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Abstract

Finite-rate-of-innovation (FRI) is a framework that has been developed
for the sampling and reconstruction of specific classes of signals, in par-
ticular non-bandlimited signals that are characterized by finitely many pa-
rameters. It has been shown that by using specific sampling kernels that
reproduce polynomials or exponentials (i.e., satisfy Strang-Fix condition),
it is possible to design non-iterative and fast reconstruction algorithms. In
fact, the innovative part of the signal can be reconstructed perfectly using
Prony’s method (the annihilating filter).

In this paper, we propose an adapted FRI framework to deal with the
inverse source problem of radiating fields from boundary measurements. In
particular, we consider the case where the source signals are modelled as
stream of Diracs in 3-D and, we assume that the induced field governed
by the Helmholtz equation is measured on a boundary. First, we propose
a technique, termed “sensing principle –also known as the reciprocity gap
principle– to provide a link between the physical measurements and the
source signal through a surface integral. We have shown that it is possible
to design sensing schemes in complex domain using holomorphic functions
such that they allow to determine the positions of the sources with a non-
iterative algorithm using an adapted annihilating filter method.

Key words and phrases : Finite-rate-of-innovation, sensing principle, Helmholtz
equation, wave equation, inverse source problem, annihilating filter method
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1 Introduction

The inverse source problem (ISP) is of interest and importance across many
branches of physics, mathematics, engineering and medical imaging. Among
these, reconstruction of source distributions from boundary measurements of
radiating fields have attracted great attention of many researchers. In particular,
the Helmholtz equation that is the fundamental model for the radiation and wave
propagation has been studied extensively for various electromagnetic and scalar
fields [14, 9]. In general, the underlying physical system assumes a well-posed
forward model but, they usually suffer from having an ill-posed inverse problem
in terms of uniqueness, stability, and existence of a solution. Typically, one
needs additional assumptions about the source distribution to force uniqueness
of the solution by either imposing smoothness properties of the distribution or
by assuming a parametric source model.

The standard solutions of the ISP rely on iteratively fitting of a source model
using the forward model. In this case, the sparsity assumption of the source
signal plays a key role to regularize the solution with an optimisation framework
[12]. Recently, compressive sensing approaches have been employed [5] for the
detection of sparse objects from the field measurements.

There exists several approaches for the ISP that assume parametric source
models. In particular, the mathematical uniqueness and local stability of the
source distributions modelled as point sources have been proven [4]. Moreover,
there are several other parameter estimation frameworks in which the compu-
tational burden of forward model fitting can be dealt with efficient algorithms
[13]. For example, the method known as “reciprocity gap” concept [2] which
is essentially an application of Green’s theorem has been recently applied ISP
from boundary measurements of a Poisson’s field [4]. The method transforms a
scalar product between the source signal and and a test function to a boundary
integral of the measurements and the test function [4].

In the signal processing world, several sampling and reconstruction methods
have recently been proposed for specific classes of signals [27]. The common
feature of these signals is that they have a parametric representation with finite
number of parameters and are, therefore, called the signals with finite-rate-
of-innovation (FRI) [11]. It was shown that it is possible to reconstruct the
parameters of streams of Diracs, piecewise polynomials and piecewise sinusoidal
by using adequate sampling kernels that are able to reproduce polynomials or
exponentials. The results of FRI sampling has been extended for multidimen-
sional signals [22] and recently for arbitrary sampling kernels [25]. Moreover,
there has been several studies that develops similar parametric estimation frame-
works for different applications such as sampling of pulse streams in ultrasound
tomography [24] and spike detection from calcium imaging [18].

Recently, the theory of FRI has been applied to the problem of detecting
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parametric point sources from boundary measurements of a field generated by
the Poisson’s equation [15]. The method proposes analytic sensing functions to
map back the boundary measurements to underlying generator signal and shows
that it is possible to develop non-iterative reconstruction algorithms to retrieve
the innovation parameters. The results has been also extended to a multi–layer
head model to detect the epileptic foci in electroencephalograhy (EEG) data
[16].

In this work, we focus on the ISP from boundary measurements of radiating
fields governed by the Helmholtz equation. A typical measurement setup is
shown in Figure 1. We exploit an explicit sparsity prior on the source model
being a 3-D stream of Diracs such that the only innovation parameters are the
locations and weights. Then, we develop a new framework that allows us to
identify parametric source models from boundary measurements of a radiating
field. For that, we extend our recent work [10] to general sensing functions
derived from holomorphic functions in the complex plane. Our contributions
are two fold:

• We apply the reciprocity gap concept to the sensing functions which are so-
lutions to homogeneous Helmholtz equation and show that these functions
can be used to extract the innovation parameters of the source signal;

• We propose families of sensing functions that are holomorphic functions
that generate complex polynomials of N-th degree and we show that these
sensing functions have a spatial localization that can be controlled so that
they allow to sense the influence of nearby pointwise sources.

