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ABSTRACT
Resting-state fMRI provides challenging data that needs to be
analyzed without knowledge about timing or duration of neu-
ronal events. The “total activation” framework is one recent
approach that combines temporal and spatial regularization to
deconvolve the fMRI signals; i.e., undo them from the influ-
ence of the hemodynamic response. The temporal regulariza-
tion is using generalized total variation that promotes piece-
wise constant signals of the deconvolved timecourses. In the
original formulation, the spatial regularization is expressing
`2-smoothness within regions of a predefined brain atlas. In
this work, we replace the latter with 3-D total variation that
constrained to the gray matter domain. This allows the re-
covery of activation clusters with sharp boundaries without
any bias from the atlas’ partitioning. We propose the corre-
sponding variational formulation and optimization problem,
together with results that demonstrate the feasibility of the
proposed approach for both simulated and real fMRI data.

Index Terms— fMRI, total activation, sparsity, deconvo-
lution.

1. INTRODUCTION
Functional magnetic resonance imaging (fMRI) allows to
measure brain activity via the blood oxygenated level de-
pendent (BOLD) signal [1]. The BOLD signal is an indirect
measure of neural activity through neurovascular coupling,
vascular response, and changes in the ratio of oxygenated
and desoxygenated hemoglobin. The whole process can be
modeled as a nonlinear dynamic system (i.e., the balloon-
windkessel model [2]. Classical detection methods are con-
ceived to fit the time courses of each voxel with respect to a
predefined experimental paradigm. This includes regression
techniques that have been predominating in fMRI analysis
schemes. The need for exploring spontaneous activity gave
rise to deconvolution techniques that can deal with any timing
or duration of underlying activity [3].

The activation maps show a macro-scale behavior; i.e.,
groups of neighboring neurons are expected to show similar
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activity. This property was harnessed in [5] to develop the
total activation (TA) framework. TA uses the generalized to-
tal variation (gTV) in the temporal domain, introduced in [6],
to impose a block-type prior on the shape of the underlying
activity-inducing (deconvolved) signal together with a spatial
regularization term promoting smooth activity within prede-
fined regions from a structural atlas. With the high variability
of the anatomical brain structure across subjects and the in-
creasing interest in studying the richness of resting-state net-
works [4], it is valuable to construct methods that cannot be
biased by atlas-based partitioning of the brain. Therefore, the
present paper introduces an important improvement over the
TA framework. Specifically, we couple the temporal gTV reg-
ularization with a spatial TV regularization restricted to vox-
els within the gray matter (GM) domain. Beyond the fact that
this allows performing spatio-temporal deconvolution with-
out spatial priors, the proposed approach has two other ad-
vantages compared to conventional TA: (1) it exploits the GM
structure in the sense that the spatial regularization is not per-
turbed by voxels which are not suspicious to contribute to the
activity; (2) processing only GM voxels and solving TV via
proximal algorithms lead to a considerable gain in compu-
tational time. The rest of the paper is organized as follows.
The fMRI BOLD signal model is presented in section 2. In
section 3, we describe the proposed atlas-free spatio-temporal
deconvolution technique along with the dedicated generalized
forward-backward algorithm. Finally, we provide experimen-
tal results on synthetic and real data in section 4.

2. MODELING
We start by stating some classical assumptions about the
fMRI signal. The acquired fMRI data is a set of voxels’ time
courses, y, that are noisy and sampled versions of the BOLD
activity-related signal, x: y[v, t] = x[v, t] + ε, where {ε}
are random noise and nuisance components (such as low fre-
quency fluctuations, signal drift, residual errors from motion
correction, etc.). Throughout the paper, we denote by Nx
and Nt, respectively, the number of voxels and the length of
each time course. We consider that x describes the BOLD
activation under the action of a linear time-invariant system
H characterized by its impulse response, h, the haemody-
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Fig. 1: The actions of the different operators on the different
signals.

namic response function (HRF), in the following manner:
x [v, t] =

∑t
τ=0 s [v, τ ] h(t− τ), where the activity-inducing

signal, s, describes the changes induced by the neural activity.
In the sequel, we will make the following assumptions: (1) s
is piece-wise constant; that is, the signal represents moments
of sustained activation or deactivation; (2) the HRF, h, is
modeled by first-order Volterra series approximation of the
balloon model [7]; (3) the noise component ε is white Gaus-
sian. Assumption (1) means that the signal s is block-type;
its derivative (in the finite difference sense) ∆t{s} is a sparse
signal composed of Dirac pulses. Assumption (2) is also of
particular interest as it facilitates the inversion of H. In fact,
Khalidov et al. [7] described the inverse H−1 as a closed
form differential operator characterized by a gain G ∈ R+,
one pole γ ∈ C∗ and four zeros (α1, α2, α3, α4) ∈ C4

∗:

H−1 =
(∏4

i=1(D − αiI)
)(
D − γI

)−1
, with D, the

continuous-domain derivation operator. Assumptions (1)
and (2) are crucial for the construction of the temporal
regularization because they allow us to impose a sparsity-
promoting prior through the gTV. Assumption (3), which is
widely used in fMRI, justifies the the use of a simple L2-norm
as a data-fidelity term.

