1094

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 39, NO. 4, APRIL 2020 Eﬁ\B NPeE e %
— AT

Processing
Society

o— ks

Deconvolution of Sustained Neural Activity From
Large-Scale Calcium Imaging Data

Younes Farouj™, Member, IEEE, Fikret Isik Karahanoglu, and Dimitri Van De Ville™, Senior Member, IEEE

Abstract— Recent technological advances in light-sheet
microscopy make it possible to perform whole-brain func-
tional imaging at the cellular level with the use of Ca?* indi-
cators. The outstanding spatial extent and resolution of this
type of data open unique opportunities for understanding
the complex organization of neuronal circuits across the
brain. However, the analysis of this data remains challeng-
ing because the observed variations in fluorescence are, in
fact, noisy indirect measures of the neuronal activity. More-
over, measuring over large field-of-view negatively impact
temporal resolution and signal-to-noise ratio, which further
impedes conventional spike inference. Here we argue that
meaningful information can be extracted from large-scale
functional imaging data by deconvolving with the calcium
response and by modeling moments of sustained neuronal
activity instead of individual spikes. Specifically, we char-
acterize the calcium response by a linear system of which
the inverse is a differential operator. This operator is then
included in a regularization term promoting sparsity of activ-
ity transients through generalized total variation. Our results
illustrate the numerical performance of the algorithm on
simulated signals; i.e., we show the firing rate phase transi-
tion at which our model outperforms spike inference. Finally,
we apply the proposed algorithm to experimental data from
zebrafish larvee. In particular, we show that, when applied to
a specific group of neurons, the algorithm retrieves neural
activation that matches the locomotor behavior unknown to
the method.

Index Terms—Temporal deconvolution, light-sheet
microscopy, calcium imaging, generalized total variation,
£1-minimization.

|. INTRODUCTION

IMULTANEOUS recordings of activity from large neural
Spopulations are within reach today thanks to techni-
cal developments of whole-brain functional imaging based
on light-sheet microscopy [1], [2]. This technology enables
in vivo volumetric measurement of Ca’t concentrations
through genetically encoded fluorescent markers. While devel-
opments of new calcium indicators are still a field of active

Manuscript received July 9, 2019; revised September 11, 2019;
accepted September 15, 2019. Date of publication September 23, 2019;
date of current version April 1, 2020. This work was supported by Carl
ZEISS AG under the Research-IDEAS Initiative of ZEISS and EPFL.
(Corresponding author: Younes Farouj.)

Y. Farouj and D. Van De Ville are with the Institute of Bioengi-
neering, Ecole Polytechnique Federale de Lausanne, 1015 Lausanne,
Switzerland, and also with the Department of Radiology and Medical
Informatics, University of Geneva, 1211 Geneva, Switzerland (e-mail:
younes.farouj@epfl.ch).

F. I. Karahanoglu is with MGH/HST Athinoula A. Center for Biomedical
Imaging, Harvard Medical School, Boston, MA 02215 USA.

This article has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMI.2019.2942765

research [3]-[6], the measured signals are intrinsically noisy
and their dynamics are slower than the underlying action
potential (AP). This issue has prompted a broad interest in
methods for finding evidence when AP firing occurs. The
classical and predominant approaches are derivative threshold-
ing [7], [8] and matching procedures [9], [10]. The first one
employs a simple threshold on the normalized fluorescence
signal to obtain event onset times. The second one aims at
finding a fluorescence trace that matches the waveform of
AP firing. Both these techniques have two main drawbacks.
First, they incorporate precise priors on the absolute signal
amplitude of the fluorescence signal. This amplitude is, how-
ever, changing depending on the spatial location and also on
the calcium indicator that is deployed and its photo-bleaching
properties. Second, they do not allow the retrieval of rapid
successive events. Linear deconvolution techniques were then
used to tackle this issue [11]. By incorporating an assumption
about the positivity of the spikes, Vogelstein et al. [12] devel-
oped an efficient fast algorithm for nonnegative deconvolution
of the spike train. Machine learning triggered some works that
are based on supervised and unsupervised learning [13]-[15].
However, supervised approaches require the availability of
large datasets with electrophysiological ground truth for the
training phase. Moreover, in spite of the sophistication of these
methods, unsupervised deconvolution methods were recently
shown to give the best results in practice [16]. More recently,
techniques that are based on finite rate of innovation (FRI) [17]
were introduced to retrieve spikes by fitting them to the AP
waveform without priors on the amplitude of the fluorescence
signal [18]. Finally, the increasing interest in causal investi-
gation of neural circuits [19] motivated the development of
state-of-the-art online deconvolution methods [20]. In most
of this literature, spike-retrieval methods are evaluated using
datasets that are acquired at very fast temporal sampling rates.
However, this prerequisite is no longer fulfilled in large field-
of-view setups for whole-brain or whole-animal imaging. In
such a scenario, complex temporal patterns of firing cannot be
resolved because the Ca®* responses start to heavily overlap.
This has motivated recent work to deviate from classical
deconvolution and estimate the underlying average activity or
firing rates accounting for unobserved spikes within predefined
time intervals [21].