This approach brings together several attractive features: (1) the 2-D projections
of the locations onto several planes are decoupled; (2) several 2-D projections
are combined to retrieve the 3-D locations with a tomographic approach; (3)
the solution to the forward model is not necessary; (4) the method is locally
adaptive thanks to the generalization of the holomorphic functions to reproduce
N-th order polynomials.

1.1 Forward problem

The forward problem considers the radiation of waves from a real-valued spatio-
temporal source distribution q(r, t) embedded in an infinite, homogeneous medium.
The real-valued radiating wave field satisfies the inhomogeneous scalar wave
equation [

∇2 − 1

c2

∂2

∂t2

]
u(r, t) = q(r, t), (1)

for all the space and time, where c is the speed of wave propagation in the
medium. The source term q(r, t) is assumed to be compactly supported in the
space-time region S0|r ∈ Ω0, t ∈ [0, T0], where Ω is the spatial volume and [0, T0]
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Point-sources

Detectors

Wave-field

Figure 1: Typical measurement setup and the simplified view of the radiating
wavefronts

is the interval of time over which the source is present. The solution to (1) is not
unique. In particular, adding any solution of the homogeneous wave equation to
u(r, t) will be again a solution to (1). Therefore, it is necessary to specify initial
conditions in the form of Cauchy conditions.

Primarily, the harmonic solution of the wave equation is of more interest in
various application. This is mainly because the wave equation applies only to
non-dispersive and non-attenuating medium, whereas the counterpart Helmholtz
equation describes the radiation of waves in a general dispersive medium[

∇2 + k2)
]
U(r, ω) = Q(r, ω), (2)

where k2(ω) = ω2/c2(r) is the wavenumber and c(r) is speed of wave propagation
in an inhomogenous medium. Hence, the Helmholtz equation is considered to be
the fundamental governing equation of radiation and wave propagation. As was
the case for (1), (2) does not posseses a unique solution and, in particular one
needs to determine the boundary conditions that are dictated by the physics of
the problem on the measurement. Then, if the source term, Q(r, ω) is known,
the solution to (1) can be written as

U(r, ω) =

∫
Ω
d3r′G+(r− r′, ω)Q(r′, ω), (3)

where G+(r) is the retarded Green’s function of the Helmholtz equation defined
as the solution to the partial differential equation[

∇2 + k2
]
G+(r− r′, ω) = δ(r− r′). (4)
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In the case of the radiating fields in free-space, the physically appropriate bound-
ary condition is that the Green’s function satisfies the Sommerfeld radiation
condition which is equivalent to the requirement of causality in time domain [9].
Hence, the resulting Green’s function is known as the retarded Green’s function

G+(r− r′, ω) = − 1

4π

eik‖r−r
′‖

‖r− r′‖ (5)

that represents an outgoing-wave.

1.2 Inverse source problem

The inverse source problem (ISP) considers finding the source term Q(r, ω)
from the knowledge of the radiating field U(r, ω). The solution to the ISP
is trivial, if the field U(r, ω) is known over S0. Indeed, one can simply apply
the D’Alembertian operator W = ∇2 + k2 to the field to recover the source
term according to the Helmholtz equation. However, in practical situations,
the field can only be measured in restricted region that lie outside the source’s
space-time support S0. In particular, the field U(r, ω) and its normal derivative
∂U(r, ω)/∂n′ are available on a closed surface ∂Ω.

The standard solution of the source term by the boundary data is given by
the Porter-Bojarski (PB) integral equation,

Q(r, ω) = −
∫
∂Ω
dS′

[
U(r, ω)

∂G−(r− r′, ω)

∂n′
−G−(r− r′, ω)

∂U(r, ω)

∂n′

]
, r ∈ Ω

(6)
where G− = G∗+ is known as the retarded Green’s function representing an
incoming-wave, hence the solution is referred as the back-propagated-field solu-
tion [9].

The classical treatment of the problem based on (6) has several limitations
that include being limited to non-dispersive media and the requirement of having
full data set over a closed surface surrounding the source. As an alternative, the
problem can be cast in a Hilbert space formulation

TQ = f, (7)

where T : HQ → Hf is a linear mapping from a Hilbert space of source functions
HQ to Hilbert space of measurementsHf , f is the data andQ is the source terms.
With this formulation, the ISP will also apply to the cases of incomplete data
as well as to dispersive medium. However, as the two Hilbert spaces HQ and
Hf are generally different and the linear operator T is not generally Hermitian,
inverting such mappings for the source in terms of data would generally require
computationally heavy finite element techniques [9].
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2 Finite rate of innovation for the Helmholtz equa-
tion from boundary measurements

2.1 FRI in a nutshell

In standard FRI, the sampling kernels need to satisfy the Strang-Fix condition
on a uniform grid so that the sampling scheme will allow to reproduce some
polynomials or exponentials. In this case, the uniformly sampled FRI signal
with the proper sampling kernel allows to extract the moments or Fourier mea-
surements of the unknown signal which will be further used in the reconstruction
scheme [7, 11, 27].

