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a School of Computing Science, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada V5A 1S6
b Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Station 17, CH-1015 Lausanne, Switzerland
c Department of Radiology, University of Geneva, Rue Micheli-du-Crest 24, CH-1211 Geneva 14, Switzerland
d CISE Department, E301 CSE Building, University of Florida, P.O. Box 116120, Gainesville, FL 32611-6120, USA
a r t i c l e i n f o

Article history:

Received 21 August 2009

Received in revised form

31 December 2009

Accepted 4 February 2010

Keywords:

Reconstruction

Volume rendering

Box splines

Body centered cubic lattice
93/$ - see front matter & 2010 Elsevier Ltd. A

016/j.cag.2010.02.002

esponding author.

ail addresses: bfa4@cs.sfu.ca (B. Finkbeiner), e

ezari), dimitri.vandeville@epfl.ch (D. Van De

ler).
a b s t r a c t

We demonstrate that non-separable box splines deployed on body centered cubic lattices (BCC) are

suitable for fast evaluation on present graphics hardware. Therefore, we develop the linear and quintic

box splines using a piecewise polynomial (pp)-form as opposed to their currently known basis (B)-form.

The pp-form lends itself to efficient evaluation methods such as de Boor’s algorithm for splines in box

splines basis. Further on, we offer a comparison of quintic box splines with the only other interactive

rendering available on BCC lattices that is based on separable kernels for interleaved Cartesian cubic

(CC) lattices. While quintic box splines result in superior quality, interleaved CC lattices are still faster,

since they can take advantage of the highly optimized circuitry for CC lattices, as it is the case in

graphics hardware nowadays. This result is valid with and without prefiltering. Experimental results are

shown for both a synthetic phantom and data from optical projection tomography. We provide shader

code to ease the adaptation of box splines for the practitioner.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Volumetric data are typically associated to Cartesian cubic (CC)
lattices; i.e., samples are taken on an orthogonal grid, usually with
equal spacing in all dimensions. These lattices are easy to use
since indexing, interpolation, and representation can be done
conveniently in a separable way, that is, dimension by dimension.
Despite their common use for volumetric data, it is known that CC
lattices are not the optimal [32]. For example, assuming a radially
symmetric power spectrum, the best periodic lattice corresponds
to the one with the best sphere-packing property in the frequency
domain; i.e., the face-centered cubic (FCC) lattice in 3D that
corresponds to the body-centered cubic (BCC) lattice in the spatial
domain [38].

The BCC lattice consists of a CC lattice with an additional
sample added to each cube. The FCC lattice consists of a CC lattice
with an additional sample added to each face of a cube. According
to the Fourier scaling property, a sparse grid spacing in one
domain yields a dense spacing in the dual domain. Thus, if one can
pack the replicated frequency spectra in the Fourier domain as
close as possible, the sparsest grid spacing in spatial domain will
ll rights reserved.
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be obtained without any (pre-)aliasing. Therefore, using a BCC
lattice instead of a CC lattice can reduce the number of samples by
29% without any loss of information. This directly translates into a
reduction of storage and computational cost.

Although the optimality of the BCC lattice has been known for
a long time, appropriate kernels for 3D volume rendering that (1)
guarantee approximation order; (2) are easy to use; (3) are
numerically stable; and (4) allow an efficient implementation,
have only been proposed recently. In earlier work [38,14], a
practical method was proposed using CC-kernels for the two
interleaved CC lattices that constitute the BCC lattice. This
allowed for a simple and efficient hardware implementation,
but dealing with the BCC structure by separate CC-kernels does
not exploit the specificity of the neighborhood information on
BCC. Using box splines, Entezari et al. [19,21] have introduced a
class of basis functions specially tailored to the geometry of the
BCC lattice. These box splines possess attractive theoretical
properties for reconstruction of data on the BCC lattice.

The contributions of this paper are:
�
 We present an efficient algorithm for convolution of BCC-
sampled data with the linear (C0) and quintic (C2) box splines.
Specifically, Entezari et al. [21] characterize the box spline
basis functions (i.e., the B-form); here we demonstrate how to
efficiently implement the convolution of BCC data with these
box splines. Our method evaluates the reconstructed spline
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function in the so-called piecewise polynomial (i.e., pp-) form.
The quintic polynomials are represented in power form which
benefit from a (partial) factorization into quadratic and cubic
polynomials. The pp-form allows for the fastest evaluation
scheme at arbitrary points, a prerequisite for ray casting as
used in volume rendering. The optimized pp-form evaluation
presented in Section 3 allows us to achieve competitive
interactive frame rates utilizing the GPU.

�
 We compare the box splines with traditional CC B-splines and

with prefiltered BCC B-splines [14] in order to determine
which one provides the better quality considering the
implementation penalty. To ensure fairness in quality compar-
isons, we employ the generalized interpolation of Blu et al. [2]
which is commonly employed (see [7,8,14,13]) as a prefiltering
for reconstruction. We assert the better image quality of
prefiltering for all methods, but we also see that quintic box
splines provide us with the best reconstruction quality with
and without prefiltering. Under present hardware implemen-
tations using dedicated circuitry for CC lattices, the method
based on the separation of the BCC lattices into two CC lattices
is still faster.

In Section 5, we verify our results using synthetic and real data
which illustrate the theoretical and practical advantages of the
BCC lattice in combination with box splines. We also demonstrate
that the prefiltering solution for the quintic box spline allows
interactive high-quality volume rendering of the BCC lattice.
2. Previous work

CC-sampled data have traditionally been the main focus of
research in visualization. The common practice is to extend the
univariate reconstruction algorithms to the trivariate setting by a
tensor-product approach [31,5,15,30]. Marschner and Lobb [27]
developed a framework for evaluation of these commonly used
reconstruction techniques for volumetric reconstruction. In con-
trast to tensor-product reconstruction, Rössl et al. [33] proposed
so-called super splines as a local interpolation model for
CC-sampled data; they subdivided each cube into 24 tetrahedra
and fit a quadratic polynomial for each tetrahedron. This domain
partition and the polynomial degree allows for a C1 reconstruc-
tion; however, the approximation order is limited to two. Their
construction allows a fast GPU-based implementation [25] that
is suitable for iso-surface rendering. A non-separable box
spline approach for Cartesian data reconstruction was also
presented in [18].

Over the past years, there has been an increased focus on
optimal sampling lattices. Theußl et al. [38] assumed samples on
the BCC lattice together with a spherical extension of reconstruc-
tion kernels; they achieve the same quality as a CC representation
with fewer samples. However, the quality of the images rendered
with this approach was rather unsatisfying since the images were
blurry. Since then, several more appropriate kernels have been
suggested: box splines [19,21], a prefiltering operator followed by
a Gaussian filter [10] and BCC-splines [11,20].

The implementation of the box splines [19] turned out to be
inefficient and numerically instable due to the implicit recursive
representation of the box spline. The Gaussian kernel approach
does not guarantee approximation order [10] and disregards the
geometry of the neighborhood information of BCC lattice points.
Recently, BCC-splines [11,20] have been proposed as a general-
ization of 2D hex-splines [39]. However, their constituting
polynomial patches have not (yet) been characterized analytically
and therefore their application remains limited. These methods
are not able to render non-trivial data in real-time. In recent work,
Entezari et al. [21] derived an explicit polynomial representation
of their proposed box splines which can be used to efficiently
evaluate C0 and C2 filter kernels for the BCC lattice. Due to fewer
samples needed compared to the CC lattice (4 instead of 8 and 32
instead of 64 samples for C0 and C2 filtering, respectively) a speed
up of a factor of two was achieved. While their approach allowed
efficient evaluation of the box spline kernels, it did not offer
insights on how to convolve the BCC-sampled data with these box
splines, which is the main contribution of our paper. Their work
did not include a GPU implementation and therefore the frame
rates were non-interactive. Further on, proper prefiltering for
box splines and its (efficient) implementation has not been
considered.

Mattausch [28] was the first to use BCC lattices in real-time
volume rendering employing commodity graphics hardware.
However, this approach led to ambiguous results; e.g., the
suggested sheared trilinear interpolation resulted in view-depen-
dent artifacts. Csébfalvi et al. [14] introduced prefiltered B-spline
reconstruction that is theoretically adapted for each of the CC
lattices, but not for the BCC one. Specifically, separable B-splines
do not form a Riesz basis on the BCC lattice which leads to an
ambiguous representation; i.e., several sets of coefficients can
represent the same signal. Moreover, separation of BCC lattices
into two CC lattices bears the risk of ignoring high-frequency
components on the BCC lattice thus leading to aliasing artifacts if
the dataset is not sampled at high enough resolutions.