In this work, we approach this problem from a different
viewpoint by performing regularized deconvolution; i.e., we
assume that the deconvolved signal consists of moments of
sustained activation. Mathematically, the piecewise-constant
nature of a signal can be expressed by total variation, which
can be combined with the inverse filter for deconvolution [22].
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The inspiration of this model comes from the field of human
neuroimaging, in particular, functional magnetic resonance
imaging (fMRI). This modality observes a hemodynamic
proxy of neural activity that is several orders of magnitude
slower than the underlying spiking activity. It has been shown
that spatial patterns of transitions between periods of sustained
activation are meaningful building blocks of evoked and spon-
taneous activity [23], [24]. In the context of calcium imaging,
the model of sustained activity is motivated by three main
observations:

« Overlapping responses are mainly occurring during burst-
ing phenomena. Bursts might encode important informa-
tion in their duration or frequency [25], features that are
easily accessible if burst periods are modeled as activity
blocks instead of a sequence of individual spikes.

o Neurons in many brain areas act as integrators [26];
they show persistent and accumulated neural activity;
e.g., neurons driving sustained oculomotor (eye fixation)
function [27].

o Whole-brain imaging aims mainly at mapping neural
correlates of function and behavior in terms of distributed
patterns of activity. Such a systems-level perspective can
highly benefit from a meaningful simplification of spiking
activity.

The proposed framework does not incorporate any prior infor-
mation about the timing or duration of periods of sustained
activation. Given the large field-of-view, correlation analysis of
temporal patterns that contain alternations between sustained
activation and baseline can allow to retrieve distributed spatial
patterns of coupled or anti-coupled activity.

We start off in Sect. II by introducing the signal model
and the linear-system characterization of the calcium response.
Then, in Sect. III, we highlight the regularized deconvolution
approach which involves three signals: the innovation signal
that encodes the transients, the deconvolved signal, and the
denoised signal consist with the solution. We give insights
about the numerical guarantees of the proposed algorithm by
analyzing its performance on simulated signals. In Sect. IV,
we demonstrate the relevance of sustained activity modeling
on state-of-the-art light-sheet microscopy data of zebrafish
larve.

[1. SIGNAL MODEL

We start with some definitions and notations that we are
going to use throughout the rest of the paper. Then, we
describe how the fluorescence trace is linked to moments of
transient activity and we model this link by a differential
operator. For clarity of exposition, we start with a description
in continuous settings. Discretization issues will be addressed
in a separated paragraph. Next, we will often consider real-
valued one-dimensional signals. Continuous-time signals are
denoted with parentheses; e.g., f(¢), t € R. Discrete-time
sampled signals are denoted with brackets; e.g., fs[k], k € Z.
Continuous-time operators are denoted in calligraphic let-
ters (e.g., H) and their discrete counterparts in normal
font (e.g., H).

TABLE |
DYNAMICS FOR THE FAST, MEDIUM AND SLOW VERSIONS OF
GCaMP6 IN RESPONSE TO SINGLE AP FIRINGS

Ca2t indicator H GCaMP6f | GCaMP6m | GCaMP6s

tpeak (seconds) 0.15 0.25 0.4
t1 /o (seconds) 0.4 0.8 1

A. From AP Firing to the Fluorescence Trace

We assume that we are measuring calcium concentration
on a single neuron. The observed signal is a rescaled and
noisy version of the original fluorescence trace f. The signal
rescaling is due to the imaging system and the received number
of photons, while random noise and nuisance components can
be caused by many factors such as low frequency fluctuations,
residual errors from motion correction and normalization.
In the sequel, we will consider that the observed signal is
normalized with respect to a baseline fluorescence level in a
way that only activity-related variations are observed. For the
sake of simplicity, we also assume that the rescaling coefficient
is included in the definition of f. As illustrated in Figure 1, this
indirect measure is obtained from the actual signal describing
AP firings, s, convolved with the calcium impulse response
function (CIRF), h:

f(0) = (s = h)(2). (1

Here, s is a spike train consisting of J spikes occurring at
times ¢;

