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An Orthogonal Family of Quincunx Wavelets
With Continuously Adjustable Order
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Abstract—We present a new family of two-dimensional and
three-dimensional orthogonal wavelets which uses quincunx sam-
pling. The orthogonal refinement filters have a simple analytical
expression in the Fourier domain as a function of the order ,
which may be noninteger. We can also prove that they yield wavelet
bases of 2(

2) for any 0. The wavelets are fractional in
the sense that the approximation error at a given scale decays
like ( ); they also essentially behave like fractional derivative
operators. To make our construction practical, we propose a fast
Fourier transform-based implementation that turns out to be
surprisingly fast. In fact, our method is almost as efficient as the
standard Mallat algorithm for separable wavelets.

Index Terms—McClellan transform, nonseparable filter design,
quincunx sampling, wavelet transform.

I. INTRODUCTION

THE GREAT majority of wavelet bases that are currently
used for image processing are separable. There are two pri-

mary reasons for this. The first is convenience, because wavelet
theory is most developed in one dimension and that these results
are directly transposable to higher dimensions through the use
of tensor product basis functions. The second is efficiency be-
cause a separable transform can be implemented by successive
one-dimensional (1-D) processing of the rows and columns of
the image. The downside, however, is that separable transforms
tend to privilege the vertical and horizontal directions. They also
produce a so-called “diagonal” wavelet component, which does
not have a straightforward directional interpretation.

Nonseparable wavelets, by contrast, offer more freedom and
can be better tuned to the characteristics of images [1], [2]. Their
less attractive side is that they require more computations. The
quincunx wavelets are especially interesting because they can
be designed to be nearly isotropic [3]. In contrast with the sep-
arable case, there is a single wavelet and the scale reduction
is more progressive: a factor instead of 2. The preferred
technique for designing quincunx wavelets with good isotropy
properties is to use the McClellan transform [4] to map 1-D
biorthogonal designs to the multidimensional case. Since this
approach requires the filters to be symmetric, it has only been
applied to the biorthogonal case because of the strong incen-
tive to produce filters that are compactly supported [5]–[8]. One
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noteworthy exception is the work of Nicolier et al. who used
the McClellan transform to produce a quincunx version of the
Battle–Lemarié wavelet filters [9]. However, we believe that
their filters were truncated because they used a representation
in terms of Tchebycheff polynomials.

In this paper, we construct a new family of quincunx wavelets
that are orthogonal and have a fractional order of approxima-
tion. The idea of fractional orders was introduced recently in
the context of spline wavelets for extending the family to non-
integer degrees [10]. The main advantage of having a continu-
ously varying order parameter—not just integer steps as in the
traditional wavelet families—is flexibility. It allows for a con-
tinuous adjustment of the key parameters of the transform, e.g.,
regularity and localization of the basis functions. The price that
we are paying for these new features—orthogonality with sym-
metry as well as fractional orders—is that the filters can no
longer be compactly supported. We will make up for this hand-
icap by proposing a fast Fourier transform (FFT)-based imple-
mentation which is almost as efficient as Mallat’s algorithm for
separable wavelets [11].

II. QUINCUNX SAMPLING AND FILTERBANKS

First, we recall some basic results on quincunx sam-
pling and perfect reconstruction filterbanks [12]. The quin-
cunx sampling lattice is shown in Fig. 1. Let with

denote the discrete signal on the ini-
tial grid. The two-dimensional (2-D) z-transform of is
denoted by , where .
The continuous 2-D Fourier transform is then given by

with , and,
finally, the discrete 2-D Fourier transform for given on
an grid by

, with .
Now, we write the quincunx sampled version of as

where (1)

Our down-sampling matrix is such that . The
Fourier-domain version of (1) is

(2)

where .
The upsampling is defined by

when is even
elsewhere

(3)
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Fig. 1. (a) Quincunx lattice and (b) the corresponding Nyquist area in the frequency domain.