Now, assume that we want to retrieve an input signal x(t) of stream of K
Diracs x(t) =

∑K−1
k=0 akδ(t−tk), where ak ∈ R are the amplitudes and tk ∈ R are

the time locations of the Diracs. We assume that the signal is sampled uniformly
after filtering with a kernel ϕ(t) and obtain the samples yn =

〈
x(t), ϕ

(
t
T − n

)〉
,

where n = 0, . . . , N − 1. Moreover, we assume that ϕ(t) is an exponential
reproducing kernel of compact support satisfying∑

n∈Z
cm,nϕ(t− n) = eαmt, (8)

for proper coefficients cm,n with m = 0, . . . , P and αm = α0 + mλ ∈ C for
m = 0, . . . , P . Then, FRI theory states that linearly combing the samples yn
with the coefficients cm,n, one achieves a power sum series that can be annihilated
by an FIR filter

sm =

N−1∑
n=0

cm,nyn =

K−1∑
k=0

xku
m
k , (9)

where xk = ake
α0tk/T and uk = eλtk/T . Defining a filter with z-transform

h(z) =
∑K

m=0 hmz
−m =

∏K−1
k=0 (1 − ukz−1), that is, its roots correspond to the

values uk to be found. Then, it follows that hm ∗ sm = 0. Hence, the zeros of
the filter uniquely define the values uk provided that tk’s are distinct.

2.2 Innovation signal for radiating field

We consider a 4-D signal model with M points sources given inside a region
Ω ⊂ R3, enclosed by a surface ∂Ω where the measurements of the field are
taken. Assume that the spatial distribution of the sources is given by a set
of points at locations {rm}Mm=1 ∈ Ω. The mth source’s waveform is given by
the signals temporal Fourier transform sm(ω). These signals may represent any
type of acoustic source such as music, speech, or noise. Hence, the total source
distribution inside Ω is then described by

Q(r, ω) =
M∑
m=1

sm(ω)δ(r− rm) (10)
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where the only free parameters in the signal Q(r, ω) are the locations rm and
the Fourier coefficients of the mth source signal for a given frequency ω. The
generated wave field according to (1) is observed with some detectors located
{rd}Dd=1 ∈ ∂Ω known by the measurement setup. Finally, the problem can be
stated as follows.

Problem 2.1. Given a set of measurements of a propagating wave field U(r, ω)
and its normal derivative ∂U(r, ω)/∂n′ for a set of points rd on ∂Ω, find the
source locations {rm}Mm=1 ∈ Ω satisfying (2).

2.3 Sensing Kernels

We start by defining the Sensing Principle as the current work differentiates
from the classical FRI–sampling problems.

Definition 2.2 (Sensing Function). Let Ψ be a function that satisfy

∇2Ψ(r, ω) +
ω2

c2
Ψ(r, ω) = 0 in Ω, (11)

then we coin the term sensing function for Ψ by noting that this set is a subset
of the the space of solutions to homogeneous Helmholtz equation.

Proposition 2.3. Assuming the field and the normal derivative of the wave
field are available on the boundary ∂Ω, and one chooses Ψ satisfying (11), then
one can “sense” the source signal through the surface integral:

〈Ψ, Q〉 =

∮
∂Ω

[
Ψ(r, ω)

∂

∂n
U(r, ω)− U(r, ω)

∂

∂n
Ψ(r, ω)

]
dS, (12)

where the partial derivatives ∂
∂n are directed outward (from the interior to ex-

terior) and we call 〈Ψ, Q〉 the generalized samples to differentiate from the
field measurements.

Proof. Let Ψ(r, ω) and U(r, ω) be any two complex functions of position, and ∂Ω
be a closed surface surrounding a volume Ω. If Ψ(r, ω), U(r, ω), and their first
and second partial derivatives are well-defined within Ω and on ∂Ω, respectively,
then the second Green’s identity states that∫

Ω
(U∇2Ψ−Ψ∇2U)dV =

∮
∂Ω

(
Ψ
∂

∂n
U − U ∂

∂n
Ψ

)
ds. (13)

When the sensing function Ψ is chosen from (11), we obtain∮
∂Ω

(
Ψ
∂

∂n
U − U ∂

∂n
Ψ

)
· ds =

∫
Ω

Ψ(r, ω)Q(r, ω)dr (14)

= 〈Ψ, Q〉 . (15)
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Hence, the sensing principle that follows from the second Green’s identity allows
extracting generalized samples of the source term with the sensing function,
which creates a link between the model parameters and the measurements on
the surface.

Many functions that satisfy the Strang–Fix conditions can be extended to
multidimensional space by the tensor product [22]. For example, symmetric B-
spline, biorthogonal B-spline and orthogonal Daubechies scaling functions [8].
However, the condition that is given by (11) prevents straight forward exten-
sion of the FRI–theory to multidimensional sensing problems. Moreover, there
has been various attempts to define functions that satisfy generalized Strang–
Fix condition for scattered data quasi-interpolation. For conditionally positive
definite functions such as multiquadratics, thin-plate splines and polyharmonic
B-splines, it can be checked that Strang–Fix conditions are satisfied, by taking
finite linear combinations of shifted functions [26]. However, all conditionally
positive definite radial basis functions are unbounded and not compactly sup-
ported [28]. Therefore, eigenfunctions of the Laplacian, which are solutions of
(11), cannot be used to retrieve parameters through reproducing polynomials
or exponentials as in the standard FRI. For that reason, we propose various
families of sensing functions that splits the problem into pieces in which there
exists efficient algorithms to retrieve the innovations of the signal.