J
S(I)ZZSjé(l‘—tj), where s; € R+ . 2)
j=1

Notice that no restriction is made on the inter-spike interval
(ISD); i.e., two consecutive spikes can be arbitrary close. On
the other hand, the function 42 models the calcium dynamics,
which vary depending on the calcium indicator that is used.
Different generations of the GCaMP calcium indicators [6]
lead to signals with different activity transients; i.e., peak
amplitude is reached after fpesk ~ 150 — 400ms, before
decaying back to the baseline with half decay time in the
range t1,2 ~ 400—1000ms. Table I reports some of the typical
experimental parameter settings that we are going to consider.

B. Characterization of the CIRF Operator

The continuous-time CIRF is typically characterized by a
double exponential that models the rise and decay of activity
as follows:

W) =e " —e (3)

where a and b are two nonnegative scalars [18]. More pre-
cisely, a and b are given in Hz as the inverse of the rise time
and the decay time; a = tpﬁ and b = lot;;%z) To describe
the action of & as a differential operator, we first consider its
Fourier domain description

ﬁ(w): b-a

(o+a)jo+b)

“)
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Fig. 1. Signal model: The observed recording fx is a noisy version of the sampled fluorescence trace fs; i,e, evaluated at the discrete imaging time

grid (red lines).

Now, we denote by D and Z, the continuous derivative
and identity operators, respectively. The characterization (4)
happens to be the Fourier domain expression of the following
operators:

H=(b-a)D,'D;", 5)

where D, = (D + aZ)"! and D, = (D + bZ)~!. The
operator description in (5) is crucial for the present work as
it will be used to construct a temporal parsimony-promoting
regularization that enables recovering the fluorescence trace
and an estimation of the underlying neural events.

C. Discrete Settings

We denote T > 0 as the sampling period, given in seconds.
In practice, the fluorescence trace is observed for a finite
duration 7 > 0. At each time step k =1,..., K, K =T/Tj,
the observed noisy signal verifies k =1,..., K, K > 0:

fulkl = fi[k]1 4 nlk], nlk] ~ N0, c?), (©6)

where f; is a sampled version of f and the noise follows a
Gaussian distribution with zero mean and standard deviation
o > 0.

D. Limits of Spike Inference

In any practical setting, spike inference from calcium
recordings operates on sampled data. However, the under-
lying AP firing pattern and induced fluorescence signal are
happening in continuous time, consistent with the previously
introduced signal model. There are two ways to approach this
issue. The first approach seeks at finding the spikes locations
and amplitudes off-grid, that is, in continuous time domain.
Parametric approaches such as the FRI framework developed
in [18] are variants of Prony’s method [28]. This requires a
pre-estimation of the number of spikes J which is not always
possible in practice. Additionally, these methods are sensitive

to noise [29]. Another idea is to minimize the total variation
over the space of Radon measures; i.e., the sum of Dirac
measures. The obtained minimization problem is referred to
as Beurling Lasso [30] and can be solved, for example, using
continuous basis pursuit [31]. It is, however, known that this
type of modeling requires a minimum separation distance
between spikes that is above the theoretical limit' [32],
while also still fails at low signal-to-noise ratio regimes [33].
Another minimum requirement for off-grid estimation is that,
theoretically, at least two measurement are needed per spike
in order to recover the two unknowns that are location and
amplitude. Moreover, because of the decay of the convolution
kernel, these samples should have a minimum proximity to
the spike location [34]. The second approach is to give up on
the exact locations and seek for the nearest spikes on the grid.
This is the idea behind €1-deconvolution, in discrete domain,
often used by practitioners [35]. An important point that we
want to convey in this work is that when successive spikes
occur in a short time window (i.e., small ISI with respect to the
sampling period), inferring single spikes fails, both on the grid
and off the grid. At some spiking rate, it becomes beneficial to
consider a sustained activity model, as we propose here. The
experimental results will show that there is a phase transition
depending on the interplay between calcium dynamics and
sampling.