Fig. 2. Perfect reconstruction filterbank on a quincunx lattice.

and its effect in the Fourier domain is as follows:

(4)

If we now chain the down-sampling and up-sampling operators,
we get

when is even
elsewhere

(5)

(6)

Since quincunx sampling reduces the number of image samples
by a factor of two, the corresponding reconstruction filterbank
has two channels (cf. Fig. 2). The low-pass filter reduces the
resolution by a factor of ; the wavelet coefficients correspond
to the output of the high-pass filter .

Applying the relation (6) to the block diagram in Fig. 2, it is
easy to derive the conditions for a perfect reconstruction

(7)

where and (respectively and ) are the transfer func-
tions of the synthesis (respectively analysis) filters. In the or-
thogonal case, the analysis and synthesis filters are identical up
to a central symmetry; the wavelet filter is simply a modu-
lated version of the low-pass filter .

III. FRACTIONAL QUINCUNX FILTERS

To generate quincunx filters, we will use the standard ap-
proach which is to apply the diamond McClellan transform to
map a 1-D design onto the quincunx structure.

A. New 1-D Wavelet Family

As starting point for our construction, we introduce a new 1-D
family of orthogonal filters

(8)

which is indexed by the continuously-varying order parameter
.
These filters are symmetric and are designed to have zeros

of order at ; the numerator is a fractional power
of (the simplest symmetric refinement filter of
order 2) and the denominator is the appropriate -orthonormal-
ization factor. By varying , we can adjust the frequency re-
sponse as shown in Fig. 3. As increases, converges
to the ideal half-band low-pass filter. Also note that these fil-
ters are maximally flat at the origin; they essentially behave like

as . Their frequency response
is similar to the Daubechies’ filters with two important differ-
ences: 1) the filters are symmetric and 2) the order is not re-
stricted to integer values.

We can prove mathematically that these filters will generate
valid 1-D fractional wavelet bases of similar to the fractional
splines presented in [10]. The order property (here fractional) is
essential because it determines the rate of decay of the approx-
imation error as a function of the scale. It also conditions the
behavior of the corresponding wavelet which will act like a
fractional derivative of order . In other words, it will kill all
polynomials of degree ; i.e.

(9)
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Fig. 3. Frequency responses of the orthogonal refinement filters for
� = 1; . . . ; 100.

B. Corresponding 2-D Wavelet Family

Applying the diamond McClellan transform to the filter
above is straightforward; it amounts to replacing by

in (8). Thus, our quincunx refinement
filter is given by

(10)
This filter is guaranteed to be orthogonal because the

McClellan transform has the property of preserving biorthog-
onality. Also, by construction, the th order zero at
gets mapped into a corresponding zero at ;
this is precisely the condition that is required to get a 2-D
wavelet transform of order . Also, note the isotropic be-
havior and the flatness of around the origin; i.e.,

for . Fig. 4 shows contour
plots of the scaling filter for several choices of the order .

The orthogonal wavelet filter is obtained by modulation

(11)

The corresponding orthogonal scaling function is de-
fined implicitly as the solution of the quincunx two-scale rela-
tion

(12)

Since the refinement filter is orthogonal with respect to the quin-
cunx lattice, it follows that and that it is or-
thogonal to its integer translates. Moreover, for , it will
satisfy the partition of unity condition, which comes as a direct
consequence of the vanishing of the filter at .
Thus, we have the guarantee that our scheme will yield orthog-
onal wavelet bases of . The underlying orthogonal quin-
cunx wavelet is simply

(13)

Fig. 4. Contour plots of the low-pass filters H (e ) for various values of the
order parameter �. (a) � = 1. (b) � =

p
2. (c) � = �. (d) � = 10.

Given the behavior of at , we also have
, and, as such, the wavelet behaves as the th order differ-

entiator for low frequencies [13]. The vanishing moment prop-
erty in the 2-D case becomes

for (14)

Fig. 5 shows the wavelet for various choices of the order
. Note that the wavelet is centered around (1/2, 1/2). As illus-

trated by these plots, the wavelets clearly gets smoother as
increases. However, a mathematical rigorous estimation of their
regularity is beyond the scope of this paper.