Proposition 2.4 (Sensing functions based on 2D harmonic). Let φ(x, y) be a
solution to ∇2φ(x, y) = 0, then any function

Ψ(x, y, z) = e±ikzφ(x, y) (16)

would be a solution of the sensing equation given in (11).

Proof. Choosing Ψ as in (16) and developing (11), we have:

[
∇2 + k2

]
Ψ(x, y, z) =

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2

]
e±ikzφ(x, y)

= e±ikz
[
∂2

∂x2
+

∂2

∂y2

]
φ(x, y)︸ ︷︷ ︸

=0

+
[
(±ik)2 + k2

]
e±ikzφ(x, y)

= 0.

The term that appears to be zero in the second line is by the definition of a
harmonic function and it is worth mentioning that if the harmonic function
possesses a singularity, it has to be outside of the domain Ω to satisfy (11) and
to be a valid sensing function.

Now, we consider a 2-D sensing setup with the proposed 3-D sensing func-
tions and we ask the question whether the harmonic part of the sensing function
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can also satisfy the Strang-Fix conditions to reproduce some polynomials or
exponentials.

(a) Polynomial reproducing kernels: Consider any compactly supported kernel
given by the tensor product of two 1-D functions φ(x) and φ(y) that can
reproduce polynomials xα and yβ, respectively, where α, β ∈ {1, . . . , n} and
x, y ∈ R. Assuming unit sampling period along each direction, this means
that the kernel ϕ(x, y) satisfies∑

j

∑
k

Cα,βj,k φ(x− j, y − k) = xαyβ, (17)

where α and β are the degrees of the polynomials that the kernel can repro-
duce along x- and y-directions.

Proposition 2.5. There is no kernel that can reproduce real polynomials of
degree more than 2 that will satisfy both the sensing principle (11) and the
Strang-Fix conditions (17).

Proof. Let φ(x, y) be the harmonic function; i.e.,∇2φ(x, y) = 0 in Ω. Hence,
(17) must satisfy the same equation

LHS =
∑
j

∑
k

Cα,βj,k ∇2φ(x− j, y − k) = 0

RHS = ∇2xαyβ = α(α− 1)xα−2yβ + β(β − 1)xαyβ−2.

The RHS is zero only for α, β ∈ {1, 2}, which yields a contradiction for
polynomials of degree n > 2.

(b) Exponential reproducing kernels: Consider any compactly supported kernel
given by the tensor product of two 1-D functions φ(x) and φ(y) that can
reproduce exponentials eαpx and eβqy, respectively, where αp = α0+pλ, βq =
β0 +qγ with p, q ∈ {1, . . . , n} and x, y ∈ R. Assuming unit sampling interval
along each direction, this means that the kernel φ(x, y) satisfies∑

r

∑
s

Cp,qr,s φ(x− r, y − s) = eαpxeβqy, (18)

where α and β are the degrees of the polynomials that the kernel can repro-
duce along x- and y-directions.

Proposition 2.6. There exists kernels that can reproduce exponentials that
will satisfy both the sensing principle (11) and the Strang-Fix conditions
(17) provided that αp = ±iβq for all p, q.
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Proof. Let ϕ(x, y) be the harmonic function; i.e.,∇2φ(x, y) = 0 in Ω. Hence,
(18) must satisfy the same equation

LHS =
∑
r

∑
s

Cp,qr,s∇2φ(x− r, y − s) = 0

RHS = ∇2eαpxeβqy = (α2
p + β2

n)eαpxeβqy = 0.

Consider a general harmonic function that has no singularity in Ω and a
stream of Diracs with Q(r, ω) =

∑M
m=1 sm(ω)δ(r− rm) for a given frequency

ω, rT = [x, y, z] and rm
T = [xm, ym, zm]. We consider the generalized

samples on a uniform grid given by

Mr,s =

〈
Q(r, ω),Φ

(
x

Tx
− r, y

Ty
− s, z

)〉
(19)

=

∫∫∫
R3

Q(r, ω)φ

(
x

Tx
− r, y

Ty
− s
)
e±ikzdxdydz

where Tx, Ty ∈ R+ are the sensing intervals along x- and y-directions.

Consider a set of 3-D Dirac distribution Q(r, ω) =
∑M

m=1 sm(ω)δ(r− rm)
for a given frequency ω, rT = [x, y, z] and rm

T = [xm, ym, zm]. Here, we
provide an algorithm in the classical FRI–fashion and we refer interested
reader to [11] for the details of the method.