[1l. METHOD
A. Sparsity-Promoting Temporal Deconvolution

From a temporal point-of-view, the main purpose is to
invert the effects of the CIRF on the signal. Because of the
presence of noise, this should be done using a regularity
prior on the signal in order to make the problem well-posed.
We exploit the expected sparsity of the activity transients to

IThis limit is defined as 1 /fe, where f. is the cutoff frequency of the
convolution kernel.
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Fig. 2. In the block model, we are interested only in moments of
transition to rapid firing activity that can be resolved at slow imaging
rates. We exploit the sparsity of the transient signal; i.e., the derivative
of a sustained version of s, to drive the deconvolution. The sparsifying
operator is then considered to be the composition of the inverse of the
CIRF operator and temporal derivation: L = DH.

drive the deconvolution within a variational framework. More
precisely, we construct an operator that sparsifies the sampled
fluorescence trace f; on which we use the {1-norm to penalize
a least squares optimization problem.

1) Construction of the Sparsifying Operator: We are inter-
ested in constructing an operator £, whose discrete version L
sparsifies f;, that is L f; is a train of Dirac pulses. First note
that by the definition of H, we have:

1
s=H'f, with H ! = 7——DaDy. (7)
—da

In a noiseless ideal sampling scenario, the relation (7) should
hold in discrete domain. Therefore, the first option is to
consider that £ is simply given as H~! since s is sparse per
se. We refer to this model as the spike model. The second
option is to consider the problem of detecting on/off moments
of rapid firing and link the obtained signal to the firing rate
(see Figure 2). Here we exploit the sparsity of the transient
signal that is the derivative of s. This will be refereed to as
the block model. Here, £ consists of a combination of H™!
with a temporal derivative. To summarize, we have:

H™Y, if spike model,

L= .
DH™", if block model.

®)

In both cases we obtain a differential operator. In the block
model, s is considered to be a block-wise signal with

Algorithm 1 FISTA Iterations for Temporal Deconvolution

Input: f,, u, o, _(NO) =0,r1=1
Output: Estimate f
Initialize 2@ =L £, ) = ;@ ;1 =5,
i <— 1
repeat | |
20 = — L+ (1 — —LL+)1)(i)
Ap Jz
2: 20 = P(z)

—_

1+/1+4r?
3irip = ) 1
4: D) = 0 L7 (0 _ (=)
Fit1
5- fsi =y L+ Z(i—i-llT
6: }“i+1 — Ko }“i
' 1 X N2
5 > (fuller = fitk1)
245
Tii «—i+1

until convergence or number of maximum iterations are
reached.

fs<_fsl

discontinuities. Therefore, its derivative should be understood
in the distribution sense [36]. Notice that depending on the
chosen model, the null-space of £ consists of polynomials
of degree 2 or 3, respectively. For the discrete operator L,
whose construction is described in the appendix, the null-space
becomes empty when using zero-boundary conditions.

2) The (¢-Penalized Least Squares Optimization Problem:
We want to construct a £1-penalized least squares optimization
problem to recover the sampled fluorescence signal f;. The
sparsity-promoting norm involves L as explained above. The
obtained minimization problem reads:

K

. 1 2
fo = argmin = 3" (fulk] = FIK1) +AIL Fll ©)

fERK k=1

K
where ||.||1 is the vector €1- norm; ||L f||1 = D_|L{f}k]|.
k=1

Once an estimate fs is found, the deconvolved signal s
can be obtained simply by inverting the CIRF effect. The
formulation in (9) is equivalent to the often used synthesis
framework in which the inverse—or pseudo-inverse—of L is
plugged in the data-fidelity term [37]. As we will see in the
subsequent section, our choice for the analysis framework
is motivated by the existence of an automatic choice of the
regularization parameter and corresponding fast algorithms.
A second advantage is that it gives direct access to both f;
and s. This will enable us to measure the performances of
the model in terms of noise removal. It is noteworthy that
the regularization term in (9) can be seen as a particular
case of the generalized total variation paradigm [22]. Finally,
solving (9) under the spike model is equivalent to the
popular spike deconvolution algorithm [12], but without non-
negativity constraints. As we mentioned in the Introduction,
at slow acquisition rates we are more interested in unraveling
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Fig. 3. SNR difference between recovered fluorescence from the two models for different ISI and Ts values. The plots show that, depending on the
interactions between ISI and Ts, there are phase transitions at which one of the models outperforms the other. In particular, the slower the dynamics
of the Ca®t response are, the largest the region in which the block model is advantageous.

alternations between increase and decrease of neural activity
compared to baseline firing.