IV. IMPLEMENTATION IN FOURIER DOMAIN

The major objection that can be made to our construction is
that the filters are not FIR and that it may be difficult and costly
to implement the transform in practice. We will see here that we
can turn the situation around and obtain a very simple and effi-
cient algorithm that is based on the FFT, following the idea of
[14]. Working in the frequency domain is also very convenient
because of the way in which we have specified our filters [see
(10) and (11)]. Implementations of the wavelet transform for the
quincunx subsampling matrix using FFTs have been proposed
before [9], [15]; our algorithm is another variation, which min-
imizes the number and size of FFTs and seems to be faster.

First, let us assume that the image size is . Now, we will
describe the decomposition part of our algorithm which corre-
sponds to the block diagram presented in Fig. 6, where we have
pooled together two levels of the decomposition. The initializa-
tion step is to evaluate the FFT of the initial input image and
to precompute the corresponding sampled frequency responses
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Fig. 5. Surface plots of the wavelets  for various values of the order parameter. (a) � =
p
2. (b) � = �. (c) � = 10.

Fig. 6. Analysis part of the 2-D quincunx wavelet transform for two iterations.

of the analysis filters and using (10) and (11). We also
precompute the rotated version of the filters, denoted as
and , that can be obtained as

(15)

(16)

Let us now consider the 2-D FFT of the input, given by

for

(17)
Globally, at the end of the process, the output variables are
the quincunx wavelet coefficients , , and

; e.g., as shown in Fig. 7(a). Their Fourier transforms for
the odd iterations are derived from the auxiliary signals
(see also Fig. 6)

(18)

(19)

Down and up sampling with in the first iteration step intro-
duces zeros in the space domain while it preserves the size of

. However, it implies some symmetry/redundancy in fre-
quency domain. Therefore, only half of the coefficients needs

to be computed which saves operations. The reduced signal
and its corresponding low-pass signal are obtained by

(20)

(21)

where .
To generate the signal of (19) in the way that is de-

picted in Fig. 7(a) with every second row shifted by one pixel,
we separate the image in even and odd
rows already in the Fourier domain, using the auxiliary variable

(22)

(23)

with . The sum in the real part
represents downsampling by two in the

vertical direction, keeping all the even rows, whereas the sum
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Fig. 7. Wavelet coefficients for the quincunx subsampling scheme can be arranged in two ways. An example for J = 4 iterations. (a) Compact representation.
(b) Classic representation.

in the imaginary part represents the odd rows. In the space do-
main, we alternate the rows and

. Since is four times smaller than
, we save computations with the reduced-size IFFT.

Instead of rotating the frequency variables after each itera-
tion, we use the precomputed rotated version of the filters (i.e.,

and ), which we apply at all even iterations. In this way,
we also save two rotations per iteration in the frequency domain.

The Fourier transforms of the output for the even iterations
are

for (24)

They are computed by

(25)

(26)

The process is then iterated until one reaches the final resolution.
When the last iteration is even, we lower the computation costs
with the FFT by utilizing its imaginary part

(27)

where and .
Obviously, as the resolution gets coarser after each iteration,

the Fourier transforms of the filters need not be recalculated;
they are simply obtained by down-sampling the previous arrays.

The synthesis algorithm operates according to the same prin-
ciples and corresponds to the flow graph transpose of the decom-

position algorithm using up sampling, instead. For instance, the
synthesis counterpart of (25) and (26) is

V. EXPERIMENTS

A. Benchmark and Testing

We have implemented two versions of the algorithm, based
on Java and Matlab. For the Matlab version, we report compu-
tation times below 0.8 s for 16 quincunx iterations of a 256
256 image on an Apple G4 700 MHz desktop; the decompo-
sition is essentially perfect with a reconstruction error below

RMS. The method is generic and works for any set of
filters that can be specified in the frequency domain, indepen-
dent of their spatial support (or infinite spatial support, such
as in our case). As a comparison, the Matlab implementation
available in the latest Wavelet Toolbox [16] for the Daubechies
9/7 filters (used in JPEG 2000) applied to the same image and
for an equivalent of eight separable iterations, takes about 1.7 s.
For datapoints, the complexity of our approach boils down to

for the FFT-based implementation, versus
for the spatial-domain implementation, where is related to the
filter support. The exact tradeoff will depend on the image size
and the filter size. However, taking into account the benchmark
measures and its flexibility, we believe that the FFT-based im-
plementation deserves consideration for a broad class of appli-
cations.

