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ABSTRACT

Several methods have been developed for the sampling and
reconstruction of specific classes of signals known as signals
with finite rate of innovation (FRI). It is possible to recover
the innovations of the signals from very low-rate samples by
using adequate exponential reproduction sampling kernels.
Recently, the FRI theory has been extended to arbitrary sam-
pling kernels that reproduce approximate exponentials.

In this paper, we develop the method for the detection of
spontaneous brain activity in functional magnetic resonance
imaging (fMRI) data. We model the fMRI timecourse for
every voxel as a convolution between the innovation signal–
a stream of Diracs– and the hemodynamic response func-
tion (HRF). Relaxing the exact exponential reproduction con-
straint given by Strang-Fix condition, we design an adequate
FRI sampling kernel using the canonical HRF model that al-
lows us to retrieve the innovation instants in continuous do-
main. We illustrate the feasibility of our method by detect-
ing spontaneous brain activity on the simulated and degraded
fMRI data using an iterative denoising scheme.

Index Terms— Finite rate of innovation, functional mag-
netic resonance imaging, hemodynamic response function,
Strang-Fix conditions

1. INTRODUCTION

Conventional analysis of functional magnetic resonance
imaging (fMRI) data is based on event-related designs. Typ-
ically, prior knowledge about the experimental paradigm is
used to construct temporal regressors, which are then fitted
to the time course of every voxel using the general linear
model (GLM) approaches. Then, the analysis is followed by
a statistical hypothesis testing for a given contrast weights
to relate the experimental paradigm to the measured blood
oxygenated-level-dependent (BOLD) signal [1]. The BOLD
signal of every voxel in fMRI data can be represented as
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a convolution of an activity signal with the hemodynamic
response function (HRF).

An exact temporal model of the activity signal cannot be
modelled in cases when the activity occurs spontaneously,
for example, hallucinations in schizophrenia, or interictal
discharges in epilepsy, or in cognitive paradigm experiments.
Moreover, detecting spontaneous brain activity may pro-
vide characteristic patterns of the brain activity referred as
resting-state networks [2]. Such spontaneous activity can-
not be deduced by standard GLM approaches. Therefore,
there is an increasing need for alternative methodologies that
enable analysis of fMRI data without predefined responses.
fMRI deconvolution methods have been proposed to un-
cover the underlying activity signal at the fMRI timescale.
Within convolution framework, the linear system assumption
is retained while regularisation terms are generally used to
promote sparsity in the activity signal [3]. In [4], a wavelet
basis is tailored to mimic the properties of the hemodynamic
response. Recently [5], an fMRI data analysis method called
total activation has been proposed to explore the underlying
activity signal based on sparse spatio-temporal priors and
characterisation of the HRF.

In this paper, we propose a novel method to detect sponta-
neous brain activity in fMRI data using a recent sampling and
reconstruction framework called finite rate of innovation. We
consider the fMRI signal in a typical continuous to discrete
sampling setup as in Fig. 1 where the spontaneous activity
signal is modelled as an FRI signal –a stream of Diracs with
time instants and amplitude are defined as the innovation pa-
rameters of the signal. Unlike deconvolution frameworks, we
showed that it is possible to recover the unknown activity in-
stants in continuous domain with a temporal resolution less
than the can repeat time (TR) of the fMRI data.

The paper is organized as follows. We start with an
overview of the FRI sampling theory in particular for the
exponential reproducing kernels in Sec. 2. Then, we show
how to extend the same framework for the canonical HRF in
Sec. 3. Simulation results are shown in Sec. 4 and we finally
conclude in Sec. 5.
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Fig. 1: fMRI signal model: The original continuous-time activity signal x(t) is filtered with the HRF before being uniformly sampled with a sampling period
T . Then, the samples are assumed to be degraded by additive white noise such that fMRI time course samples are given by ỹn = 〈x(t), ϕ(t/T − n)〉 + εn
where the sampling kernel ϕ(t) is the scaled and time-reversed version of the HRF