1) Retrieve the FRI samples of the signal: We denote, µp,q =
∑

r

∑
sC

p,q
r,sMr,s

the weighted sum of the generalized samples, where the weights are those
from (18) that reproduce eαpxeβqy. We have

µp,q =
∑
r

∑
s

Cp,qr,sMr,s

(a)
=
∑
r

∑
s

Cp,qr,s

〈
Q(r, ω),Φ

(
x

Tx
− r, y

Ty
− s, z

)〉
(b)
=

〈
Q(r, ω), e±ikz

∑
r

∑
s

Cp,qr,s φ

(
x

Tx
− r, y

Ty
− s
)〉

(c)
=

〈
M∑
m=1

sm(ω)δ(r− rm), e±ikzeαpxeβqy

〉
(d)
=

M∑
m=1

sm(ω)e±ikzmeαpxmeβqym (20)
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where (a) follows from the definition of Mr,s in (19), (b) from the defi-
nition of Ψ in (16); (c) from the definition of Q(r, ω) and (d) from the
exponential reproducing property in (18).

2) Annihilation along x- and y- axis: Note that (20) can be written as a
power series

µp,. =

M∑
m=1

cmu
p
m (21)

with cm = sm(ω)e±ikzmeβqyme
α0xm and um = eλxm along each row of µp,q.

Here, the choice αp = α0 + pλ makes the sum as a power series that can
be annihilated with an annihilating filter. Hence the sequence {xm}Mm=1

can be retrieved from the FRI–samples µp,q using the annihilating filter
method also known as Prony’s method [23]. Let hp with p = 0, . . . , P ,

be the filter with z-transform H(z) =
∑M

p=0 hpz
−p =

∏M
m=1(1− umz−1),

that is its roots correspond to the values um to be found. Then, it follows
that hp annihilates the observed sequence µp,.:

hp ∗ µp,. =
M∑
i=0

hiµp−i,. =
M∑
m=1

cmu
p
m

M∑
i=1

hiu
−i
m︸ ︷︷ ︸

H(um)

= 0. (22)

Then, the zeros of the this filter uniquely defines the values um provided
that the xm’s are distinct. Moreover, the same procedure can be followed
to retrieve the innovations {ym}Mm=1 by defining another annihilating
filter for βq = β0 + qγ.

As a final remark for this section, we note that the origin of the sensing
grid and step size Tx and Ty have to be chosen such that there exist no
singularity in the volume Ω so that (11) will be satisfied for every sensing
point of the grid in case the function φ possesses a singularity.

(c) Holomorphic kernels: In this part, we propose to work with holomorphic
functions that are a subset of harmonic functions rather than the general
harmonic functions. We first note that this allows to reduce the dimension of
the problem, that is, the pairs {xm, ym}Mm=1 will be represented by complex
numbers ξm = xm + iym. Then, we showed that the exponential reproduc-
tion constrain of part (b) can be relaxed with a proper design of sensing
positions of the generalized samples. We propose to take these samples at
equidistant angles (using polar representation) on the complex domain that
will allow to construct an annihilation filter apiori so that the parameters of
a characteristic polynomial in which the zeros are defined as the positions
on the complex plane can be retrieved with a non-iterative algorithm.
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We start by noting that, if a complex-valued function ϕ(ξ) of a single com-
plex variable ξ = x + iy is complex differentiable, (i.e., holomorphic), it is
also a harmonic function, i.e., ∇2ϕ = 0, [1]. Polynomial functions in ξ with
complex coefficients, sine, cosine and the exponential function are some ex-
amples of holomorphic functions on C. In this work, we only consider N-th
degree polynomials given by

ϕ(ξ) =

N∑
l=0

alξ
l =

N∏
l=1

(ξ − sl), (23)

where sl are the zeros of the holomorphic functions that are located in the
complex plane in a region S0 with a radius s0 = max

l
|sl|. Then, we propose

to introduce the zeros of the holomophic function as the poles of the sensing
function

Ψ(ξ, z) = eikz (ϕ(ξ))−1 , (24)

such that one can acquire the generalised samples by

µn = 〈Q(r),Ψ(ξ − an, z)〉 , (25)

where the sensing positions, (i.e., an = rne
iαn), are not on a uniform grid in

the complex plane, but located at equidistant angles satisfying αn = α0 +λn
with arbitrary α0, λ and rn ≥ s0 +R with R being the radius of the volume
Ω to ensure that no singularity exists in the volume for different sensing
positions.

Proposition 2.7. Consider a stream of 3-D Diracs

Q(r, ω) =

M∑
m=1

sm(ω)δ(r− rm)

for a given frequency ω, rT = [x, y, z] and rm
T = [xm, ym, zm], the 3-D

complex sensing functions in (24) that are designed using the holomorphic
functions that introduce N-th order poles allow non-iterative reconstruction
algorithm to retrieve the locations of the sequence {ξm = xm + iym}Mm=1.
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Proof. The sensing samples in (25) will satisfy

µn =

〈
Q(r, ω),

eikz

ϕ(ξ − an)

〉
(26)

(a)
=

M∑
m=1

sm(ω)eikzm

ϕ(ξm − an)
(27)

(b)
=

∑M
m=1 sm(ω)eikzm

∏M
i=1
i 6=m

ϕ(ξi − an)∏M
m=1 ϕ(ξm − an)