We also provide an applet written in Java, which makes
it possible to run the algorithm over the Internet, at the site
http://bigwww.epfl.ch/demo/jquincunx/. A screen shot of this
applet is presented in Fig. 8.

Two examples of fractional quincunx wavelet decomposi-
tions with and are shown in Fig. 9. Note how
the residual image details are more visible for the lower value
of . The larger reduces the energy of the wavelet coefficient,
but this also comes at the expense of some ringing. Thus, it is
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Fig. 8. Applet of the Fourier-based implementation of the quincunx wavelet transform, available on the site: http://bigwww.epfl.ch/demo/jquincunx/.

Fig. 9. Quincunx wavelet transforms with four iterations. (a) Original test image. (b) � =
p
2. (c) � = �.

convenient to have an adjustable parameter to search for the best
tradeoff.

An advantage of the present approach is that the filters for
small are nearly isotropic; this is the reason why the wavelet
details in Fig. 9 do not present any preferential orientation. The
degree of isotropy of the various lowpass filters can be seen
from Fig. 4. The shape of the contour plots of the low-pass filter

confirms that the degree of isotropy is the best for small
values of . At the other extreme, when , tends
to the diamond-shaped ideal filter.

Another nice feature of the algorithm is that the computa-
tional cost remains the same irrespective of the value of .

B. Dependence of the Order Parameter

The usefulness of a tunable order parameter is demonstrated
in the following experiment: we apply the quincunx transform
to the test image “cameraman” [see Fig. 10(a)] and reconstruct
using only 15% of the largest coefficients. Then the SNR is
measured depending on the order parameter. The plot in Fig. 11
shows how the SNR changes according to the order ; the
optimum, indicated by the circle, is achieved for .
Fig. 10(b) and (c) shows the reconstructions for the optimal
order and an order too high. The last one gets penalized by the
introduction of ringing artefacts around the edges. We also plot

the SNR curves for 20% and 25% of the coefficients. The same
type of qualitative behavior holds for other images.

C. Approximation Properties

The main differences between the quincunx and the conven-
tional separable algorithm is the finer scale progression and the
nonseparability. To test the impact that this may have on com-
pression capability, we compared the approximation qualities of
both approaches. Since the wavelet transform is orthogonal, the
approximation error (distortion) is equal to

, where are the wavelet coefficients of the input image
; is the reconstructed image obtained from the quantized—or

truncated—wavelet coefficients . Also, in the space domain
is equivalent to the sum of squares of discarded wavelet coeffi-
cients [17].

1) Linear Approximation: In classical rate-distortion theory,
the coefficients are grouped into channels and coded indepen-
dently. In the orthogonal case, is equivalent to the differ-
ence between the signal’s energy and the energy of the recon-
structed signal

. The distortion across channels with variance
is

(28)



FEILNER et al.: ORTHOGONAL FAMILY OF QUINCUNX WAVELETS 505

Fig. 10. (a) Original test image “cameraman.” (b) and (c) Reconstruction of “cameraman” using 15% of the largest coefficients with � = 2:5 (optimal) and
� = 14.

Fig. 11. Relation between the order parameter � and the SNR of the
reconstructed image (test image “cameraman”) using only the largest
coefficients. The full line, dashed line, and dotted line correspond, respectively,
to 25%, 20%, and 15% of the largest coefficients.

where is a constant, is the mean rate, and is the geometric
mean of the subband variances

(29)

When is small, the distortion is small, as well. What this means
qualitatively is that the wavelet transform which has the larger
spread in the variances will achieve the better coding gain [12].
The linear approximation subband coding gain for sample-by-
sample quantization (PCM) is described by

(30)

To better illustrate this issue, we have decomposed the test
image “cameraman” for the maximal number of iterations, both
for the quincunx and the separable case as shown in Fig. 12.
The order was fixed (i.e., ) for our method and for the or-
thogonal separable approach (corresponding to the commonly

used degree parameter for the underlying B-splines). In
Fig. 13(a), we compare the energy packing properties of both
decompositions for linear approximation. “Energy packing”
refers to the property that the more the first coefficients contain
energy, the better the DWT yields compression. We start to
sum up the energy of the subbands with the lowest resolution.
Each step of the stairs represents a subband.1 The first subbands
of the quincunx decomposition report higher energy packing
than the separable case, but the overall coding gain is slightly
better for the separable case than the quincunx case (47.69
versus 45.23). Fig. 13(c) shows similar results for the “Lena”
test image.

