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ABSTRACT

Brain mapping using magnetic resonance imaging (MRI) is

traditionally performed using voxel-wise statistical hypothe-

sis testing. Such mass-univariate approach ignores subtle spa-

tial interactions. The searchlight method, in contrast, uses a

multivariate predictive model in each local neighborhood in

brain space—named the searchlight. The classification per-

formance is then reported at the center of the searchlight to

build an information map. We extend the searchlight tech-

nique to take into account additional voxels that can be con-

sidered as a meaningful network; i.e., we define a criterion

of multivariate connectivity to identify voxels that are statis-

tically dependent on those in searchlight. We coin the term

“connectivity searchlight” for the extended searchlight. Using

simulated data, we empirically show improved performance

for brain regions with low signal-to-noise ratio and recovery

of underlying network structures that would otherwise remain

hidden. The proposed methodology is general and can be ap-

plied to both functional and structural data. We also demon-

strate promising results on a well-known fMRI dataset where

images of different categories are presented.

Index Terms— Magnetic resonance imaging, pattern

recognition, multivariate analysis, functional connectivity

1. INTRODUCTION

Magnetic resonance imaging (MRI) has opened unprece-

dented ways to explore brain structure and function non-

invasively. Traditionally, univariate statistical methods are

used to analyze the data voxel-by-voxel. However, it has been

shown that distributed patterns can carry a lot of information,

such as about different image categories [1]. Recent advances

have applied tools from machine learning to perform multi-

variate pattern analysis (MVPA), commonly termed “brain
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decoding” or “mind reading”, as the condition is inferred

from the data [2, 3].

One elegant technique for brain decoding is the so-called

searchlight method [4]. For each voxel, a local neighborhood

is considered (e.g., sphere or cube) and these voxels’ values

are used for classification or regression. The performance is

then reported at the center of the searchlight to build an infor-

mation map; i.e., it reflects the amount of information that is

available in the searchlight to predict the condition. This way,

subtle local interactions between the voxels can be exploited

successfully. However, since the searchlight is local by con-

struction, it heavily relies on the principle of functional seg-

regation; i.e., local processing and specialization of the brain.

Recently, there has been increasing interest of the com-

munity for functional and structural connectivity [5], and net-

works derived from such measures. When combined with pat-

tern recognition, it has been shown that functional connectiv-

ity between atlas-based regions-of-interest (ROIs) can decode

cognitive state [6, 7] and patient status [8]. This motivated

us to look for an extension of the searchlight method such

that information can be decoded from a network of which the

searchlight is part. To the best of our knowledge, such an ex-

tension has not been proposed before. Only in recent work,

voxels in a limited set of ROIs where combined to decode

sensory-to-motor mapping based on connectivity between the

ROIs [9].

We propose two new elements to extend the original

searchlight. First, we define a criterion of connectivity to

identify voxels in the brain that are statistically dependent on

the searchlight; our criterion is multivariate and goes beyond

traditional correlation measures to quantify (functional) con-

nectivity1. Since MRI data can have global confounds (e.g.,

motion in functional MRI), we also provide the possibility to

include nuisance factors that can explain background signal.

We then create the “connectivity searchlight” by extending

the searchlight with connected voxels, defining a network re-

lated to the searchlight that is fed into the classifier. To show

1We do not discuss effective connectivity here, which can reveal causal

relationships based on predefined models and richer data [5].
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the potential of this method, we demonstrate its feasibility on

both simulated and experimental MRI data, and compare it

against the conventional searchlight.

2. SEARCHLIGHT FOLLOWS CONNECTIVITY

2.1. Conventional Searchlight Approach

Let us introduce the data structure. We are given K brain

scans, which could be functional scans for stimulus-induced

activity or structural scans for multiple subjects. Each volu-

metric scan has a size of V1 × V2 × V3 voxels, which can be

collapsed into a vector of size V = V1V2V3. The full data

matrix D has then size K ×V , where the scans have been ar-

ranged row-wise. We also have a vector y ∈ N
K×1 that con-

tains the condition of each scan. The searchlight approach is

then using a 3-D sliding window that contains a local neigh-

borhood Si centered around each voxel i. The shape and size

of the searchlight are parameters to be defined; e.g., we can

use the commonly deployed cubic searchlight which includes

L = (2m+1)3 = |Si| voxels when m is the number of neigh-

bors is each dimension. We denote DSi
the subset of voxels

in the data matrix that are included in the searchlight. The

purpose is to predict the conditions of the scans y by using

the searchlight voxels’ values as features. One can then build

an “information map” by reporting the performance of each

searchlight Si in the center voxel i [4]. Since this is done in

within the cross-validation framework, the data matrix is split

each time into Dtrain,Si
(K ′ × L) and Dtest,Si

(K ′′ × L).