B. Solution to the Minimization Problem via Fast
Iterative Soft Thresholding

In order to solve (9), we use an accelerated version of the
forward-backward splitting [38]. This splitting technique relies
on two steps which are a gradient descent for data-fidelity and
a proximal operator for {i-norm correction. Its accelerated
version consists in updating the relaxation parameter for a
faster convergence. Here, we customize the fast iterative soft
thresholding algorithm (FISTA) [38], to deal with L. It requires
to set a gradient descent step u = omax(LT), the maximum
eigenvalue of the adjoint operator LT. It also requires to fix
the regularization parameter A. The entire routine is given
in Algorithm 1 where P is the point-wise projection on the
unit ball P(z) = sign(z) max(1, |z|). Step 6 in the loop is
an updating technique that enables an automatic tuning of 1.
It is due to Chambolle [39] and it is a distinctive feature of
the analysis framework. However, 4 needs to be initialized.
Here, we used a pre-estimation of the noise variance &

form a wavelet decomposition (c¢f. Supplementary Material).
An open repository containing the full code is available at
https://github.com/ufaro/CalciumDec.

V. EXPERIMENTS & RESULTS
A. Simulated Signals

To assess the performance of the algorithm, we tested it
on synthetic signals of varying spiking rate. Through these
experiments we aim at exploring how the interplay between
the temporal resolution and the calcium dynamics affects the
fluorescence signal recovery.

The synthetic signal consists of a spike train of 2.5 min
composed of three uniform bursting periods of 10s, 20s
and 40s, as illustrated in Figure 1, was first generated at
a very high sampling rate to model the continuous domain
(1000Hz). We considered firing rates corresponding to ISI
varying between 0.1 s and 4 s. The obtained signals where con-
volved with CIRFs corresponding to GCaMP6s, GCaMP6m
and GCaMPO6f. These responses where, then, sampled to a time
resolution that is comparable to conditions in experimental
data. Here, we varied the sampling period, T, between 0.1s
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and 0.5s. Finally, we added a noise component such as the
observed signal has a signal-to-noise ratio (SNR) of 5dB. We
solved the optimization problem (9) for both spike model and
block model and we measured the performance in term of the
SNR of the respective estimates f:

K _
> filkl?
SNR(F,) = 101og10( _ k=1 2). (10)
> (k1= filkr)
k=1

In Figure 3, we report the performances of the two models.
The results show that the block model gives an estimate that
fits better the observed data when the ISI is small and the T is
large. On the opposite, the spike model is beneficial when the
spikes are separated enough or the resolution is high enough to
capture single firings. Moreover, depending on the dynamics
of the calcium indicator, the regions of accurate estimation
are more or less large. In particular, the faster the dynamics
(i.e., CIRF filter has a narrower support), the more the spike
model is accurate and vice-versa for the block model. Notice
that such regimes where sparse estimation fails are known
to emergence in convex minimization approaches [40]. The
difference between the two models in terms of SNR enables to
observe phase transitions at which one of the models surpasses
the other.

We have also computed the mean amplitude of the recovered
activity signals in function of ISI for the three indicators.
The results are reported in Figure 4 and demonstrate that
this amplitude is proportional to the firing rate, as expected.
Moreover, the slower the indicator dynamics are, the higher
the amplitude because of activity accumulation. This means
that, when undone from the effect of the CIRF, the changes in
amplitude of the deconvolved signals are a sign of variations
in the underlying firing rate.

Finally, in order to apprehend the outputs of the algorithm,
Figure 5 displays the recovered signals at 7y = 2s with
ISI= 0.5 s for an initial noise level of 5 dB. The plots illustrate
the behavior of the algorithm in situations of sustained activity
with small ISI values. The block model recovers an on/off
activity signal showing moments of rapid firing, whereas the
spike model cannot resolve single spikes in this situation.
When the activity is rather sparse than sustained; i.e, the ISI is
large, detecting single spikes becomes feasible. In such case,
the block model favors short blocks with small amplitudes on
the actual spikes (c¢f: Supplementary Material - Section III).
It is also noteworthy that the algorithm enables not only the
detection of the beginning and the end of activation moments,
but also changes in firing rates (cf. Supplementary Material -
SectionV).

