur-
sive tSNR and tCNR for the whole brain and time-series 
extracted from regions of interest, iGLM nuisance regres-
sors for whole-brain and time-series data, number of spikes 
and amount of high-frequency noise in time-series, as well 
as real-time head motion translations, rotations, framewise 
and micro displacements, and DVARS. The rtQA extension 
was implemented in the open-source OpenNFT software 
written in Python, MATLAB and C++ . We demonstrated 
our rtQA developments using real-time fMRI neurofeed-
back and resting-state runs. Our GUI-based multi-thread 
software implementation allows for parallel estimation and 
real-time monitoring of both time-series and volumetric 
quality parameters at negligible time costs. User-friendly 
automatized rtQA of fMRI is of particular importance for 
an efficient data acquisition in brain research and clinical 
applications.

Information Sharing Statement

The most recent OpenNFT version is freely available 
under the GNU GPL license at GitHub (github.com/Open-
NFT). This software framework is based on practices of 
the platform-independent interpreted programming lan-
guages Python (python.org) and MATLAB (MathWorks, 
MA, US), as well as pre-compiled programing language 
C++ (isocpp.org) to facilitate concurrent functionality, 
high modularity, and extensibility. OpenNFT includes, 
but is not limited to, the functionality of SPM (fil.ion.ucl.
ac.uk/spm), PsychoPy (psychopy.org), and Psychtoolbox 
(psychtoolbox.org) software suites. OpenNFT support-
ing materials include the opennft.org website linking to 
the up-to-date software framework and library, thorough 
installation instructions for each supported platform, test 

routines, educational courses, video tutorials, real-time 
fMRI demo data (Koush et al., 2017b), and recently added 
task-based and resting-state demo data. OpenNFT GitHub 
repositories provide the communication channel on poten-
tial problems and feature requests, as well as contributions 
from developers. The experimental data and OpenNFT 
performance were analyzed in MATLAB using custom 
scripts and available functions. The figures were prepared 
in MATLAB and Adobe Illustrator (Adobe Inc., CA, US).
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