2. FRI SAMPLING THEORY

The sampling theory plays a central role in modern signal pro-
cessing providing the link between continuous and discrete-
domains. The question is to find the best way to reconstruct
x(t) from the discrete samples of the observed signal ỹn. The
classical answer to the sampling problem is provided by the
famous Shannon sampling theorem with extensions to classes
of nonbandlimited signals that belong to shift-invariant sub-
spaces [6]. Recently, it has been shown that it is possible to
develop sampling schemes for classes of signals that are nei-
ther band limited nor belong to a fixed subspace [7]. These
signals are completely characterised by a finite number of free
parameters per unit time and are called signals with finite rate
of innovation (FRI), e.g, streams of Diracs, piecewise poly-
nomial and piecewise sinusoidal signals [8]. In a recent work
[9], the sampling kernels that are used in the FRI framework
have been extended to any arbitrary kernels which requires
an implicit design to fullfill the exponential reproduction con-
strain of Strang-Fix condition approximately. This had im-
pact in specific applications of FRI signals such as calcium
imaging [10].

Considering Fig. 1, assume that the stimulus function x(t)
is a stream of K Diracs

x(t) =

K−1∑

k=0

xkδ(t− tk), (1)

where xk ∈ C are the amplitudes and tk ∈ R are the time
instants. We restrict time instants to an interval tk ∈ [0, τ ].
Moreover, let us also assume for the moment that we have an
exponential reproducing kernel ϕ satisfying:

∑

n∈Z
cm,nϕ(t− n) = eαmt, (2)

for proper coefficients cm,n with m = 0, . . . , P and αm =
α0 +mλ ∈ C. Now, based on the acquisition model in Fig.

1, the noiseless samples satisfy

yn = 〈x(t), ϕ(t/T − n)〉 =
K−1∑

k=0

xkϕ(
tk
T
− n), (3)

where n = 0, . . . , N − 1. Once we have N samples of yn
with the kernel ϕ, the FRI theory states that the underlying
stream of Diracs can be retrieved as follows. First, we linearly
combine the samples yn using the coefficients of (2) to obtain
a new sequence:

sm =

N−1∑

n=0

cm,nyn. (4)

Then, using (3) in (4), we have:

sm =

〈
x(t),

N−1∑

n=0

cm,nϕ(
t

T
− n)

〉
(5)

=

〈
K−1∑

k=0

xkδ(t− tk), eαm
tk
T

〉

=

K−1∑

k=0

xke
αm

tk
T =

K−1∑

k=0

aku
m
k ,

where ak = xke
α0

tk
T and uk = eλ

tk
T . Then, the pairs of un-

knowns {ak, uk}K−1k=0 can be retrieved from the moments sm
using the well-known Prony’s method in spectral estimation
[7]. Next, we define a filter h with z-transform

H(z) =

K∑

m=0

hmz
−m =

K−1∏

k=0

(1− ukz−1), (6)

where the roots corresponds to the values uk by construction.
Then, it follows that hm annihilates the sequence sm as:

hm ∗ sm =

K∑

i=0

hism−i = 0. (7)
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By construction, the zeros of the filter h uniquely defines the
values uk provided that the instants tk’s are distinct. Finally,
the weighs xk are determined by solving first K equations of
(5) with the estimated uk’s.

3. APPROXIMATE RECOVERY OF ACTIVITY
SIGNALS IN FMRI

We now go back to the problem of reconstructing the activity
signal x(t) using a sampling kernel given by the canonical
HRF as in statistical parametric mapping (SPM) software [11]
from the non-ideal measurements ỹn that cannot reproduce
exact exponentials. The first step is to relax the condition in
(2), such that we want to find coefficients cn:

∑

n∈Z
cnϕ(t− n) ≈ eαt, (8)

where cn = c0e
αn. For sufficiently fast decaying kernels,

the choice c0 = (ϕ̂(α))−1 yields an accurate bound for the
approximation error [9]. To select the parameters αm, we
turn back to elements cm,n = cm,0e

αmn represented as:

C =




c0,0 0 · · · 0

0 c1,0
... 0

...
...

. . .
...

0 0 · · · cP,0




︸ ︷︷ ︸
D




1 eα0 · · · eα0(N−1)

1 eα1 · · · eα1(N−1)

...
...

. . .
...