B. Experimental Data

We tested the method on neurons belonging to the anterior
rhombencephalic turning region (ARTR) in maturing brain of
zebrafish larvee. ARTR was identified as the population of
neurons responsible for setting the direction of spontaneous
swimming during zebrafish exploratory locomotion [41]. This

1 5 1 1 1 1 1 1 1 1 1
— GCaMP6s
— GCaMP6m
1 GCaMPsf |

0.1 0.2 0.3 04 05 0.6 0.7 0.8 09 1
ISI (seconds)

Fig. 4. Mean Amplitude (MA) of the recovered activity blocks in terms of
ISI (Ts = 0.2s). Since the signals are deconvolved, only variations due
activity accumulation are visible. The longer the life-time of the calcium
indicator, the larger the amplitude of the retrieved blocks.

allows us to evaluate the estimated activity moments by
comparing them to the turning vector.

The data we used was obtained using transgenic
zebrafish expressing the genetically encoded calcium indicator
GCaMPo6f [6]. Whole-brain neural activity was captured by
a dual-laser light-sheet microscope capable of scanning the
entire brain while avoiding direct exposure of the zebrafish
retina to the laser beam [42]. Roughly, 1.87 brain volumes
were recorded per second (approximately, every 530 ms) dur-
ing fictive spontaneous locomotion. Heading directions over
time were recorded with a high-speed camera and summarized
in a vector of the same size of the time bins. At each
time-point a value is assigned to describe the motion; the
magnitude represents the strength of the motor event while
the sign gives the direction (positive for right turns and
negative for left turns). The data consists of approximately
27 minutes of simultaneous recordings from 94214 neurons
within 31 z-plane slices. The signals were detrended to remove
non-activity related baseline drifts. Similarly to the case of
simulated data, the regularization parameter was estimated
from a fine scale wavelet expansion.

We have, first, run our algorithm on the normalized fluo-
rescence signal from a single neuron belonging to the right
ARTR. The results are shown in Figure 6, in which the
lower plots in the B and C panels clearly reveal estimated
moments of activation along with the turning vector (positive
for right turns and negative for left turns) in panel A. This
result demonstrates how the temporal deconvolution approach
succeeds at retrieving a neural activity that matches the
locomotor behavior of the fish. Sustained activation moments
in the left ARTR indicate periods of anti-clockwise turning.
Another advantage of the block-wise model is its capacity to
also retrieve sustained baseline moments. The result shows that
these moments fits with the clockwise turning which confirms
a negative correlation between turning and opposite ARTR
regions.

Figure 6-C shows the estimated activity from a neuron out-
side the ARTR region. Here, baseline and activation moments
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Fig. 5. Example of recovered activity (normalized) using GCAMP6m dynamics with a Ts of 0.2s with ISI = 0.5 s for an initial noise level of 5dB.
A: noisy signal, B: denoised signal, C: deconvolved signal and D: Transient signal together with original ground truth transitions.

Measured signal

3

2

Deconvolved signal

Measured signal

B C

Deconvolved signal

:
M

0.6 Left turns
Right turns 0.2
0.4
0.1
0.2
O 4
0
-0.1
-0.2
9 13 18 22 27 4 9 13 18 22 27

Time (minutes)

Time (minutes)

Fig. 6. Temporal deconvolution applied to experimental recordings. A: An anatomical scan of zebrafish larvee [43] including neurons of the left and
right ARTR region (highlighted in colors). In the bottom, the fish locomotion vector shows moments of right and left turns. B: Recovered activity from
a neuron inside the left ARTR region: this region shows moments of persistent activity in which neurons continue firing when the associated turning
direction is chosen. When the opposite direction is chosen, a drop of CaZt concentration is observed, which explains negatively valued blocks.