3. ATLAS-FREE SPATIO-TEMPORAL
DECONVOLUTION

Similarly to the work in [5], we use a spatio-temporal regular-
ization to recover the activity-related signal, x. In the sequel
RT and RS will refer to the the temporal and spatial regu-
larization terms, respectively. The variational formulation of
this problem reads

x̂ = arg min
x

{
1

2
||y− x||22 +RT (x) +RS(x)

}
. (1)

We start by describing the temporal regularization term which
uses the concept of gTV. Afterwards, we describe the pro-
posed GM-driven TV-based spatial regularization.

Fig. 2: Conceptual 2D-view on gray-matter grid (right) that
is derived from the anatomical segmentation (left).

3.1. Temporal regularizationRT

While conventional TV-regularization computes the `1-semi
norm of the output of the finite difference operator, the gTV-
regularization generalizes this concept to a larger class of dif-
ferential operators. For our particular problem, we want to
impose sparsity on the ∆t{s} while recovering x. This sim-
ply suggests using a differential operator L whose discrete
version ∆L verifies ∆L{x} = ∆t{s}. We conclude that
∆L = ∆tH−1. In the continuous domain, this means that
L has the same poles and zeros as H−1 with an additional
null zero. We refer to [6] for details on the implementation of
∆L from the knowledge of L. Fig. 1 summarize the actions
of the different operators on the different signals. For each
voxel v = 1, · · · , Nx, the generalized TV corresponding to L
reads:

TVL{x}[v] =

Nt∑
t=1

|∆L{x}[v, t]| .

Finally, the global temporal regularization is the sum of the
generalized TV regularization terms over all voxels:

RT (x) =

Nx∑
v=1

λT (v)TVL{x}[v], (2)

where λT (v) is the regularization parameter for voxel v.

3.2. Spatial regularizationRS

The main purpose of this paper is to perform the deconvo-
lution without imposing a predefined spatial partitioning of
GM. We expect, however, that the activation take place in lo-
calized clusters of the brain with possibly sharp variations be-
tween them. Here, we use a TV-regularization restricted to
voxels that can be activated; i.e., inside the GM domain. The
idea of obtaining more robustness by adapting the analysis to
the GM domain was exploited, for instance, in the context of
wavelet-based SPM [8]. Fig. 2 shows a coarse view of how
the finite difference grid is restricted to the GM map. At a
fixed time point t, we define:

TV GM{x}[t] =

Nx∑
v=1

( ∑
u∈N (v)

(
x[v, t]− x[u, t]

)2)1/2

,
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where N (v) denotes the set of neighbor voxels around v, on
the finite differences grid, that are within GM. Here again,
the spatial regularization is the sum of the GM-driven TV-
regularization terms over all time points:

RS(x) =

Nt∑
t=1

λS(t)TV GM{x}[t], (3)

with λS(t) is the spatial regularization parameter at a given
time point t.

3.3. Generalized foward-backward splitting

Both RT and RS are non-differentiable, but simple; their
proximal operators [9] are easy to compute. The generalized
forward-backward (GFB) proximal splitting [10] can be ap-
plied here to find a solution to (1). It consists of a weighted
average of solutions to (1) with one regularization term at a
time. The routine is given in Algorithm 1. Many choices are
possible to deal with steps 1 and 2 of the main iteration. Here,
we choose to employ internal FISTA [11] iterations for both
problems. We refer to [6] for detailed explanation on how to
adapt it to the gTV settings.

Algorithm 1 GFB algorithm for solving (1)

Input: Corrupted data y, (ωt, ωs) ∈ [0, 1]2 with ω1 +ω2 = 1
and the operator L.

Output: Estimate x̃
for k = 1 : kmax do

1: xkt = arg min
x

{
1
2 ||y− x||22 +RT (x)

}
,

2: xks = arg min
x

{
1
2 ||y− x||22 +RS(x)

}
,

3: xk = ωtxkt + ωsxks
end for
x̃ = xkmax

4. EXPERIMENTS & DISCUSSION

In this section we present some experiments to assess the
performance of the atlas-free spatio-temporal deconvolution
for both simulated and real data. In both cases, the tempo-
ral regularization parameter, λT (v), was tuned for each voxel
using the median absolute deviation of fine-scale 3th order
Daubechies wavelet coefficients. The spatial regularization
parameter was found empirically for each case. Values of
ωt = 0.75 and ωs = 0.25 were used in all experiments.