Since the branches are orthogonal, the transformation that
provides the maximum energy compaction in the low-pass
channel is also the one that results in the minimum approxi-
mation error [17]. Since most images have a power spectrum
that is roughly rotationally invariant and decreases with higher
frequencies, separable systems are usually not best suited for
isolating a low-pass channel containing most energy and having
high-pass channels with low energy. In contrast, a quincunx
low-pass filter will retain more of the original signal’s energy
[12].

Consequently, the type of images that benefit the most from
the quincunx scheme have a more isotropic spectrum. For
example, for the well-known zoneplate test image of Fig. 14(a),
the coding gain of quincunx scheme is about 20% better than
the one obtained by the separable scheme (4.30 versus 3.64).
Also, the quincunx scheme gives better energy compaction for
textures of highly isotropic nature (and as such a higher coding
gain). Two such examples of the Brodatz textures are shown
in Fig. 14(b) and (c), corresponding to a coding gain of 13.67
versus 12.45 and 12.04 versus 9.62, respectively. On the other
hand, a separable treatment leads to a better energy compaction
for the texture shown in Fig. 15 (8.78 versus 15.48). Other
authors have also found that texture analysis using the quin-
cunx scheme improves the results as compared to the separable
scheme [18].

1A quincunx wavelet decomposition with J iterations generates N = J + 1

channels, while a separable wavelet decomposition with J iterations results into
N = 3J + 1 channels.
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Fig. 12. Decomposition of the test image “cameraman” for the maximal possible number of iterations. (a) Quincunx case. (b) Separable case. The contrast of
each subband has been enhanced.

Fig. 13. Comparison of energy-compaction property between the quincunx and the separable case of image decomposition (as shown in Fig. 12). (a) and
(c) Linear approximation depending on number of coefficients (in log, grouped per subband), respectively, for “cameraman” and “Lena.” (b) and (d) Nonlinear
approximation depending of the n largest coefficients (in log), respectively, for “cameraman” and “Lena.” The quincunx scheme yields better results for a low
number of coefficients. In the case of “Lena,” the separable scheme performs better than the quincunx one over most of the range.

2) Nonlinear Approximation: A more recent trend in
wavelet theory is the study of nonlinear approximation. In this
case we do not take the “ -first” coefficients, but the “ -largest”
coefficients to approximate a signal with coefficients. This
yields better energy packing, since in the wavelet domain
the “ -first” coefficients are not necessarily the largest one,

especially along the position indices [19]. The distortion is
described by [20]

(31)
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Fig. 14. Some examples of typical images where the quincunx scheme outperforms the separable case in term of coding gain. (a) Zoneplate. (b) Brodatz texture
D112. (c) Brodatz texture D15. The Brodatz textures have 512 � 512 pixels and are obtained from the USC-SIPI image database.

Fig. 15. Example of a texture (Brodatz D68) that is better suited for a separable
treatment.

Moreover, it can be shown that

(32)

when the smoothness of is measured by its inclusion in some
critical Besov space with ,
roughly speaking, when is a function with derivatives in

[20], [21].
For the nonlinear approximation, the quincunx scheme also

yields a better approximation than the separable one for a small
in many cases. Fig. 13(b) represents the energy depending on

the largest coefficients (in log).