C: Recovered activity from a neuron outside the ARTR region: here, activi

are rather sparse and show less structure than locomotion
driving neurons. This fact is highlighted even more in Figure 7.
Therein, the estimated deconvolved traces from groups of
neurons belonging to two different z-plane slices are shown.
The first slice includes neurons from the ARTR region. The
left and right activity components of the ARTR have the par-
ticularity of being asymmetric; i.e., they show anti-correlated
patterns. Moreover, during exploratory swimming, this activity
oscillates between the two sides permanently. If we look at
the rest of neurons in the same slice, but outside the ARTR
region, we can observe that the activity blocks have shorter
durations. This suggests that neurons that are controlling
swimming direction have perhaps a persistent activity similarly
to oculomotor neurons that hold eye position [27]. Moreover,
if we consider a slice not containing the ARTR regions as

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on

ty moments are rather sparse without apparent oscillatory behavior.

shown in Figure 7-(b), we can observe that activity is much
more hemispherically symmetric in opposition to the ARTR
area.

To appreciate more the results, we provide movies of spatial
activity maps in the Supplementary Material. An example of
an intensity map is shown in Figure 8-(a) where we can see
how the activity patterns are spatially clustered and organized.
The results also suggests that recordings from the ARTR
region have strong intensity when involved; i.e., high increase
of calcium concentration compared to the rest of the brain.
Figure 8-(b) shows a map of estimated noise variance from a
slice involving these region. The figure shows the variability
of noise levels depending on the spatial position. In particular,
signals that are recorded from the ARTR regions are of better
quality than the ones recorded from the rest of the brain.
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Fig. 7. Recovered fluorescence from two different z-plane slices. (a) A slice including a group of neurons from the ARTR region. These neurons
are continuously oscillating between activation and de-activation moments. Moreover, these oscillations alternate between neurons in the left and
the right hemispheres of the brain. (b) Another slice shows a sparse activity that is much more symmetric.

time: 220 sec.

Fig. 8. A slice containing the ARTR regions (highlighted in red):
(a) Intensity of the deconvolved signal at a fixed time point. (b) Estimated
noise standard deviation.

On the computational side, our experiments were conducted
on a laptop with Intel Core i7 CPU, 2.6 GHZ processor and
16 GB of RAM under MacOS 10.13.4, using MATLAB v.9.1,
64-bit. Because of the regularization parameter estimation,
the speed of the algorithm varies depending on the noise
variance and also on the number and duration (regularity)
of the underlying signal. It took the algorithm (block model)
between 0.3 and 1.2 seconds to process a single signal. The
algorithm is of course parallelizable. For example, it took the
algorithm 570 seconds to process a single z-slice (3402 single
neurons recordings of 3050 time-points) on 4 parallel pools.

V. DISCUSSION & PERSPECTIVES

We presented a method for deconvolution of sustained
neural activity from calcium imaging data. Our procedure
exploits the sparsity of activity transients to construct a
{1-penalized least squares optimization. For this purpose, we
used an analysis sparsity prior: the Ca?T response operator is
incorporated in the regularization and not in the data-fidelity
term as it is often the case in sparse deconvolution algorithms.
A distinctive advantage of this approach is that it gives direct
access to a clean version of the fluorescence trace. This
allowed us to study the performances of the estimation in terms
of SNR. We used this measure as a criteria for comparing two
sparsity prior models; spike model and block model. We found
that depending on the relation between temporal resolution
and minimum separation between the spikes, it can become
advantageous to use a block prior. It is the case for slow
imaging rates (~ 2Hz) such as the ones used in large spatial
field of view setups.

In moderate imaging rates, the choice for an appropriate
model depends more on the underlying firing rate. Some
neurons show fast sustained bursting and consequently their
activity is better modeled using a block model. It can be also
argued if some acquisition regimes do not require deconvolu-
tion; i.e, if simple denoising is enough. We investigated this
question and we found that, in some sampling scenarios, Total
Variation (TV) denoising [44] leads to similar quantitative
results but the estimated state transitions are less accurate (cf.
Supplementary Material). We also showed that the amplitude
of the estimated activity blocks is linked to the underlying
firing rate and depends on the dynamics of the Ca>* indicator.
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We also showed that the slower the dynamics of the Ca”*t
indicator are, the more advantageous the block model is. In
fact, slow indicators correspond to impulse responses with a
large spread, which makes inference between successive spikes
difficult.

The problem of estimating the actual firing rates is more
complex and requires calibrating experimentally the mean
amplitude of a single spike response. This will be subject of
future work. On experimental data, we showed an example
of activity estimation from whole brain zebrafish imaging at
relatively slow imaging rates. The results confirm that the
observed increase in Ca”>* concentration is often the results
of sustained activity.