4.1. Simulated data

To generate synthetic data, we used an activation map from
FSL simulation tool (POSSUM1). This tool provides a 3D sta-
tionary signal intensity map generated from auditory naming

1http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/POSSUM/
UserGuide

tests [12]. We set this map in the range [0, 3], at a resolution of
4×4×4 mm3, before multiplying it by a block-type signal of
200 s with 4 onsets (cf. Fig. 3). Finally, the obtained signals
were convolved with the HRF (TR=2s) and perturbed by a
white Gaussian random noise of unit variance. The measured
PSNR on the final noisy time courses was 8.49 dB.
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Fig. 3: Ground truth for simulated data: (a) activation map,
(b) experimental paradigm.

We applied both conventional TA and the proposed adap-
tation to retrieve the original signals from the noisy ones. To
run conventional TA, we used the Harvard-Oxford atlas avail-
able in POSSUM. For both methods a value of λS = 2 was
found to be a good compromise between noise suppression
and signal preservation. The experiments were conducted us-
ing a PC with an Intel Core i7-3740QM CPU, 2.7 GHZ pro-
cessor and 8 GB of RAM, using MATLAB v.8.2.0.701. The
recorded run-time for TA was 5h53min while it was 4h30min
for the atlas-free deconvolution. Fig. 4 reports the results.
Both techniques succeeded at finding the evoked regions ac-
curately. The proposed approach showed less artifacts outside
the activation regions which leaded to a better PSNR. This is
probably due to the local treatment provided by the restricted
TV regularization. The denoised time courses show the good
behavior of the proposed approach at keeping the signal close
to the baseline when there is no activation.

4.2. Experimental data

To evaluate the atlas-free deconvolution in realistic condi-
tions, we used experimental data acquired on a subject per-
forming a task involving 9 visual stimuli (8 Hz flickering
checkerboard). Each stimulus lasted 1s and its onset was ran-
domly chosen following a uniform distribution. Inbetween
visual stimuli events; the subject was asked to fix his/her eyes
on the center of the screen. The fMRI data contains Nt =
140 T2∗-weighted gradient echo-planar volumes (TR/TE/FA
= 2s/30ms/85o, voxel size = 3.25 × 3.25 × 3.5 mm3). The
first 10 volumes were removed to ensure a stable magnetic
field, the time courses were realigned to correct for head mo-
tion, high pass filtered and smoothed in the spatial domain via
a 3D Gaussian filter (FWHM = 5 mm). In order to downsam-
ple the GM resolution to the functional resolution, we used a
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Fig. 4: Reconstructed activity-related signals x for TA and the
atlas-free deconvolution. Left, volumetric view at the 2nd ac-
tivation; right, denoised time course of a voxel located in the
auditory cortex. The PSNR was measured on all time courses
within GM.
trilinear interpolation step followed by thresholding (thresh-
old value 0.5). Fig. 5 displays the activity-inducing signal, s,
and its average inside a small region of 6×6×6 mm3, located
in the primary visual cortex. The structure of the visual cor-
tex was well recovered without any spatial prior. The restored
time course shows a perfect fit with the experiments. Neg-
ative values appearing in the signal are due to deactivations
and/or the post-stimulus undershoot expressed in the HRF.
Large negative values might indicate that the actual haemo-
dynamic response is slower than the HRF model.
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Recovered Activity Experimental Paradigm

(b)

Fig. 5: Reconstructed activity patterns (λS = 5): (a) positive
values of the activity-inducing signal s at a time-point dur-
ing the 2nd activation, (b) the average of s inside the region
indicated by the crossbars.

5. CONCLUSION

We showed that spatio-temporal deconvolution of fMRI data
can be performed without incorporating priors on the tim-
ing, durations and atlas-based spatial structure of the acti-
vation. The results confirmed that a global regularity mea-
sure, such as TV, is able to retrieve localized activation clus-
ters. Moreover, by adapting the spatial regularization inside
GM we were able to add more robustness to the deconvolu-
tion while reducing the running time of the algorithm. Future
work will focus on incorporating more sophisticated similar-
ity measures between voxels by accounting for their proxim-
ity to brain’s white matter and joint estimation of the activity-
related signal and the HRF. The method will also be applied
to large datasets of resting-state fMRI to obtain innovation-
driven co-activation patterns [13].
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