Consider the following example of a BCC dataset, where the
primary CC lattice points are all set to 1, and the secondary CC
lattice points are all set to 0. In 1D, it is equivalent to every second
sample being 1. A proper Reisz basis such as the box spline
solution ought to recover the oscillatory nature of the signal. In
fact, the first order solution (nearest neighbor interpolation) as
well as box splines will recover the oscillatory nature of this
signal. However, when this dataset is separated into two CC
lattices, a B-spline on each sub-lattice will recover a constant
function (due to the partition of unity). The average of the two
separately reconstructed signals will again result in a constant
function reconstructed on the full BCC lattice.

Nevertheless, they presented appealing visual results for some
datasets and this method is, to our knowledge, the best existing
algorithm that combines real-time frame rates and high image
quality on the BCC lattice. Therefore, we will compare our new
method to Csébfalvi et al.’s [14] method in Section 5.

Both, box splines [22,17] and prefiltered B-splines [9] have also
been employed for quasi-interpolation on the BCC lattice.

The prefilters proposed in [9] do not remedy the aforemen-
tioned problem. The AC prefilter modifies the values on each
lattice separately, so it does not resolve the above issue. Similarly,
the AB prefilter will result on the same values on all primary
lattice points, and have a different value (negative) on all
secondary lattice points. The reconstruction of each lattice will
lead again to a constant signal, so will their average.

The superior visual quality of BCC lattices in volume rendering
has also been shown by Meng et al. [29]. They confirmed that the
theoretical bound of needing 30% fewer samples compared to a CC
lattice also results in no loss of visual quality.

Using graphics hardware is the standard approach to achieve
real-time rendering of volumetric data on CC lattices. Methods
can be split into two classes: slice-based approaches [4] that
sample a 3D texture using polygons that intersect the volume;
and ray casting [34,26] where rays are cast through a volume that
gets sampled at several points along the rays. Whereas the first
approach is well adjusted to the graphics pipeline, ray casting
offers a more flexible framework. An excellent and comprehensive
overview of GPU-accelerated volume rendering can be found in
the book of Engel et al. [16].
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3. Fast box spline evaluation

3.1. BCC lattice

We define the BCC lattice as a sub-lattice of the CC lattice
where only those points ðx; y; zÞAZ3 belong to the lattice where x,
y, and z are all even or all odd. These points can then be generated
by integer linear combinations of the columns of the sampling

matrix:

MBCC ¼

1 1 �1

1 �1 1

�1 1 1

2
64

3
75: ð1Þ

Note that this definition of the BCC lattice has a density of 1/4
compared to the CC lattice. However, in order to have the same
number of samples in the unit cube (i.e., to normalize the lattice)
we scale the three axes of the BCC lattice by a factor of 1=

ffiffiffi
43
p

(i.e., we shrink it). A scaling of 1=
ffiffiffi
43
p

translates into a multi-
plication of the filter with 4. Thus, the BCC lattice can be seen as a
CC lattice with an additional sample placed in each cube of the CC
lattice (see Fig. 1), or as two interleaved CC lattices where the
second CC lattice is shifted by one half of the grid spacing.

We define pAR3 to be in CC coordinates which means that the
axes of the frame are the canonical vectors (1,0,0)T, (0,1,0)T and
(0,0,1)T. Furthermore, we define p0 ¼M�1

BCCp as the corresponding
point in BCC coordinates, where

M�1
BCC ¼

1

2

1 1 0

1 0 1

0 1 1

2
64

3
75; ð2Þ

i.e., p is expressed with the basis vectors of Eq. (1).

3.2. Box splines

In general, box splines are defined by a set of direction vectors.
A box spline is then constructed by successive convolution of line
segments along its direction vectors. For notation, the direction
vectors are gathered in a matrix X, specifically a box spline in Rd

is characterized by nZd vectors xk (1rkrn) in Rd, and
X¼ ½x1 . . . xn�. The support of a box spline is defined as all points
xARd such that x¼Xt where tARd and 0rtkr1 for 1rkrn.
Thus, the support of the box spline is obtained by all convex
combinations of the direction vectors.
Fig. 1. The BCC lattice.
A first simple box spline can be obtained if n=d. In this case, it
is the characteristic function of its support:

MXðxÞ ¼

1

jdetXj
where x¼Xt and tA ½0;1Þn;

0 otherwise:

8<
: ð3Þ

In the case where n4d, the box splines are defined
recursively:

M½X;x�ðxÞ ¼

Z 1

0
MXðx�txÞdt: ð4Þ

Thus, to construct higher order box splines, beginning with the
base case in Eq. (3), the characteristic function is smeared along
the additional direction vectors. We refer the interested reader to
[3] for a more thorough introduction to box splines.

For the BCC lattice, we have d=3 and n=4. Therefore, we
denote the four directions of the box spline [3] as

X¼ ½x1;x2;x3;x4� ¼

1 1 �1 �1

1 �1 1 �1

�1 1 1 �1

2
64

3
75: ð5Þ

Note that MBCC ¼ ½x1;x2; x3�.
Entezari et al. [21] derived the polynomial pieces in B-form

(Basis form) for the linear and quintic box splines leading to C0

and C2 reconstructions, respectively. However, they did not
present an efficient evaluation of the resulting spline in piecewise
polynomial form (i.e., pp-form) which is crucial for practical
applications. The B-form describes a function as a weighted sum
of splines; i.e., for every neighbor the spline gets evaluated
independently and its contributions are summed up. The pp-form
describes a function in terms of its local polynomial coefficients
which is easier and faster to evaluate than a spline in B-form. Also,
Entezari et al. [21] did not focus on an optimized implementation
using the GPU, and therefore their method was not able to achieve
interactive frame rates.

In this section, we show how to calculate the semi-discrete
convolution in an efficient way using the GPU, aiming at
interactive frame rates; i.e., we illustrate how to find and weight
the neighbors that are needed for the convolution sum. A semi-
discrete convolution is the convolution of a discrete lattice with a
continuous filter.

The time-consuming part of the convolution is finding the
contributions of the four (linear box spline) and 32 (quintic box
spline) neighbors that are needed for evaluating the box spline at
these positions. First, we describe how to find these neighbors;
second, how to evaluate the box spline symbolically, sum the
resulting polynomials into a single polynomial and evaluate that
polynomial (the pp-form) at runtime without needing to do a full
kernel evaluation for every point. We elaborate on this for the
linear and the quintic box spline.

First, we show the explicit representation of the box spline
[21] in pseudocode in Algorithm 1.

Algorithm 1. bsp(x,y,z)
1:
 f Transform the point (x,y,z) to tetrahedron of focus g

2:
 x’jxj, y’jyj, z’jzj
3:
 sort x, y, z in decreasing order by swapping

4:
 if linear box spline then

5:
 if xþy42 then

6:
 return 0

7:
 end if

8:
 return (2�(x+y))/8

9:
 else if quintic box spline then

10:
 if ðxþyÞ44 then

11:
 return 0

12:
 end if
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ig. 2. (a) Th

here are six

ersion of th
if ðxþyÞo2 then

14:
 return R1(x,y,z)

15:
 else if ðxþzÞo2 then

16:
 return R2(x,y,z)

17:
 else if ðyþzÞo2 then

18:
 if ðx�zÞ42 then

19:
 return R3A(x,y,z)

20:
 else

21:
 return R3B(x,y,z)

22:
 end if

23:
 else

24:
 return R4(x,y,z)

25:
 end if

26:
 end if
The input to Algorithm 1 (bsp) are x; y; zAR. bsp makes use of
the following box spline polynomials:

R1ðx;y;zÞ ¼ mðxþy�4Þ3ð�3xy�5z2þ2xþ2yþ20zþx2þy2�24Þ

þnðxþz�2Þ3ðx2�9x�3xzþ10y�5y2þ14þ11zþz2Þ

þnðyþz�2Þ3ð46�30x�z�yþ3zyþ5x2�y2�z2Þ

�Zðxþy�2Þ3ðx2þx�3xy�5z2þy2þy�6Þ; ð6Þ

R2ðx;y;zÞ ¼ mðxþy�4Þ3ð�3xy�5z2þ2xþ2yþ20zþx2þy2�24Þ

�nðxþz�2Þ3ð�z2�11zþ3xz�14þ5y2þ9x�10y�x2Þ

�nðyþz�2Þ3ð�46þzþ30xþy�3zy�5x2þy2þz2Þ; ð7Þ

R3Aðx;y;zÞ ¼ mðxþy�4Þ3ð�x2þ8xþ3xy�y2þ5z2�16�12yÞ; ð8Þ

R3Bðx;y;zÞ ¼ mðxþy�4Þ3ð�3xy�5z2þ2xþ2yþ20zþx2þy2�24Þ

�nðyþz�2Þ3ð30xþz�46�3yzþy�5x2þy2þz2Þ; ð9Þ

and

R4ðx;y;zÞ ¼ mðxþy�4Þ3ð�3xy�5z2þ2xþ2yþ20zþx2þy2�24Þ

ð10Þ
e rhombic dodecahedron (red) is the support of the linear box spline. Four p

possible orientations for a tetrahedron in the BCC lattice. (For interpretati

is article.)
with constants m¼ 1=960, n=1/480 and Z=1/240. We point the
interested reader to Entezari et al. [21] for the complete
derivation of this box spline.