(28)

(c)
=

∑M
m=1 sm(ω)eikzm

∏M
i=1
i 6=m

∏N
l=1(ξi − sl − an)∏M

m=1

∏N
l=1(ξm − sl − an)

(29)

(d)
=

∑(M−1)N
m=0 s′ma

m
n

P (an)
(30)

where (a) follows from the linearity of the inner product, (b) from combining
each terms in (a), (c) from the definition of the ϕ in (23), the numerator
of (d) follows from the fact that the numerator of (c) can be rewritten as a
polynomial with respect to an with at most (M − 1)N zeros where s′m are
complex valued coefficients that do not depend on an and the denominator
of (d) follows from defining a characteristic polynomial

P (x) =
MN∑
m=0

pmx
m =

M∏
i=1

N∏
l=1

(ξm − sl − x) (31)

where pm are the coefficients to be found such that pMN = 1. Then, defining
a new sequence

un = µnP (an) =

(M−1)N∑
m=1

s′ma
m
n =

(M−1)N∑
m=1

c′mu
n
m, (32)

where c′m = s′mrne
iα0m and um = eiλm. Here, the choice αn = α0 + nλ

makes un as a power series that can be annihilated with a known annihilating
filter given by its z- transform

H(z) =

M∑
k=0

hkz
−k =

M∏
m=0

(1− eiλmz−1).

Hence, the problem reduces to finding the polynomial coefficients (31), from
the annihilation system given by {h ∗ u}n = 0 so that the zeros of the
polynomial will give the locations ξm = xm+iym for m = 1, . . . ,M provided
that ξm’s are distinct.
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It is worth mentioning that the choice of the projection plane that is de-
termined by the holomorphic function is arbitrary and it could have been
chosen as XZ or YZ planes rather than XY plane. Indeed, any orientation
can be achieved by the sensing functions using standard rotation matrices
about x-, y-, and z-axis which will be further developed in the following
section.

3 Proof-of-concept validation

In this chapter, we develop a practical algorithm to retrieve the parameters
of a stream of 3-D Dirac distribution from the samples of induced field on a
given measurement boundary. In particular, we choose to work with a specific
holomorphic function that introduces a first-order pole at the origin; i.e., using
the convention from the previous section we choose ϕ(ξ) = ξ where the complex
variable is defined as ξ = x + iy. Moreover, we provide the details of the
implementation with experimental results.

3.1 Sensing Step

In Section 2 we proposed to use novel sensing kernels that are derived from
holomophic functions in complex domain. Now, we consider a general spherical
sampling geometry and restrict our choice of the sensing function based on the
following lemma.

Lemma 3.1. Let a ∈ C and r = [x, y, z]T

ψ(x, y, z) =
eiωz/c

x+ iy − a, a /∈ Ω (33)

is a valid sensing function that belongs to the space of functions defined by (11).
The proposed test function is visualized on the measurement surface in Fig. 2.

3.2 Annihilation Step

Proposition 3.2. Let ψn be a family of sensing functions each as in Lemma
3.1 for n = 0, · · · , N − 1 with an’s located with equidistant radial angle, θ on the
complex plane, then, the set of generalized samples can be annihilated to find the
projections of the source points onto complex plane.

Proof. Choosing N points on the complex plane to define the family of sensing
functions in the form an = αne

inθ with αn’s are greater than the radius of the
measurement surface to satisfy the Lemma 3.1 and θ is an arbitrary angle.

Then, defining a polynomial R(an) =
∑M

m=0 rma
m
n =

∏M
m=1(xm + iym −

an) with rM = 1 and an FIR filter, h with zeros at eikθ given by H(z) =
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(a) (b)

Figure 2: Visualalization for the sensing function on the measurement surface
Ω where the dots around the volume indicate the different sensing positions,
(i.e., an) (a) sensing function (b) normal derivative of the sensing function cor-
responding to sensing position shown in dark

∑
k∈Z h[k]z−k =

∏M−1
k=0 (1 − eikθz−1), then given the set of generalized samples

can be reinterpreted as

〈ψn, Q〉 =
M∑
m=1

cm(ω)
eikzm

xm + iym − an
, (34)

=

∑M−1
m=0 c

′
me

inmθ∏M
m=1(xm + iym − an)

,

=

∑M−1
m=0 c

′
me

inmθ

R(an)
.

Then, the predefined filter h annihilates the sequence, un = {R(an)µn} for
n = M, . . . , N − 1 where µn 〈ψn, Q〉

0 = {h ∗ u}n =
N−1∑
n′=0

hn−n′R(an′)µn′ (35)

=
N−1∑
n′=0

hn−n′
M∑
k=0

rka
k
n′µn′

=
M∑
k=0

rk

N−1∑
n′=0

hn−n′a
k
n′µn′

=

M∑
k=0

An,krk.
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In matrix representation, (35) can be represented as

Ar = HDVr = 0, (36)

where H is an (N −M)×N Toeplitz matrix representing the annihilating filter
h, D is an N×N diagonal matrix of the generalized samples, V is an N×(M+1)
Vandermonde matrix of poles of the sensing function and r is the unknown vector
of M + 1 polynomial coefficients with rM = 1. Once the unknown polynomial
coefficients satisfying (36) are obtained, the projection of the source point onto
complex plane are found as the roots of the polynomial R(an).