VI. EXTENSION TO THREE DIMENSIONS

The extension of quincunx sampling to three dimensions
is rather straightforward. First, the filters are obtained by re-
placing by in (8). Next,
the quincunx sampling lattice for three dimensions is shown in

Fig. 16(a). Let denote the discrete signal on the initial grid.
Then, its quincunx sampled version, following [6], is

where (33)

Our down-sampling matrix is such that and
. The Fourier-domain version of this formula is

similar to the 2-D case

(34)

where .
The implementation for the 3-D case goes as follows. The

output variables are the discrete Fourier transforms of the
wavelet coefficients

for (35)

for (36)

for (37)

The coefficients themselves are recovered by inverse FFT. The
Fourier transforms after the first level of filtering are given by

(38)

(39)
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Fig. 16. (a) Three-dimensional (3-D) face-centered orthorhombic (FCO) lattice, corresponding to the sampling matrix of (33). (b) Compact representation of the
wavelet coefficients for the 3-D case.

After the second level of filtering, we have

(40)

(41)

Note that these are computed at the resolution of the input. The
size reduction only takes place during the third step

(42)

(43)

where and
. Analogously, we have that:

and
.

Fig. 16(b) shows how the coefficients can be arranged in a
nonredundant way inside the cube. Note that the size of the FFTs
for the 3-D implementation can be further reduced by taking
into account the subsampled arrangement in the Fourier domain.
Again, the rotated filters , , , and are precom-
puted.

A. Approximation Properties in Three Dimensions

We compared the compression capability for the quincunx
and the separable scheme applied to 3-D data, similar to the type
of experiments that are described for two dimensions in Sec-
tion V-C. Fig. 17 shows the results for a spiral CT dataset of part
of a human spine. The linear approximation quality is shown in
Fig. 17(b). The separable scheme takes much advantage of the
availibity of many small (i.e., seven for each iteration) bandpass
subbands, as compared to the quincunx scheme. To illustrate
this point, we have grouped the bandpass subbands for the sep-
arable case together in one single bandpass in Fig. 17(c). For
nonlinear approximation, both schemes perform similarly with
a small advantage for the separable one, as shown in Fig. 17(d).
If the dataset contains more (isotropic) high-frequency compo-
nents, the breakpoint between the quincunx and the separable
case shifts to the right.

The main advantage of the 3-D quincunx scheme is in ap-
plications that can benefit from the (much) slower scale pro-
gression. One example is the statistical analysis of brain activity
using functional magnetic resonance imaging (fMRI). Here we
show an example using the classical wavelet-based approach for
detecting activity, using the linear model analysis and the test
in the wavelet domain for a 3-D dataset with
an auditory stimulus [22]; we refer to [23] for more details. We
compared the use of the 3-D dyadic separable wavelet decom-
position based on orthogonal linear B-spline wavelets versus
our 3-D quincunx wavelets (same order). The parameter maps
where obtained using the same threshold after reconstruction
(5% of the maximal parameter value). The number of detected
voxels, and as such the sensitivity of the approach, is almost
10% higher (578 versus 536) when we use the 3-D quincunx
DWT, which confirms that the slower scale progression im-
proves the quality of the results. Fig. 18 shows the detected ac-
tivation patterns around the auditory cortex (slice 33).

Other potential applications might include image analysis and
3-D feature detection.
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Fig. 17. (a) Slice of an spiral CT dataset of part of a human spine (courtesy and copyright of Ramani Pichumani, Stanford University School of Medicine).
(b) Linear approximation, for the separable case each bandpass subband is considered independently. (c) Linear approximation, for the separable case the bandpass
subbands are grouped together into one single subband. (d) Nonlinear approximation.

Fig. 18. FMRI brain activation detected using the classical wavelet-based approach. The activated voxels in the slice are left white, superposed on a background
of the T2� scan.

VII. CONCLUSION

We have introduced a new family of orthogonal wavelet trans-
forms for quincunx lattices. A key feature is the continuously
varying order parameter which can be used to adjust the band-
pass characteristics as well as the localization of the basis func-
tions.

We have also demonstrated that these wavelet transforms
could be computed quite efficiently in two and three dimensions

using FFTs. This should help dispel the commonly held belief
that nonseparable wavelet decompositions are computationally
much more demanding than the separable ones.

Because of their nice properties and their ease of implementa-
tion, these wavelets present an alternative to the separable ones
that are being used in a variety of image processing applications
(image analysis, image enhancement, filtering and denoising,
feature detection, texture analysis, and so on).



510 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 14, NO. 4, APRIL 2005

REFERENCES
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