In order to reconstruct a spline f at an arbitrary point pAR3

using its box spline representation, n neighbors P1...nAR3 have to
be found and each neighbor has to be weighted with bsp. The
linear box spline’s support is a rhombic dodecahedron that
contains n=4 points. The support of the quintic box spline
becomes a larger rhombic dodecahedron since its direction
vectors have been multiplied by 2; i.e., n=32 neighbors have to
be found and weighted [21]. Therefore, bsp is called n times and
the results are summed up:

f ðpÞ ¼
Xn

i ¼ 1

bspðPi�pÞDi; ð11Þ

where we define Di as the sample value on the BCC lattice at
position Pi.

Eq. (11) shows the box spline in B-form. Obviously, using this
representation results in n independent calls to bsp which is a
very expensive operation on the GPU due to excessive branching.

We show in Sections 3.2.1 and 3.2.2 how Eq. (11) can be
transformed to pp-form which will be faster to evaluate. In
particular, the n sort operations in Line 3 in Algorithm 1 will be
reduced to one.

3.2.1. Linear box spline

Let pAR3 be the location where the underlying function f

is interpolated. The support of the linear box spline is a rhombic
dodecahedron. Four points P1...4AZ3 fall into the support and
form a tetrahedron [21]. Fig. 2(a) shows one possible configura-
tion; i.e., the red point p is surrounded by the red rhombic
dodecahedron but also lies inside the green tetrahedron. We
indicate the vertices of the tetrahedron by P1...4AZ3. There are six
possible tetrahedra in the BCC lattice which are shown in Fig. 2(b).
Since there are exactly six cases when sorting three numbers,
the orientation of the tetrahedron is determined by the sort
operation in Line 3 in Algorithm 1.

To determine the orientation of the tetrahedron we use the
inverse of the matrix in Eq. (1) and transform p into BCC
coordinates: p0 ¼M�1

BCCp. We are interested in the fractional part
oints (green) fall into the support. These four points always form a tetrahedron. (b)

on of the references to color in this figure legend, the reader is referred to the web
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of p0 : ða;b; gÞT ¼ p0�bp0cA ½0;1�3; i.e., we center our coordinate
system around bp0c which is the first of the four neighbors:
P1 ¼MBCCbp

0c. The second neighbor is found immediately:
P2 ¼ P1�x4 ¼ P1þð1;1;1Þ

T . The remaining two points P3,4 are
found by adding/subtracting vectors xi to/from P1/P2, respectively.

Now ða;b; gÞT are the coordinates of p in the BCC coordinate
system centered around bp0c. The order of these three values is
used to determine the tetrahedron that encloses p, together with
its orientation.

Starting at point P1 we can determine P3 by adding a box spline
vector xi to P1 that is determined by maxfa;b; gg:

P3 ¼ P1þ

ð1;1;�1ÞT ¼ x1 if maxfa; b; gg ¼ a;
ð1;�1;1ÞT ¼ x2 if maxfa; b; gg ¼ b;
ð�1;1;1ÞT ¼ x3 if maxfa; b; gg ¼ g:

8><
>:

Finally, we determine P4 by subtracting another box spline vector
xj from P2 that is determined by minfa;b; gg:

P4 ¼ P2�

ð1;1;�1ÞT ¼ x1 if minfa; b; gg ¼ a;
ð1;�1;1ÞT ¼ x2 if minfa; b; gg ¼ b;
ð�1;1;1ÞT ¼ x3 if minfa; b; gg ¼ g:

8><
>:

An example is presented in Fig. 3: p is the green point and the
tetrahedron P1...4 is shown in red. The black axes X, Y, and Z denote
the canonical axes and the blue axes x1...3 are the axes of the BCC
lattice as defined in Eq. (1). Let P1=(0,0,0)T, P2=(1,1,1)T and p=
(1, 1/2, 1/5)T (grey lines) and therefore ða;b; gÞT ¼ ð3=4;3=5;7=20ÞT

(dotted lines). We have a4b4g and therefore P3 is determined
by adding x1 to P1: P3 ¼ P1þx1 ¼ ð1;1;�1ÞT . P4 is calculated by
subtracting x3 from P2: P4 ¼ P2�x3 ¼ ð2;0;0Þ

T . In general,
according to the order of a, b, and g different vectors xi are
picked to be added and subtracted.

By determining the tetrahedron in this way the sort operation
in Line 3 in Algorithm 1 has only to be performed once in advance
and we can transform Eq. (11) into

f ðpÞ ¼D1þaðD3�D1ÞþbðD4�D3ÞþcðD2�D4Þ ð12Þ
Fig. 3. The point p (green) is inside the tetrahedron P1...4. P3 and P4 are determined

according to the order of ða;b; gÞ (dotted lines). (For interpretation of the

references to color in this figure legend, the reader is referred to the web version

of this article.)
(where a¼maxfa;b; gg, b¼midfa;b; gg and c¼minfa;b; gg) which
is faster than evaluating the box spline four times. Eq. (12) is in
pp-form where we only need to perform the sort operation once.
Eq. (12) is also equivalent to barycentric interpolation of the
tetrahedron’s points.

To see this, we assume without loss of generality that
p¼ ðx; y; zÞT A ½0;1Þ3 and x4y4z (the other five cases work
analogously). Therefore, p0 ¼ ða;b; gÞT ¼M�1

BCCðx; y; zÞ
T
¼ 1

2 ðxþy;

xþz; yþzÞT , and thus a4b4g. Consequently, it follows that
P1=(0,0,0)T, P2=(1,1,1)T, P3=(1,1,�1)T, and P4=(2,0,0)T. Plugging
this into Eq. (11), we obtain

f ðpÞ ¼ f ððx;y;zÞT Þ ¼
X4

i ¼ 1

bspðPi�pÞDi

¼ bspðP1�ðx;y;zÞ
T
ÞD1þbspðP2�ðx;y;zÞ

T
ÞD2þbspðP3�ðx;y;zÞ

T
ÞD3

þbspðP4�ðx;y;zÞ
T
ÞD4 ¼ 1�

1

2
ðxþyÞ

� �
D1þ

1

2
ðyþzÞD2

þ
1

2
ðy�zÞD3þ

1

2
ðx�yÞD4 ¼D1þ

1

2
ðxþyÞðD3�D1Þ

þ
1

2
ðxþzÞðD4�D3Þþ

1

2
ðyþzÞðD2�D4Þ ¼D1þaðD3�D1Þ

þbðD4�D3ÞþgðD2�D4Þ; ð13Þ

which is equivalent to Eq. (12).
3.2.2. Quintic box spline

The linear box spline is an interpolating reconstruction
kernel that guarantees C0 continuity. For C2 continuity, the quintic
box spline is employed. As in the linear case, we want to avoid
calling bsp for every point because it would result in expensive
operations. We show how the neighborhood for the quintic box
spline can be found and weighted in an efficient way
by transforming Eq. (11) into pp-form which will reduce the
number of sort operations (Line 3 in Algorithm 1). As we will see
in Section 5, this enables us to use the high-quality quintic box
spline for interactive volume rendering.

The support of the quintic box spline is a rhombic dodecahe-
dron where the box spline’s direction vectors xi are multiplied
by 2. In total, 32 points of the BCC lattice fall into this rhombic
dodecahedron. Furthermore, the rhombic dodecahedron can
be split into four parallelepipeds [21], each containing eight
points (Fig. 4).

The first task is to find these 32 neighbors. This can be done by
examining the four parallelepipeds Pij ; i¼ 1 . . .4; j¼ 1 . . .8,
separately. First, we determine the first four neighbors Pi1 which
are exactly the same points as in Section 3.2.1 (linear box spline);
i.e., Pi1 form a tetrahedron. These four points build the anchors of
each of the four parallelepipeds. Starting at these four points,
we can determine the diagonal qi of every parallelepiped, which
is one of the four directions of the box spline xi. Fig. 5
shows the symbolic rhombic dodecahedron (red) indicated in
Fig. 4 and one of the four parallelepipeds (blue). The anchor
point of the blue parallelepiped is P11

and the diagonal is
P18
�P11

¼ ð�1;�1;�1ÞT ¼ x4.
To determine the four diagonals qi we use again the order of

ða;b; gÞT , which is computed as in Section 3.2.1. Starting at the
four anchor points we obtain qi (i¼ 1 . . .4) as follows:
q1 ¼ ð�1;�1;�1ÞT ¼ x4, q3 ¼ P31

�P11
. The remaining diagonals are

q2 ¼

ð1;1;�1ÞT ¼ x1 if minfa; b; gg ¼ a;
ð1;�1;1ÞT ¼ x2 if minfa; b; gg ¼ b;
ð�1;1;1ÞT ¼ x3 if minfa; b; gg ¼ g;

8><
>:



Fig. 4. The samples falling into the support of the quintic box spline form four parallelepipeds. By symbolically moving them together we get a rhombic dodecahedron and

we can use the direction vectors of the box spline to determine all 32 points.