Lemma 3.3. Let the locations of the point sources be distinct, then the system
matrix in (36) is of rank M for the noiseless case.

Proof. The system matrix in (36) has (N −M) equations with M unknowns
of the characteristic polynomial R(an) defined in Proposition 3.2 with rM = 1.
Then, the minimum number of generalized samples should be N = 2M . Hence,
we conclude that the system matrix A in (36) is rank M for distinct source
position.

3.3 Practical Recovery in 3-D

We propose a three-step algorithm to locate the 3-D locations of the point sources
from the measured field by means of applying the sensing principle.

3.3.1 Planar Projection

In the first step, we choose a set of sensing functions Ψ as in (33) in a general
X’Y’Z’ coordinate system that we represent with general rotation matrices along
X and Y-axes [3].

Ψn(Rr, ω) =
ejωz

′/c

x′ + jy′ − an
, an /∈ Ω, (37)

where an’s are the poles of the sensing function on X’Y’-plane located at equidis-
tant angles an = aejnθ, n ∈ J0, N−1K, |a| is greater than the radius of Ω excluding
the volume and θ is an arbitrary angle. The matrix R represents rotation ma-
trix of the coordinate system along the X and Y axes in a standard right-handed
cartesian coordinate system given by

x
′

y′

z′


︸ ︷︷ ︸

r′

=

RX(α)︷ ︸︸ ︷1 0 0

0 cosα sinα

0 − sinα cosα


RY(β)︷ ︸︸ ︷cosβ 0 − sinβ

0 1 0

sinβ 0 cosβ


︸ ︷︷ ︸

R(α,β)

xy
z


︸︷︷︸

r

. (38)
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Then, solving the annihilation system in Proposition 3.2, we find the projections
of the point absorbers’ positions on the corresponding X’ Y’-plane defined by
the rotation matrix.

3.3.2 Pairing of the Projections

In the second step, we propose a greedy approach to build a manifold of pro-
jections to keep the solutions paired between each projection. In particular, the
2-D projections of the locations are the roots of a polynomial as described in
Proposition 3.2. Thus, the projections are not properly ordered. Indeed, the
problem gets even more significant for multiple point source recovery and an
efficient way to handle the problem becomes critical. In the ideal case, at least
2 orthogonal projections of the distribution would be sufficient to solve for the
3-D problem. However, to the best of our knowledge there is no simple solution
for this problem under the effect of noise or measurement error.

We propose a solution for the closest pair problem for two separated sets
of points between consecutive projection planes. Indeed, the main idea is to
compute the Euclidean distance in R3 between all the pairs of points in two
projection sets and then group the pairs with respect to the mutually smallest
distance criteria.

Consider A × B projection planes defined by R(αi, βj) i ∈ J0, A − 1K j ∈
J0, B − 1K where each plane has M projected points to be paired. We assume
an initial labelling for the points of the first plane with l1 to lM . Then, to find
the closest pair of points p ∈ Pk and q ∈ Pk−1 k ∈ J2, A × BK, we compute the
distances between all the M ×M pairs of points and we pick and label the pair
with the smallest distance and exclude it from the set.

In a similar way, the idea can be generalized for a rotation along x and y axis
using a selective projection approach. Indeed, we propose to selectively project
onto planes such that the incremental change between the planes remains the
minimum. Hence, the Euclidean distance still achieves a good measure to pair
the projections between two consecutive projections.

We note that in practice, projection angles along x and y- axis do not have
to be different due to the fact that the projection is done on a complex plane
and only the distance of each source point to the measurement surface matters
in reconstruction quality. Hence, choosing the rotation matrix R(α, α) achieves
sufficiently good results.

We finally provide a summary of the method in Algorithm 1 and we note
that the method is computed in O(n2) but can be solved in O(n log n) using the
recursive divide and conquer approach [21].
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Algorithm 1: Closest Pair of Points

Data: p ∈ Pi, for i ∈ [[0, P − 1]]
Result: lp: Labels of p ∈ Pi
begin

Initialize: Label l0: 1 to M
for i=1 to P-1 do
P ∗i = Pi
while P ∗i is not empty do

p∗ = argmin
p∈P ∗i

min
q∈Pi−1

||f(p)− f(q)||2

P ∗i =P ∗i \{p∗}
Label li : Match the labels of p∗ and q
;

3.3.3 Reconstruction in 3-D

In the third step, we solve for the 3D positions of the point absorbers by a
least-squares regression of the 2D projections as a special case of tomographic
reconstruction. Indeed, once the pairing of the projections for each rotation
matrix is known after the second step of the algorithm, one can represent each
2D projections with the