1 eαP · · · eαP (N−1)




︸ ︷︷ ︸
V

,

where D is a diagonal, and V is a Vandermonde matrix.
Hence, for C to be better conditioned, we want the abso-
lute values of the diagonal elements of D to be nearly the
same and the elements in V to lie on the unit circle [12].
While choosing αm to be purely imaginary makes the Van-
dermonde matrix V better conditioned, the coefficients are
now related to the Fourier transform of the sampling kernel,
cm,0 = ϕ̂(jωm)−1. Since the HRF signal a low-pass blurring
kernel, the condition on the diagonal entries of D is satisfied
when all the exponentials are close to zero. This fact leads
to a trade-off in the choice of ωm and we choose to use the
frequency range only up to the full width at half maximum
(FWHM) of the spectrum of the HRF that is given in Fig. 2.
We define the exponentials as

αm = jωm = j
π

L
(2m− P ) m = 0, . . . , P, (9)

and then optimize the values P and L, accordingly. Here, the
ratio of πL defines the spacing of the chosen frequencies in the
spectrum.

Another issue that real data represents is that the mea-
surements are degraded in the presence of noise. Here, we
followed the iterative Cadzow denoising method to overcome
this situation [13].
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Fig. 2: HRF and its spectrum: (a) two gamma representation of HRF where
g1 is a gamma function modelling the peak and g2 is a gamma function
modelling the undershoot (b) Spectrum of the canonical HRF, where FWHM
defines the maximum value for the chosen frequency αm

4. RESULTS

We used the SPM package with the default parameters to gen-
erate a canonical HRF signal sampled at TR = 0.5s as given
in Fig. 2 (a). We know that approximate reproduction of ex-
ponentials are stable if we choose cm,n = cm,0e

jωm with
cm,0 = ϕ̂(jωm)−1. Hence, we only need to know Fourier
transform of the HRF at jωm, m = 0, . . . , P . We start noting
that P can be chosen arbitrarily while the Prony’s method re-
quires 2K values of sm in (7). This means that the parameters
of a stream of K Diracs can be retrieved when P ≥ 2K − 1.
Once we choose a specific value for P , we are only left with
the problem of choosing the value L. We have already seen
in Sec. 3 that the conditioning of the matrix C depends of the
selection of the frequencies on the unit circle. Therefore, we
choose the value L considering FWHM of the spectrum of the
HRF function as given in Fig. 2 (b).

For the simulation, we generated the activity signal
x(t) as K randomly spaced Diracs with unit amplitudes
and we focus on the retrieval of the location. Using the
fMRI signal model in Fig. 1, we obtain the samples fol-
lowed by an additive noise. Hence, the samples are yn =
〈x(t), ϕ(t/T − n)〉 + εn where εn is independently dis-
tributed gaussian noise with zero mean and variance σ2. The
variance is chosen according to the target signal-to-noise ratio
defined as SNR (dB) =10 log y

Nσ2 . Next using (4), we first
compute the moments sm that is followed by the Cadzow
denoising framework. Then, we obtain the innovation param-
eters {tk, xk}K−1k=0 by solving the annihilation system in (7)
and the system of equations in (4), respectively.

In Fig. 3 (a) to (c), we show the detection of 1 to 3 Diracs
in an fMRI data respectively. The signals are degraded by
AWGN at 5dB to simulate a realistic case and the analysis
is done for a window size of 40 s. The result revealed that
we can retrieve the spontaneous activity signal in continuous
domain with a localisation error less than the scan repeat time
of the fMRI data.
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Fig. 3: Detection of brain activity events in the considered fMRI window at SNR 5dB; (a) detection of K = 1 Dirac, (b) detection of K = 2 Diracs (c)
detection of K = 3 Diracs; the number and position of the moments are chosen as P = 8K and L = 8(P + 1)

5. CONCLUSIONS

We have proposed a new framework for the analysis of FMRI
data using a continuous domain theory. Modelling the sponta-
neous activity signal as an FRI signal, i.e., a stream of Diracs,
we considered the fMRI time course as a filtered version of
the activity signal with the HRF. Using the canonical HRF
model, we showed how to design an appropriate kernel that
allows approximate reproduction of exponentials which is
essential in FRI framework. Using the Cadzow denoising
scheme, the proposed algorithm retrieved the spontaneous
activity signal from simulated fMRI data in continuous do-
main with better temporal resolution than the scan repeat time
of the data sequence at low SNR. These preliminary results
show the feasibility of FRI for activity detection in fMRI
and future work will look into its application to experimental
data. Moreover, in our future research we will focus on the
variability of the HRF over brain regions and over individuals.
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