Fig. 5. The rhombic dodecahedron can be split into four parallelepipeds where for

simplicity of illustration only one (blue) is displayed. Using the vectors of X we can

determine all eight points in each parallelepiped. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)
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q4 ¼

ð1;1;�1ÞT ¼ x1 if midfa; b; gg ¼ a;
ð1;�1;1ÞT ¼ x2 if midfa; b; gg ¼ b;
ð�1;1;1ÞT ¼ x3 if midfa; b; gg ¼ g:

8><
>:

Once the diagonals are determined we have Pi8 ¼ Pi1þqi and the
remaining six points of each parallelepiped are fixed. For every
parallelepiped i the points Pij , i¼ 1 . . .4 are given by

Pi2 ¼ Pi8�ð2qix ;0;0Þ
T ; Pi5 ¼ Pi1þð2qix ;0;0Þ

T ;

Pi3 ¼ Pi8�ð0;2qiy ;0Þ
T ; Pi6 ¼ Pi1þð0;2qiy ;0Þ

T ;

Pi4 ¼ Pi8�ð0;0;2qiz Þ
T ; Pi7 ¼ Pi1þð0;0;2qiz Þ

T :

Pi2 through Pi7 are the other six points that (together with Pi1 and
Pi8 ) span the parallelepiped.

The last step is to weigh each of the 32 neighbors. Therefore,
we exploit the symmetries between the four parallelepipeds of
the rhombic dodecahedron. Lines 2 and 3 in Algorithm 1 can be
interpreted as a transformation of p to the first parallelepiped
[21]. The convolution can be computed in one parallelepiped and
the remaining three can be obtained by a symmetry transform
into the first one [21].

To that aim, we need to keep the consistency (i.e., the order) of
the points in a parallelepiped when transforming between
parallelepipeds. This is necessary in order to map the points of
the other three parallelepipeds to points of the first parallelepiped
that is being evaluated by the exact same polynomial of bsp.

Preserving the correct order of the points translates into two
permutations p1 and p2 of the six points Pij1

(j1 ¼ 2 . . .4) and Pij2
(j2 ¼ 5 . . .7): p1 and p2 depend on the order of a, b, and g as these
values determine the order of the axes that have to be picked to
get the points of the parallelepipeds:

p1ðkÞ ¼

ð2;3;4Þ;

ð3;2;4Þ;

ð4;2;3Þ;

ð2;4;3Þ;

ð3;4;2Þ;

ð4;3;2Þ;

8>>>>>>>>><
>>>>>>>>>:

p2ðkÞ ¼

ð7;6;5Þ if a4b4g;
ð6;7;5Þ if a4g4b;
ð5;7;6Þ if g4a4b;
ð7;5;6Þ if b4a4g;
ð6;5;7Þ if b4g4a;
ð5;6;7Þ if g4b4a;

8>>>>>>>>><
>>>>>>>>>:

where kAf1;2;3g denotes which value of p is chosen. The
if-statements apply to p1 and p2. Having obtained all 32 neigh-
bors in this way, we build the convolution sum in every
parallelepiped i (where Dij are again the values at points Pij ):

fiðpÞ ¼Di1 bspðPi1�pÞþDi8 bspðPi8�pÞþ
X3

k ¼ 1

ðDip1 ðkÞ
bspðPip1 ðkÞ

�pÞ

þDip2 ðkÞ
bspðPip2 ðkÞ

�pÞÞ: ð14Þ

We can now compute the convolution sum fi(p) for one
parallelepiped. By employing the symmetries of the rhombic
dodecahedron, we just have to transform all other three
parallelepipeds into the first one and we can compute the
convolution sum for all 32 points. The total result is

f ðpÞ ¼
X4

i ¼ 1

fiðpÞ: ð15Þ

Examining the 32 calls to bsp in Eq. (15), one can see that per
parallelepiped i and for every permutation p1 and p2 the same
eight branches are taken; i.e., by sorting a, b, and g once, we know
in advance which polynomials of bsp have to be evaluated. For
each parallelepiped the data points Dij get weighted with the
following polynomials (in this order):

Di1-R1;

Di8-R4;

Dip1 ð0Þ
-R2;

Dip1 ð1Þ
-R3A;

Dip1 ð2Þ
-R3B;
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Dip2 ð0Þ
-R3A;

Dip2 ð1Þ
-R4;

Dip2 ð2Þ
-R3B:

Thus, no branching is needed except for the sorting of a, b, and g
and Eq. (15) can be expanded and is then in pp-form. This yields
an efficient evaluation of the quintic box spline.

In the Appendix, we make the GLSL functions for the linear and
quintic box spline available to the community.
4. Implementation

4.1. Volume ray casting

Having set up the linear and quintic box spline as filter kernels
for the BCC lattice, we employ them in a high-quality ray caster;
i.e., we use ray marching to sample a volume along rays cast from
the camera into the volume. At each sample position, a filter
kernel is used to reconstruct the volume from discrete samples.
Then, all samples are composed resulting in an intensity value of a
pixel.

We compare the linear and quintic box spline on the
BCC lattice with the traditional trilinear and tricubic B-spline
on the CC lattice as well as with the prefiltered trilinear
and tricubic B-spline for BCC lattices [14]. We shall call the
first comparison method CC B-splines and the second one BCC

B-splines.
The skeleton of the ray caster implementation is the same for

every method, only the fragment shader with the filter kernels
and the storage schemes of the volumes have to be adjusted for all
three methods.

A BCC lattice can be represented as two interleaved CC lattices.
Whereas Csébfalvi et al. [14] store the BCC lattice as two separate
CC textures, our method stores the BCC lattice in an interleaved
manner: The samples of the second lattice are shifted by half a
grid spacing in every dimension. Thus, in every cube spanned by
eight samples of the first CC lattice an additional sample is placed
in the center of this cube. By storing the BCC lattice in a 3D array
and using the following mapping, a fast conversion of a BCC point
(x,y,z) to its index in the 3D array (i,j,k) is achieved by i¼ xC2,
j¼ yC2, and k = z where C is an integer division. Note that x, y,
and z are either all even or all odd in a BCC lattice. Fig. 6 illustrates
this principle.

Being able to store the two interleaved CC lattices as one 3D
array, it is loaded as a 3D texture into GPU memory.
Fig. 6. (a) A BCC lattice is built from two CC lattices (red and blue). (b) 2D scheme of th

‘‘even’’ (red) CC lattice. (c) shows the corresponding memory layout. (For interpretatio

version of this article.)
4.2. Prefiltering

Generalized interpolation [2] can be used to improve the
reconstruction quality of a non-interpolating filter kernel. In a
discrete prefiltering step, a non-interpolating filter is used to
preprocess the samples of the volume yielding a new volume of
coefficients. Now using the same filter for reconstruction in
combination with the coefficients, the filter becomes interpolat-
ing improving its reconstruction quality.

The fundamental concepts can be best explained by the 1D
case. Let us consider the samples fk, kAZ, taken on a grid with
spacing T, and the reconstruction kernel h(x), xAR. We can
express the reconstruction ~f as a discrete/continuous convolution

f ðxÞ � ~f ðxÞ ¼
X

k

ckhðx=T�kÞ; ð16Þ

where ck are the coefficients to be determined by the prefiltering
step [2]. Imposing the interpolation condition leads to the
constraint

~f ðiTÞ ¼
X

k

ckhði�kÞ ¼ c � g ¼ fi; ð17Þ

where g=h(l) is the sampled kernel. Consequently, we have
c¼ f � g�1 and the coefficients can be obtained by discrete
convolution of the inverse filter g�1. Notice that the prefiltering
step becomes trivial when the reconstruction kernel h is
interpolating; i.e., from hðkÞ ¼ dk follows readily ck = fk.

Implementing the inverse-filtering step can be done by a
recursive algorithm in the spatial domain for 1D B-splines [2],
or in general in the Fourier domain assuming periodic boundary
conditions. The discrete Fourier transform (DFT) of the samples fk,
k¼ 0; . . . ;N�1, is defined as

FðejoÞ ¼
XN�1

l ¼ 0

fle
jol; ð18Þ

where the discrete Fourier coefficients are obtained for
o¼ 2pk=N, k¼ 0; . . . ;N�1. By the convolution theorem, one can
perform inverse filtering in the Fourier domain as

ck !CðejoÞ ¼
FðejoÞ

GðejoÞ
; ð19Þ

where G is the DFT of g. The Fourier domain algorithm is easy to
apply to the 3D case and for non-CC lattices if the associated DFT
is at hand.