Moreover, the algorithm allowed to retrieve moments of
decrease in activity compared to baseline firing. Negative
fluctuations are indicative of neuronal inhibition. For example,
in the ARTR case, when the zebrafish choses a turning direc-
tion, the contralateral ARTR is suppressed by contralateral
inhibition [41]. This results in blocks with negative amplitudes
in the deconvolved signal.

The outcome of this work offers many possible extensions.
From an experimental angle, the proposed algorithm could
be applied to in vivo recordings from other small animals
for which the nervous system is well-characterized such as
Caenorhabditis elegans [45]. The retrieved activity character-
istics could be then linked to the function of the neurons.

On the methodological side, more robustness could be
reached by adding a spatial regularization to the temporal
deconvolution process as it is done in the fMRI methods [23].
It was also observed that some neurons show more sustained
activity than others. It could be interesting to classify the
neuronal population into neurons that are showing bursts
frequently and those that are better modeled with a spike
model.

Some neurons may exhibit a hybrid behavior; i.e., they
generate individual spikes with a considerable large inter-spike
interval, but also bursting periods. If the sampling rate enables
retrieving isolated spikes, a possible approach to retrieve both
spikes and bursting periods efficiently, would be to incorporate
two regularization terms instead of one; i.e one term with
the derivative as in the block model and one term without
derivative as in the spike model. Such an approach will impose
both sparsity and piece-wise constancy as in fused lasso [46].

It is also often observed that the calcium dynamics are
diverse among neurons with the same expression. A semi-
blind extension of the proposed algorithm could be used to
estimate both the activity and the calcium response. Another
idea would be to use known stimuli moments to estimate the
shape of the calcium response for specific groups of neurons
as it is done for the hemodynamic response [47]. Finally, the
recovered activity could be used to study the connectivity of
brain regions via correlation analysis or more sophisticated
classification techniques [2]. Moreover, the state transitions in
activity that are revealed by the block model could be used to
reveal dynamic interactions between brain networks.

From a theoretical point-of-view, the proposed estimation
procedure is an extension of adaptive piecewise polynomial
estimation [48]. It would be interesting to derive fast rate error

bounds and study the effect of perturbing pure differentiation
operators such is the case for the Ca>* response.

APPENDIX
DiISCRETE OPERATOR CONSTRUCTION

In order to perform the deconvolution algorithm presented in
this paper, an important step consists in constructing a discrete
version of the operator £ defined in (8) at a given sampling
period T;. This operator is of the form:

N
c=[]@-aD), (1
i=1
where,
N=2, ai=a, and ap = b, if spike model,
N =3, ai=a, ar=0>band az =0, if block model.

with a and b defined as in (3). Hereafter, we conventionally
note « = (a1, - - , ay). Operators of the form (11) correspond
to finite impulse response (FIR) filters of order N (N + 1 filter
taps). Therefore, the discrete operator L has an exact con-
struction [22] similar to the one used to construct exponential
splines [49]:
N
LA}k =D filk —€1ALLE), k> N+1

(=1

(12)

where the discrete filter is given in the time domain by:

ALlll= (=" D ("), me[0, 11N, 0<¢<N. (13)

|m|=(

with m = (my,--- ,myn), |m| = Z?]:l my¢ and the conven-
tions ¢™ = (¢™, -+, ¢™V) and ¢™ = TI)_, ¢, In particular,
for the spike model, we have the following filter:

Ap =11, —(*T +eT), et TsthT, (14)

which is similar to common filters that are used for spike
detection [50], while for the block model the filter writes:

A =11, —(1+e*T 4Ty, h 4T

et THbTs - _paTs+bTsy  (15)
Note that from a (discrete) linear algebra point of view, the
taps in (15) can be obtained by combining a finite difference
filter [1 — 1] with (14). The filtering operation in (12) is
defined up to the first N point. Here, we used a zero boundary
condition to define the filter on these points. As a result of this
construction, the discrete operator L is full-rank although its
continuous counterpart has a null-space spanning the vector
space of second-order polynomials. Finally, the deconvolution
algorithm we use here requires computing the adjoint operator
LT. This operator is constructed similarly to L using the time-
reversed filter At[l] = Ar[-!].
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