[
xkm

ykm

]
︸ ︷︷ ︸
ξkm

=

[
1 0 0

0 1 0

]
R(αi, βj)︸ ︷︷ ︸

Pk

xmym
zm


︸ ︷︷ ︸

rm

, (39)

k = i×A+ j, i ∈ J0, A− 1K, j ∈ J0, B − 1K

where R(αi, βj) characterize a set of rotations, k is the index for the selective
projection order and ξkm is the projection of the point absorber rm on the plane
denoted by k. Finally, we solve for the following least squares problem

r̂m = argmin
rm

P−1∑
i=0

‖ξm −Pkrm‖22, ∀m ∈ J1,MK. (40)

3.3.4 A note on the missing Fourier coefficients

In order to completely describe the source distribution, one still has to determine
the temporal Fourier coefficients sm(ω). The estimation of these parameters can
be done with any set of generalized samples. Considering the estimated locations,
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the generalised samples will be a linear set of equations to be solved for sm(ω)

µn = 〈ψn, Q〉 =

M∑
m=1

sm(ω)
eikzm

xm + iym − an︸ ︷︷ ︸
estimated

, n ∈ J1, NK, (41)

where µn are the generalized samples and xm, ym and zm are the estimated 3-D
positions of the source.

Overview of the Algorithm

Boundary 
measurements

Pairing the
Projections 

Boundary 
Measurements

Boundary 
Measurements

Boundary 
Measurements

2-D
Projections

Least squares

Retrieved 3-D
locations

Sensing 
Principle

Boundary 
Measurements

Boundary 
Measurements

Boundary 
Measurements

Paired 2-D
Projections

(a) (b) (c)

U(r,!)|@⌦
@

@n0U(r,!)|@⌦

 

Figure 3: A schematic of the proposed algorithm to retrieve the locations of a 3-D
stream of Diracs from the boundary measurements of an induced field: (a) Find
the projected positions on several complex planes by the sensing principle; (b)
Pair the projections between each projection plane with respect to the Euclidean
distance; (c) Retrieve the 3-D locations by solving a least-squares regression
problem.

In this part, we recapitulate the proposed algorithm for the recovery of pa-
rameters of a source distribution given as a set of 3-D Diracs. In Figure 3, a
flow-chart of the proposed algorithm is provided.

3.4 Experimental Results

We performed numerical experiments to validate our algorithm. Specifically, we
considered a spherical geometry of the measurement surface that is assumed to
enclose the source function Q(r, ω) =

∑M
m=1 sm(ω)δ(r− rm) to be determined.

Here, we note that there has been extensive research [6, 17, 19, 20] on the prob-
lem that deals with the analysis and design of spherical sensor arrays to allow
aliasing-free spatial sampling of the data, if possible, or otherwise with minimal
spatial aliasing. However, we would like to repeat (12) here to emphasize the
fact that the sensing principle relies on the generalized samples of the source
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function by the following surface integral that links the sampled measurements
to the model parameters

µn = 〈ψn, Q〉 =

∮
∂Ω

[
ψn(r, ω)

∂

∂n
U(r, ω)− U(r, ω)

∂

∂n
ψn(r, ω)

]
dS (42)

where the partial derivatives ∂
∂n are directed outward from the interior to exte-

rior. For the current work, we consider that the integral in (42) can be taken
numerically and we will provide a more advanced method of the approximation
of (42) in future work that can also accommodate missing data.

Once the generalised samples have been acquired with the sensing step, the
annihilation step follows by constructing the linear system of equations in (36)
so that the projections on a plane can be retrieved. As we have seen in Section
3.2, we first use the lemma 3.3 to determine the model order M . In Fig. 4 (a),
we demonstrate that it is possible to estimate the model order M by observing
the decomposition of singular values of the system matrix A in (36). For a 3-D
retrieval of the projections, we follow the instruction as in Section 3.3. And in
Figure 4, we provide a case where the true model has five point sources.

4 Discussion and Conclusion

To summarize, we proposed a novel FRI-like algorithmic framework for identify-
ing parametric source models from boundary measurements of a radiating field.
We proposed to use novel sensing functions that are derived from holomorphic
functions which allow to split the 3–D localization problem into several 2–D
projections onto planes defined by the holomorphic function.

Introducing the zeros of the holomorphic function that generates an N-th
degree complex polynomial as the poles of the sensing function, we achieved a
locally selective sensing function that is capable to spatially select the influence
of the nearby point sources. This property is important in practice since the
full view of the field data is usually not available in real applications. Therefore,
this enables us to have better approximation of the closed surface integral of the
measurements that is the fundamental equation of the sensing principal.

We demonstrated the feasibility of the proposed algorithm by experimental
results and our future research will focus on real applications.
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Figure 4: Point Source Model Estimation: (a) Estimation of model order by
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24 Z. DOĞAN, T. BLU AND D.V.D. VILLE

[27] M. Vetterli, P. Marziliano, and T. Blu. Sampling signals with finite rate
of innovation. Signal Processing, IEEE Transactions on, 50(6):1417 –1428,
june 2002.

[28] ZongMin Wu and JianPing Liu. Generalized strang-fix condition for scat-
tered data quasi-interpolation. Advances in Computational Mathematics,
23(1-2):201–214, 2005.