Discrete prefiltering can be employed if the filter kernel is
admissible in the sense that the discrete Fourier transform (DFT)
of the sampled kernel is non-zero [2]. In 1D, all popular kernels
e BCC lattice. Every odd (blue) row (i.e., slice in 3D) is shifted to the center of the

n of the references to color in this figure legend, the reader is referred to the web
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including causal B-splines and odd-degree symmetric B-splines
are admissible and guarantee a stable prefilter. Consequently,
their separable extension can be used without any problem for 3D
[12]. On the BCC lattice, the quintic box spline is also shown to be
an appropriate choice [21]. It should be noted that higher-order
B-splines and box splines are smoothing and non-interpolating,
which makes prefiltering an essential step to exploit their
improved approximation quality.

First, we implemented the discrete Fourier transform for BCC
lattices using Alim et al.’s method [1] which makes use of the
multi-dimensional FFT algorithm. Therefore, using the FFTW
package [24], a DFT on the BCC lattice can be implemented
efficiently.

Prefiltered BCC B-splines are theoretically not well adapted
since the B-splines are not designed for BCC lattices. As a
consequence, during prefiltering division by zero can occur,
which can be avoided by ‘‘lifting’’ the denominator of the Fourier
expression of the inverse filter by a small positive number e.
However, the obtained filter kernels are not interpolating any
more. Therefore, Csébfalvi et al. call their method ‘‘practically
interpolating’’ [14]. The method offers reconstruction kernels
for the BCC lattice that can be used on the GPU and, to our
knowledge, delivers the best compromise between rendering
speed and image quality for BCC lattices so far. Csébfalvi et al. [14]
suggest to set e as a percentage of the signal’s DC component. In
accordance with their work, we therefore set e to 1% of the signal’s
DC component to render the images in Section 5. Increasing e
would increase the smoothing property of the filter and decrease
the ‘‘practically interpolating’’ property.

Attention has to be paid to the prefiltering step; i.e., after
prefiltering the coefficients can be negative. This has to be taken
into account when storing the volume as textures; e.g., by using
32-bit textures.
5. Results

We tested our method on a PC with a Nvidia GeForce 8800 GTX
graphics card using OpenGL and GLSL. We compare the linear and
quintic box spline (with and without prefiltering) to the
prefiltered trilinear and tricubic BCC B-spline [14] and the
trilinear and tricubic CC B-spline (with and without prefiltering).

5.1. Rendering speed

We measured the frames per second for all three methods.
Note that discrete prefiltering is a preprocessing step performed
once and has no influence on these results.

Table 1 indicates the number of texture lookups every
reconstruction kernel needs. GPUs usually support two types of
3D texture lookups in CC lattices: A lookup that fetches the
nearest neighbor and a lookup that automatically performs a
Table 1
Samples needed for every reconstruction kernel.

Method Box spline BCC B-spline CC B-spline

C0 NN 4 NN 2�8 NN 8 NN

C0 LIN n.a. 2�1 LIN 1 LIN

C2 NN 32 NN 2�64 NN 64 NN

C2 LIN n.a. 2�8 LIN 8 LIN

C0 denotes the linear kernels, C2 denotes the quintic and tricubic kernels. NN

and LIN denote the implementation of each kernel with nearest neighbor

texture lookups and trilinear texture lookups, respectively. The CC B-spline

version of ‘‘C2 LIN’’ is the tricubic B-spline according to Sigg and Hadwiger’s

implementation [37].
trilinear interpolation of 8 texels. For the remainder of the article
we shall call the first type NN lookups and the second type LIN

lookups. Three-dimensional textures for GPUs are stored as CC
lattices. Further, GPUs are especially designed to perform LIN
lookups as fast as a NN lookup (although accessing eight instead
of one texel). LIN lookups cannot directly be used for box splines
because BCC lattices use a different storage scheme (see Fig. 6)
and since box splines are not tailored to the CC lattice. There-
fore, our method has to use NN lookups making a hardware-
accelerated box spline implementation slower. In contrast, a
B-spline on a CC lattice (and therefore also BCC B-splines) can be
computed using LIN lookups reducing the number of texture
lookups by a factor of 8.

We show the numbers of NN and LIN lookups in Table 1 since
the number of lookups has considerable impact on the perfor-
mance of each kernel. As the reader may verify, we also show the
number of NN lookups for linear interpolation on the CC lattice
which is not always necessary since special purpose units for
linear interpolation are available (i.e., such a special purpose unit
performs a LIN lookup).

In general, one should use LIN lookups if possible to perform
trilinear interpolation. However, under some circumstances,
one has to switch back to NN lookups when using CC lattices to
compute trilinear interpolation manually. For high-quality ren-
derings 32-bit textures have to be employed and only graphics
cards of the latest generations support LIN lookups on the 128-bit
pipeline. If working with older graphics cards (e.g., Nvidia GeForce
6800) hardware-accelerated LIN lookups are not available and
therefore NN lookups are mandatory.

As mentioned before, LIN lookups on the GPU are only
available for the CC but not for the BCC lattice. This disadvantage
could be mitigated by the evolution of future graphics hardware
such as the Larrabee architecture [35]. Although the Larrabee
architecture still has a hardware CC texture unit, it is likely that
the relative performance of the box splines will be improved due
to Larrabee’s more flexible instruction set.

Therefore, we also compare the box splines (that so far can
only work with NN lookups) to a manual implementation of linear
interpolation using NN lookups.

Note that the CC B-splines and also the BCC B-splines can make
use of LIN lookups and therefore are easy to use and allow for a
fast implementation.

We used three different datasets of different sizes which
we rendered at a resolution of 512�512 pixels: The Marschner–
Lobb [27] dataset sampled on a CC lattice with a size of
40�40�40=64k and on a BCC lattice with 28� 28� 56� 44k
samples, the carp dataset (CC: 180�180�180 = 5832k, BCC:
129� 129� 258� 4293k), and the mouse embryo dataset (CC:
449� 663� 449� 133;661k, BCC: 321� 474� 642� 97;683k).
The BCC datasets have approximately 70% of the samples of the
CC datasets which is justified due to the optimality of the BCC
lattice.

The Marschner–Lobb test function is analytically defined and can
therefore be sampled very easily on an arbitrary lattice. The carp
dataset is a CT scan originally stored on a fairly densely sampled CC
lattice. We constructed comparable BCC and CC datasets by merely
subsampling from the densely sampled CC dataset. The mouse
embryo dataset was acquired from 400 projections via OPT
(optical projection tomography) [36]. We extended the standard
implementation of the expectation maximization algorithm so it
reconstructs the volume on CC and BCC lattices [23].

We created volume renderings using on-the-fly gradient
computation as this delivers most accurate results (i.e., we used
central differencing with a relatively small step size). Images of
the Marschner–Lobb dataset are found in Fig. 8, the carp dataset is
found in Fig. 10, and the mouse embryo dataset is found in Fig. 9.



B. Finkbeiner et al. / Computers & Graphics 34 (2010) 409–423 417
5.1.1. Box splines: B-form and pp-form

Table 2 shows the difference between the box splines in
B-form and pp-form. The pp-form of the linear box spline (lines 1
and 2) is four times faster than the B-form. For the quintic box
spline, the pp-form is crucial, since the B-form achieves at most
0.02 fps, whereas the pp-form is able to achieve almost interactive
frame rates. This shows the necessity of transforming the box
spline from B-form to pp-form. Our fast evaluation scheme
guarantees the desired speedup to make box splines attractive for
interactive volume rendering.
5.1.2. Performance comparisons for box splines, CC B-splines, and

BCC B-splines

Table 3 compares the timings of the box spline pp-form with
the BCC B-splines and the CC B-splines.

First, we compare the box splines to the BCC B-splines and CC
B-splines when LIN lookups are used for both B-spline methods:
the box splines, of course, do not perform as well as the two other
methods. However, frame rates are more similar as soon as the
dataset size increases (compare the figures in lines 1, 4, and 8 in
the last column of Table 3, and lines 2, 6, and 10) since memory
access becomes more expensive: The box splines achieve the
following frame rates: 5.62 fps (linear box spline) compared to
7.32 (trilinear BCC B-spline) and 11.06 fps (trilinear CC B-spline),
and 0.47 fps (quintic box spline) compared to 0.80 (tricubic BCC
B-spline) and 2.64 fps (tricubic CC B-spline).

When only NN lookups are employed, the linear box spline is
approximately three times faster than the prefiltered trilinear BCC
B-spline and slightly faster than the trilinear CC B-spline. Further-
more, the quintic box spline is faster than the prefiltered tricubic
BCC B-spline for all three datasets but still slower than the
Table 3
Frames per second (fps) for the linear and quintic box spline using our fast

evaluation scheme (pp-form) and prefiltered B-spline reconstruction for BCC and

CC lattices.