2.2. Multivariate Connectivity

The searchlight is using only information from the local

neighborhood Si, thus exploiting only local specialization of

the brain. However, the brain is also a globally integrated sys-

tem, which means that distant brain regions operate in brain

networks. To extend the searchlight with “connected” voxels,

we propose the following criterion for multivariate connec-

tivity. Notice that connectivity can be both functional (e.g.,

timecourses are correlated) or morphometric (e.g., different

anatomical features varies similarly in subjects).

Let us consider the searchlight Si. We define multivariate

connectivity between the searchlight and other voxels as the

ability of searchlight data to explain non-searchlight voxels.

More specifically, we create a general linear model (GLM)

that consists of the searchlight data Dtrain,Si
as regressors to

explain the signal at any other voxel j. Since MR data is

often contaminated by strong background signals, we also add

nuisance regressors that are extracted as the first L0 principal

components UL0
of the full data matrix Dtrain. The K ′×(L+

L0) design matrix for voxel i then becomes

Xi = [Dtrain,Si
| UL0

], (1)

which leads to the following GLM:

d(j) = Xiβββ
(j)
i + ni, (2)

where βββ
(j)
i is the (L+L0)×1 parameter vector of the search-

light centered at voxel i to explain data at j, and ni is assumed

additive zero-mean and independent Gaussian noise. Using

the ordinary least-squares solution, we can find the estimate

and the residuals as

d̂
(j)
i = Xi (X

T
i Xi)

−1XT
i d

(j)

︸ ︷︷ ︸

βββ
(j)
i

, (3)

ê
(j)
i = d(j) − d̂

(j)
i . (4)

To test the significance of the explained signal by the GLM,

we compute the t-statistic for the contrast

L∑

l=1

β
(j)
i [l] = [

L times
︷ ︸︸ ︷

1 1 . . . 1

L0 times
︷ ︸︸ ︷

0 0 . . . 0]
︸ ︷︷ ︸

contrast vector cT

βββ
(j)
i (5)

as

t
(j)
i =

cTβββ
(j)
i

√

cT (XT
i
Xi)−1c ê

(j),T
i

ê
(j)
i

K′−L−L0

, (6)

which follows a Student t-distribution with K ′ − L − L0

degrees-of-freedom under the null hypothesis H0: E[cTβββ
(j)
i ] =

0. We define the set of voxels Ci connected with the search-

light Si as those that survive the thresholding |t
(j)
i | > T ,

where T is the threshold for α-level 0.05/(V − L), which is

Bonferroni corrected for the number of voxels to be tested.

2.3. Extending the Searchlight

Based on the outcome of the multivariate connectivity crite-

rion, we construct the “connectivity searchlight” as the union

S ′
i = Si∪Ci. In Fig. 1, we illustrate the principle of extending

the searchlight with connected voxels. Given the feature vec-

tors Dtrain,S′

i
, we learn a support vector classifier (SVC) that

should predict ytrain. The performance on the test data Dtest,S′

i

is then reported in the information map for the central voxel

of each searchlight.

3. RESULTS

3.1. Simulated Data

We simulated a noisy dataset with known underlying “net-

works” of simultaneously active regions for two different con-

ditions. In particular, our dataset consists of volumes of 64×
52 × 3 voxels. In Fig. 2a, we show the labeled ground truth

for the central slice; all three slices are identical. In the first

condition, the left eye, upper lip, and the nose are “active”. In

the second condition, the right eye, lower lip, and the same
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Fig. 2: (a) The ground truth of the synthetic data where red and blue regions carry the signal for the two conditions, respectively;

while the cyan region has the signal for both. (b) Two example trials for each condition. (c) t-map for the searchlight positioned

in the left eye (indicated by the crosshair). (d) Information maps for searchlight and connectivity searchlight, respectively.

Fig. 1: Principle of connectivity searchlight. The cube rep-

resents the initial searchlight around the central voxel. Using

regression, we extend the searchlight with other voxels that

have similar signal content.

nose are active. There is a gradient of weak to strong activity

on the lips. The volumes I1(x) and I2(x) indicate the activity

strength for both conditions, respectively. We then generate

K = 100 trials as

y = [

K/2 times
︷ ︸︸ ︷

1 1 . . . 1

K/2 times
︷ ︸︸ ︷

2 2 . . . 2]T (7)