Method ML Carp Mouse

1 Linear box spline (pp-form) (NN) 14.58 12.47 5.62

2 Quintic box spline (pp-form) (NN) 1.03 1.01 0.47

3 Trilinear BCC B-spline (NN) 4.94 4.65 2.11

4 Trilinear BCC B-spline (LIN) 26.02 20.54 7.32

5 Tricubic BCC B-spline (NN) 0.74 0.69 0.32

6 Tricubic BCC B-spline (LIN) 1.81 1.67 0.80

7 Trilinear CC B-spline (NN) 13.49 12.04 5.10

8 Trilinear CC B-spline (LIN) 39.68 32.63 11.06

9 Tricubic CC B-spline (NN) 1.49 1.37 0.63

10 Tricubic CC B-spline (LIN) 6.80 6.04 2.64

Three datasets were used: The Marschner–Lobb (ML), the carp, and the mouse

embryo dataset.

Table 2
Frames per second (fps) for the linear and quintic box spline using the B-form and

our fast evaluation scheme (pp-form).

Method ML Carp Mouse

1 Linear box spline (B-form) (NN) 3.57 3.10 1.58

2 Linear box spline (pp-form) (NN) 14.58 12.47 5.62

3 Quintic box spline (B-form) (NN) 0.02 0.02 0.01

4 Quintic box spline (pp-form) (NN) 1.03 1.01 0.47

Three datasets were used: The Marschner–Lobb (ML), the carp, and the mouse

embryo dataset.
tricubic CC B-spline. This indicates that box splines could compete
with the comparison methods in terms of rendering speed with
the emergence of new graphics hardware in the future. We will
see in the next section that quintic box splines deliver superior
reconstruction accuracy and better visual quality.

Note that the advantage of using LIN lookups is due to the fact
that trilinear interpolation on the CC lattice is available through
special purpose units on the GPU. These lookups are almost as fast
as NN lookups (although accessing 8 times as much data). This
advantage is likely to be mitigated as soon as more evolved
architectures are available, and our comparisons show that the
box splines will then be able to catch up with the comparison
methods. Furthermore, note that one has to switch back to NN
lookups if one wants to use 32-bit textures on older graphics
hardware and in this case box splines become more attractive
as well.
5.2. Image quality

To compare the reconstruction quality of each filter kernel, we
employed the Marschner–Lobb test function sampled on lattices
as in Section 5.1 and produced volume renderings.

Since the linear B-spline and the linear box spline are already
interpolating on the CC and BCC lattice, discrete prefiltering
results in the identity; i.e., the coefficients obtained via prefilter-
ing will be the same as the original samples. Fig. 7 shows results
for the linear filters (C0 reconstruction). The first row shows
volume rendered images of the test function and the second row
shows the corresponding error images: They visualize the angular
error when estimating the surface normals using central differ-
ences with a relatively small step size from the reconstructed test
function. An angular error of more than 301 is mapped to white.
Black denotes an angular error of zero. All three filters have
difficulties to reconstruct the signal correctly and the linear box
spline shows more visually noticeable artifacts due to the tetra-
hedral structure of the kernel. However, the error image of the
linear box spline in the second row is slightly darker than the
other two images and has therefore a smaller error. Furthermore,
the error is distributed more regularly.

Fig. 8 shows analog results for C2 reconstruction. Both, the
tricubic CC B-spline and the quintic box spline (a–d) show
improvements when prefiltering is used: The valleys are deeper
and the filters are not as smoothing as when used without
prefiltering. The error images in the second row confirm that
prefiltering substantially improves reconstruction accuracy and
image quality. However, the quintic box spline delivers better
image quality and error behaviour in both cases. When comparing
all three error images where prefiltering is used (second row, (b),
(d) and (e)) it is apparent that the prefiltered quintic box spline is
able to reconstruct the test function more accurately than the
prefiltered tricubic B-spline for CC (b) and BCC (e) lattices, which
makes it the best choice.

Although the tricubic BCC B-spline (top e) reconstructs the
circular shapes of the outer rings better, the angular error is worse
and the experiments with real data sets (see below) show that the
quintic box spline is superior.

To show the visual difference of prefiltering for a real dataset,
we rendered close-ups of a smaller version of the mouse embryo
dataset with box splines. The dataset has 87� 192� 174� 1953k
BCC samples and was obtained the same way as described
in Section 5.1. Fig. 9 shows the mouse embryo (a) and three
close-ups (b–d) where (b) was rendered using the linear box
spline, (c) was rendered using the quintic box spline without
prefiltering, and (d) shows the mouse embryo head using
the quintic box spline with prefiltering. The linear box spline is



Fig. 8. First row: Marschner–Lobb test function. Second row: Corresponding error images analog to Fig. 7. (a) and (b) Tricubic B-spline reconstruction from 40�40�40 CC

samples without and with prefiltering. (c) and (d) Quintic box spline reconstruction from 28�28�56 BCC samples without and with prefiltering. (e) Prefiltered tricubic

B-spline reconstruction from 28�28�56 BCC samples.

Mouse em-
bryo

Linear Quintic (no pre-
filtering)

Quintic (prefilter-
ing)

Fig. 9. Close-up of the mouse embryo with 87 �192 �174 BCC samples rendered with the linear and quintic box spline.

Fig. 7. First row: Marschner–Lobb test function. Second row: Corresponding error images. An angular error of the reconstructed surface normal of more than 301 is mapped

to white. Black denotes an error of zero. (a) Trilinear B-spline reconstruction from 40�40 �40 CC samples. (b) and (c) Linear box spline and refiltered trilinear B-spline

reconstruction from 28�28�56 BCC samples.
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able to reconstruct details but girdering artifacts [6] are
visible. The quintic box spline shows its smoothing property
when no prefiltering is employed and details are lost. The best
visual result is obtained with the quintic box spline and
prefiltering: The girdering artifacts vanish and small details are
preserved.

Last, we compare the prefiltered filter kernels for C2 recon-
struction on a real dataset. Fig. 10 shows the carp dataset with
the prefiltered quintic box spline (b), the prefiltered tricubic BCC
B-spline (c), and the prefiltered tricubic CC B-spline (d).
The datasets have approximately the same number of samples:
The BCC dataset has 129� 129� 258� 4293k samples and the
CC dataset has 164� 164� 164� 4411k samples. The prefiltered
tricubic BCC B-spline (c) does not preserve as many details as
the other two methods. The prefiltered quintic box spline
(b) is able to reconstruct the carp’s ribs more accurately and
shows better image quality than the prefiltered tricubic CC
B-spline (d).



Carp Pref. quintic box spline

Pref. tricubic BCC B-spline Pref. tricubic CC B-spline

Fig. 10. The carp dataset sampled on � 4293k BCC samples (b, c), and on � 4411k CC samples (d). (b–d) compare the prefiltered quintic box spline (b), the prefiltered

tricubic BCC B-spline (c) and the prefiltered tricubic CC B-spline (d).

Table 4
Numerical comparison between the three different filter classes (box splines, BCC

B-splines, and CC B-splines).

Filter L1 Error L2 Error

m1

ffiffiffiffiffiffis1
p m2

ffiffiffiffiffiffis2
p

Box splines

Nearest neighbor 0.035139 0.031392 0.002220 0.003581

Linear 0.022240 0.019245 0.000865 0.001315

Quintic 0.034278 0.021428 0.001634 0.001594

Quintic (prefiltering) 0.008349 0.010025 0.000170 0.000367

BCC B-splines

Trilinear 0.022640 0.016787 0.000794 0.000976

Tricubic 0.010683 0.009625 0.000207 0.000305

CC B-splines

Nearest neighbor 0.035489 0.031308 0.002240 0.003588

Trilinear 0.025813 0.020246 0.001076 0.001386

Tricubic 0.038570 0.023649 0.002047 0.001940

Tricubic (prefiltering) 0.009364 0.011484 0.000220 0.000480

Columns two to five show the average expected L1 and L2 error m1 and m2 as well

as the corresponding standard deviations
ffiffiffiffiffiffis1
p

and
ffiffiffiffiffiffis2
p

.
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5.3. Numerical comparisons

In the context of volume rendering, a visual comparison
between different reconstruction filters as seen in Section 5.2 is
the most important quality measure. Besides that, a numerical
comparison of the filters is of interest as well. To that aim, we
compute two error measures, the L1 and L2 error, for the
analytically defined ML dataset.

Let D¼ ½�1;1�3 �R3, xAD, f : D-R the scalar ML test function
(ground truth) as defined by Marschner and Lobb [27], and fr :
D-R the reconstructed function (i.e., f is sampled on a lattice and
then reconstructed from these samples). For iAf1;2g, we define

eiðxÞ ¼ jf ðxÞ�frðxÞj
i ð20Þ

as the pointwise Li error. Therefore, the average expected Li error
is

mi ¼

Z
D

eiðxÞdx; ð21Þ

and the standard deviation is obtained via

ffiffiffiffiffi
si
p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
D
ðeiðxÞ

2
�m2

i Þdx

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
D
ðeiðxÞ�miÞ

2 dx

s
: ð22Þ

By taking N random samples xjAD, j¼ 1 . . .N, Eq. (21) can be
approximated by the sum

mi ¼

Z
D

eiðxÞdx�
1

N

XN

j ¼ 1

eiðxjÞ: ð23Þ

We conducted the experiment by sampling the ML test
function on a CC lattice of size 40�40�40 and on a BCC lattice
of size 31�31�62. The CC lattice has a slightly higher sampling
density than the BCC lattice. We compute fr at position xj by
convolving these lattices with the different filters (box splines,
BCC B-splines, and CC B-splines). Thus, we can compute the
pointwise error eiðxjÞ. Having computed eiðxjÞ for all j¼ 1 . . .N,
we estimate mi and

ffiffiffiffiffisi
p

for each lattice and reconstruction
kernel by taking N=100,000 random samples that are iden-
tical in each computation; i.e., we precompute N=100,000
random samples and use them in each estimation of mi and

ffiffiffiffiffisi
p

for each lattice and filter. This allows for a numerical com-
parison of the different reconstruction qualities of the filters.
The numerical results for the L1 and L2 error are found in
Table 4.

If examining the L1 error (columns two and three), it is
noticeable that linear interpolation (linear box spline
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ðm1 ¼ 0:022240Þ and trilinear CC B-spline ðm1 ¼ 0:025813ÞÞ has
a smaller numerical error than the quintic box spline
ðm1 ¼ 0:034278Þ and tricubic CC B-spline ðm1 ¼ 0:038570Þ (no
prefiltering). Results improve drastically when prefiltering is
used. Both, the quintic box spline ðm1 ¼ 0:008349Þ and the tricubic
CC B-spline ðm1 ¼ 0:009364Þ show the smallest error for their
lattice. Furthermore, the box splines perform better than their CC
counterparts.

Note that for this experiment, the trilinear CC B-spline is more
accurate than the tricubic CC B-spline, and the linear box spline is
more accurate than the quintic box spline. A possible explanation
could be that for random samples lying close to a lattice point, the
interpolating filters give more accurate results compared to the
smoothing C2 filters without prefiltering.

As for the BCC B-splines, the trilinear BCC B-spline
ðm1 ¼ 0:022640Þ shows a lower error than the trilinear CC B-spline
ðm1 ¼ 0:025813Þ, but performs slightly worse than the linear box
spline ðm1 ¼ 0:022240Þ. The tricubic BCC B-spline ðm1 ¼ 0:010683Þ
does not perform as well as the prefiltered quintic box
spline ðm1 ¼ 0:008349Þ and prefiltered tricubic CC B-spline
ðm1 ¼ 0:009364Þ. The same observations hold for the L2 error.
6. Conclusion and future work

In this paper, for the first time, we have demonstrated the
feasibility of box splines on the BCC lattice for interactive volume
rendering. By converting the box spline from its B-form into its
pp-form, we reduced the branching needed to a minimum, which
is necessary for an interactive GPU implementation. Using
discrete prefiltering, volumetric data stored on BCC lattices can
be rendered using box splines showing notable improvements in
terms of image quality compared to Csébfalvi et al.’s method [14]
and traditional B-spline filtering for the CC lattice, however, at a
performance penalty.

While our method of evaluating box splines on current
graphics hardware is not the fastest one, it is important for two
reasons: (a) the quintic box spline is the most accurate way of
reconstructing BCC data using a compact kernel which has been
independently confirmed by the work of Csébfalvi [9]; and (b) the
current class of graphics hardware that favors CC lattices might
evolve further where BCC lattices might improve their relative
performance [35]. We did show that box splines are comparable
when removing the advantage of special circuitry that favors CC
lattices (i.e., when using NN lookups).

Furthermore, we have confirmed that discrete prefiltering in
the context of volume rendering enhances reconstruction accu-
racy which improves image quality. Since discrete prefiltering is a
preprocessing step which only needs to be performed once, this
technique should always be used.

For the future, we plan to investigate the possibilities of using
trilinear interpolation texture lookups for box splines to increase
rendering speed. Other possibilities are the design and simulation
of a graphics processing unit supporting BCC lattices with special
purpose units for box splines or using new more flexible
rendering pipelines such as the Larrabee architecture [35].
Another issue is image quality using discrete prefiltering; i.e.,
we plan to integrate a regularizer in the prefiltering step in order
to introduce a controllable smoothing factor which we believe
will improve reconstruction quality in the presence of noise.
7. Acknowledgements

This work was supported in part (DVDV) by the Swiss National
Science Foundation (Grant PP00P2-123438) and the Natural
Science and Engineering Research Council of Canada. The authors
would like to thank Dr. Ralf Spörle and Prof. Dr. Bernhard G.
Herrmann, Max-Planck-Insititut für molekulare Genetik, Berlin-
Dahlem, Germany for the mouse embryo OPT scan.
Appendix A. GLSL shader code

/*

Variables needed

*/

/*

Let nx, ny, nz be the size of the BCC texture:

*/

uniform float nx, ny, nz;

vec3 size_volume = vec3 (2*nx-1, 2*ny-1, nz-1);

vec3 oneOverVoxels = vec3 (1.0/(nx-1.0)),

1.0/(ny-1.0),

1.0/(nz-1.0));

// conversion between 3D coordinates and texture

index

vec3 convert = vec3 (0.5, 0.5, 1.0);

/*Linear Box Spline

Input: vec3 pos scaled to ½0;1�3 (texture coordinates)

*/

float BCC_Linear (vec3 pos)

{
vec3 P1, P2, P3, P4;

float D1, D2, D3, D4, mymin, mymid, mymax;

vec3 posOS = pos * size_volume;
vec3 abc = vec3 (posOS.x+posOS.y,

posOS.x+posOS.z,

posOS.y+posOS.z) * .5;

// truncate this point which results

// in the first of the four neighbors

vec3 floors = floor (abc);

// truncation: we shift p into the origin

// of the BCC coordinate system

abc = abc - floors;

// transform the first neighbor back to

// the Cartesian coordinate system

P1 = vec3 (floors.x+floors.y-floors.z,

floors.x-floors.y+floors.z,

-floors.x+floors.y+floors.z);

// the second neighbor is found immediately

P2 = P1 + vec3(1.0, 1.0, 1.0);

// assume case: mymax = alpha

P3 = P1 + vec3(1.0, 1.0, -1.0);

// assume case: mymin = gamma

P4 = P1 + vec3(2.0, 0.0, 0.0);

// sorting

vec4 sorting = vec4 (1.0, 0.0, 0.0, 0.0);

sorting.y = max (abc.x, max (abc.y, abc.z));

sorting.z = min (abc.x, min (abc.y, abc.z));
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sorting.w = (abc.x + abc.y + abc.z) - sorting.y -

sorting.z;

// get the missing two neighbors

P3 + = ((sorting.y= =abc.y)*vec3(0.0,-2.0,2.0)

+ (sorting.y= =abc.z)*vec3(-2.0,0.0,2.0));

P4 + = ((sorting.z= =abc.x)*vec3(-2.0,0.0,2.0)

+ (sorting.z= =abc.y)*vec3(-2.0,2.0,0.0));

// four texture lookups

D1 = texture3D (tex, (floor (P1*convert)) *

oneOverVoxels);

D2 = texture3D (tex, (floor (P2*convert)) *

oneOverVoxels);

D3 = texture3D (tex, (floor (P3*convert)) *

oneOverVoxels);

D4 = texture3D (tex, (floor (P4*convert)) *

oneOverVoxels);

// interpolate using barycentric coordinates

vec4 values = vec4 (D1, D3-D1, D2-D4, D4-D3);

return dot (sorting, values);

}

#define one_over_6 0.16666666666666666

#define two_over_24 0.083333333333333329

#define six_over_120 0.05

#define BCC2CC(index3D,x0,y0,z0) \

index3D = floor(vec3(x0*0.5, y0*0.5, z0));

#define FILL_PPIPED(p0,p1,p2,p3,p4,p5,p6,p7,Q) f\
BCC2CC(index3D,x0,y0,z0) \

p0 = texture3D (tex, (index3D)*oneOverVoxels); \

BCC2CC(index3D,(x0-(Q.x)),(y0+(Q.y)),(z0+(Q.z)))

\

p1 = texture3D (tex, (index3D)*oneOverVoxels); \

BCC2CC(index3D,(x0+(Q.x)),(y0-(Q.y)),(z0+(Q.z)))

\

p2 = texture3D (tex, (index3D)*oneOverVoxels); \

BCC2CC(index3D,(x0+(Q.x)),(y0+(Q.y)),(z0-(Q.z)))