Dj,i =
2∑

k=1

δ(yj−k)Ik(xi)(bk + nk(j;σs)) + ns(j;σn), (8)

where δ is the Kronecker delta, bk is the baseline signal (i.e.,

b1 = 1, b2 = −1), and n(·;σ) are Gaussian noise variables

with zero mean and standard deviation σ; we have chosen

σs = σ1 = σ2 = 0.8. Notice that the signal variations

bk + nk for condition k also contain “randomness”, which

is consistent in the corresponding regions Ik though. In

Figs. 2b, we show two representative scans for the two con-

ditions. We selected the searchlight to be a 3 × 3 × 3 cube,

we only process the central slice for easier visualization. The

training set Dtrain contains half of the trials (i.e., 25) for each

condition. In Fig. 2c, we show the statistical map of t-values

for multivariate connectivity when the searchlight is posi-

tioned in the middle of the left eye. Clearly, the “network”

of regions with similar activity for condition 1 are revealed

with high significance (i.e., threshold T = 4.4 Bonferroni-

corrected at 5%). The connectivity searchlight includes the

data from all voxels that survive this thresholding procedure.

In Figs. 2d, we show the information maps obtained when

using the conventional searchlight and connectivity search-

light, respectively. In particular, we report the classification

performance at the center of each searchlight. The conven-

tional searchlight obtains satisfactory performance from local

neighborhoods with strong signal-to-noise ratio (e.g., the eyes

and the high-activity parts of the mouths). The connectivity

searchlight is able to improve on these results by (1) better

classification performance in many regions; (2) including

considerably more regions with low signal (e.g. low-activity

parts of lips); (3) including regions that are connected (i.e.,

same activity variations), but that are not informative for the

classification, such as the nose.

3.2. Experimental fMRI Data

We also tested our method on a subset of the well-known

Haxby dataset [1]. In particular, we took data for one sub-

ject where images of houses and faces were shown, in to-

tal 216 scans are available. The original volumes have size

53×63×46, but we limited ourselves to the central axial slices

22, 23, and 24. The data was split in half between training and

testing. The same cubic searchlight as before was used. In

Fig. 3a, we show the t-maps for two different positions of the

searchlight (indicated with by the blue crosshair). On the left,

the searchlight is located in the auditory cortex, which is not

an informative region for the task at hand. The connectivity

searchlight only slightly extends its spatial neighborhood. On

the right, the searchlight is located in the anterior cingulate

cortex, which is a high-level cognitive region. The connectiv-

ity searchlight now includes the core of the caudate and parts

of visual cortex in the occipital lobe. In Fig. 3b, the classi-

fication performance is reported for the central voxel of the

searchlight. On the left, as expected the conventional search-

light is most informative in the visual cortex. On the right,

the connectivity searchlight performs very well for different

brain regions, including a larger part of the visual cortex, left

insula, and anterior cingulate cortex. The (spatial) average

classification performance is 66% and 86%, respectively.
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Fig. 3: Results for the Haxby dataset (faces versus houses).

(a) Connectivity map (t-value) for two different locations of

the searchlight indicated by the blue crosshairs. (b) Compar-

ison between information maps for conventional searchlight

(left) and connectivity searchlight (right).

4. DISCUSSION

The searchlight is a powerful technique that allows exploit-

ing multivariate information locally. The main contribution

of our approach is to extend the searchlight with regions that

form a network according to our criterion of multivariate con-

nectivity; i.e., voxels in the searchlight that explain the signal

elsewhere with high significance.

As the connectivity searchlight contains more voxels than

the conventional searchlight, it is not surprising that clas-

sification performance is improved since more voxels with

high signal-to-noise are included. However, it is important to

note that the connectivity criterion is not necessarily related

to discriminative features. Such an example was shown in

the nose region of the simulated dataset: since the signal

was (equally) shared for both conditions, these voxels cannot

contribute successfully to the classification task as they carry

no discriminative information. Still they are included in the

connectivity searchlight as they are part of the network for

each condition and it might be important for the neuroscien-

tist to have a picture of the full network at work. In fact, the

main goal of our method is to reveal network structures in a

more meaningful way.

The shape and size of the searchlight are parameters that

need to be selected. Based on preliminary experiments, we

observed that the multivariate connectivity criterion locally

extends searchlight with “important” neighboring voxels, thus

the settings of these parameters might be less critical.

Controlling the influence of global confounds is an impor-

tant issue that needs to be dealt with, especially for functional

data. Here we propose to include nuisance covariates in the

GLM from whole-brain principal component analysis. There

is an interesting link with sparse multivariate autoregression

models to build information flow models of the brain [10,11].

We plan to deepen this link in future work.

5. CONCLUSION

We have introduced a connectivity-based extension of the

searchlight method, which can be applied to both functional

and structural MRI data. Preliminary results on simulated and

real fMRI data demonstrate the feasibility of the approach and

its potential to reveal networks of the brain.
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