\

p3 = texture3D (tex, (index3D)*oneOverVoxels); \

BCC2CC(index3D,(x0+2*(Q.x)),y0,z0) \

p4 = texture3D (tex, (index3D)*oneOverVoxels); \

BCC2CC(index3D,x0,(y0+2*(Q.y)),z0) \

p5 = texture3D (tex, (index3D)*oneOverVoxels); \

BCC2CC(index3D,x0,y0,(z0+2*(Q.z))) \

p6 = texture3D (tex, (index3D)*oneOverVoxels); \

BCC2CC(index3D,(x0+(Q.x)),(y0+(Q.y)),(z0+(Q.z)))

\

p7 = texture3D (tex, (index3D)*oneOverVoxels); \

}

#define RHO_FAST(alpha,beta,gamma) \

-alpha3*(gamma*beta-0.5*alpha*(gamma+beta)+0.3

*alpha2);

#define RHO22(A, B, G) (-((A)*(A))*(A) \

*(one_over_6*(G)*(B)-two_over_24*(A) \

*((G)+(B))+six_over_120 *((A)*(A))))

#define CONV_PPIPED(value,pa,pb,alpha,beta,gamma) { \

float p123 = pa[1] + pa[2] + pa[3]; \
float p0 = 4.0 * pa[0]; \

float alpha2 = alpha * alpha; \

float alpha3 = one_over_6 * alpha2 * alpha; \

float base_rho = RHO_FAST(alpha,beta,gamma); \

float base_rho2 = base_rho - 0.5 * alpha3 * alpha; \

value + = (-2.5*p0+4.0*(p123)-

2.0*(pb[0]+pb[1]+pb[2])+pb[3]) \

* base_rho; alpha2 = base_rho2 + alpha3 * beta; \

base_rho2 + = alpha3 * gamma; \

value + = (p0-2.0*(p123-pa[1])+pb[0]) * (alpha2) \

+ (p0-2.0*(p123-pa[2])+pb[1]) * (base_rho2) \

+ (-.5*p0+pa[3]) \

* (base_rho2 + alpha2 - alpha3 - base_rho); \

alpha -= 1.0; alpha2 = beta * beta; \

alpha3 = one_over_6 * alpha2 * beta; \

base_rho = RHO_FAST(beta, gamma, alpha); \

value + = (p0-2.0*(p123-pa[3])+pb[2]) \

* (base_rho); p0 = -.5 * p0; \

value + = (p0+pa[2]) * (base_rho + alpha3 * (alpha - .5

* beta)) \

+ (p0+pa[1]) * RHO22(gamma, alpha, beta-1.0) + (-.5 *

p0) \

* RHO22(alpha, beta-1.0, gamma-1.0); \

}

/*

Quintic Box Spline

Input: vec3 pos scaled to ½0;1�3 (texture coordinates)

*/

float BCC_Quintic (vec3 pos)

{
// convert point into tetrahedron of focus

vec3 posOS = pos * size_volume;
vec3 bcc_coords = vec3 ((posOS.x+posOS.y),

(posOS.x+posOS.z),

(posOS.y+posOS.z)) * 0.5;

float alpha = bcc_coords.x;
float beta = bcc_coords.y;
float gamma = bcc_coords.z;

vec3 floors = floor (bcc_coords);

alpha = alpha - floors.x;

beta = beta - floors.y;

gamma = gamma - floors.z;

float x1, y1, z1;

// P1 = (x0, y0, z0)

float x0 = x1 = floors.x+floors.y-floors.z;

float y0 = y1 = floors.x-floors.y+floors.z;

float z0 = z1 = floors.y+floors.z-floors.x;

vec3 index3D;

vec4 p1a, p1b, p2a, p2b, p3a, p3b, p4a, p4b;

vec3 Q1, Q2, Q3, Q4;

vec3 P2, P3, P4;

// variables needed for the sorting

float alpha_GE_beta = alpha >= beta;

float beta_GE_gamma = beta >= gamma;

float alpha_GE_gamma = alpha >= gamma;
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float mymax, mymid, mymin;

// sorting

mymax = max (alpha, max (beta, gamma));

mymin = min (alpha, min (beta, gamma));

mymid = (alpha + beta + gamma) - mymax - mymin;

float i = (alpha_GE_beta*4.0
+ beta_GE_gamma*2.0
+ alpha_GE_gamma);

vec3 I1 = equal (vec3(i,i,i), vec3(7,5,4));

vec3 I2 = equal (vec3(i,i,i), vec3(3,2,0));

// determine neighbors and offsets

P2 = vec3 (1.0, 1.0, 1.0);

Q1 = vec3(-1.0, -1.0, -1.0);

P3 = vec3(1,1,-1);

P3 + = (I1.z+I2.z)*vec3(-2,0,2) +

(I2.x+I2.y)*vec3(0,-2,2);

P4 = vec3(2,0,0);

P4 + = (I1.y+I1.z)*vec3(-2,2,0) +

(I2.y+I2.z)*vec3(-2,0,2);

Q2 = vec3(-1,1,1);

Q2 + = (I1.y+I1.z)*vec3(2,-2,0) +

(I2.y+I2.z)*vec3(2,0,-2);

Q4 = vec3(1,-1,1);

Q4 + = (I1.y+I2.y)*vec3(-2,2,0) +

(I1.z+I2.x)*vec3(0,2,-2);

Q3 = P3;

// 32 texture lookups

FILL_PPIPED(p1a[0], p1a[1], p1a[2], p1a[3],

p1b[0], p1b[1], p1b[2], p1b[3], Q1);

x0 = x1+P2.x; y0 = y1+P2.y; z0 = z1+P2.z;

FILL_PPIPED(p2a[0], p2a[1], p2a[2], p2a[3],

p2b[0], p2b[1], p2b[2], p2b[3], Q2);

x0 = x1+P3.x; y0 = y1+P3.y; z0 = z1+P3.z;

FILL_PPIPED(p3a[0], p3a[1], p3a[2], p3a[3],

p3b[0], p3b[1], p3b[2], p3b[3], Q3);

x0 = x1+P4.x; y0 = y1+P4.y; z0 = z1+P4.z;

FILL_PPIPED(p4a[0], p4a[1], p4a[2], p4a[3],

p4b[0], p4b[1], p4b[2], p4b[3], Q4);

// according to the 6 possible cases

// we have to permute the data points

vec4 p1a_r = I1.x*p1a + I1.y*p1a.xzyw + I1.z*p1a.xzwy

+ I2.x*p1a.xywz + I2.y*p1a.xwyz + I2.z*p1a.xwzy;

vec4 p1b_r = I1.x*p1b + I1.y*p1b.yxzw + I1.z*p1b.yzxw

+ I2.x*p1b.xzyw + I2.y*p1b.zxyw + I2.z*p1b.zyxw;

vec4 p2a_r = I1.x*p2a.xwzy + I1.y*p2a.xwyz +

I1.z*p2a.xywz

+ I2.x*p2a.xzwy + I2.y*p2a.xzyw + I2.z*p2a;

vec4 p2b_r = I1.x*p2b.zyxw + I1.y*p2b.zxyw +

I1.z*p2b.xzyw

+ I2.x*p2b.yzxw + I2.y*p2b.yxzw + I2.z*p2b;

vec4 p3a_r = I1.x*p3a.xwzy + I1.y*p3a.xwyz +

I1.z*p3a.xywz

+ I2.x*p3a.xzwy + I2.y*p3a.xzyw + I2.z*p3a;

vec4 p3b_r = I1.x*p3b.zyxw + I1.y*p3b.zxyw +

I1.z*p3b.xzyw
+ I2.x*p3b.yzxw + I2.y*p3b.yxzw + I2.z*p3b;

vec4 p4a_r = I1.x*p4a + I1.y*p4a.xzyw + I1.z*p4a.xzwy

+ I2.x*p4a.xywz + I2.y*p4a.xwyz + I2.z*p4a.xwzy;

vec4 p4b_r = I1.x*p4b + I1.y*p4b.yxzw + I1.z*p4b.yzxw

+ I2.x*p4b.xzyw + I2.y*p4b.zxyw + I2.z*p4b.zyxw;

// do the convolution. Before each CONV_PPIPED call

// mymin, mymid and mymax are used to transform

// each parallelepiped and tetrahedron of focus.

float result = 0.0;

alpha=mymax-1.0; beta=mymid-1.0; gamma=mymin-1.0;

CONV_PPIPED(result, p1a_r, p1b_r, alpha, beta,

gamma);

alpha=-mymin; beta=mymax-mymin-1.0; gamma=mymid-

mymin-1.0;

CONV_PPIPED(result, p2a_r, p2b_r, alpha, beta,

gamma);

alpha=(-mymax+mymid); beta=(-mymax+mymin);

gamma=(-mymax);

CONV_PPIPED(result, p3a_r, p3b_r, alpha, beta,

gamma);

alpha=(-mymid+mymin); beta=(-mymid);

gamma=(mymax-mymid-1.0);

CONV_PPIPED(result, p4a_r, p4b_r, alpha, beta,

gamma);

return result;

}
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