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A B S T R A C T

Investigating context-dependent modulations of Functional Connectivity (FC) with functional magnetic resonance
imaging is crucial to reveal the neurological underpinnings of cognitive processing. Most current analysis methods
hypothesise sustained FC within the duration of a task, but this assumption has been shown too limiting by recent
imaging studies. While several methods have been proposed to study functional dynamics during rest, task-based
studies are yet to fully disentangle network modulations.

Here, we propose a seed-based method to probe task-dependent modulations of brain activity by revealing
Psychophysiological Interactions of Co-activation Patterns (PPI-CAPs). This point process-based approach
temporally decomposes task-modulated connectivity into dynamic building blocks which cannot be captured by
current methods, such as PPI or Dynamic Causal Modelling. Additionally, it identifies the occurrence of co-
activation patterns at single frame resolution as opposed to window-based methods.

In a naturalistic setting where participants watched a TV program, we retrieved several patterns of co-
activation with a posterior cingulate cortex seed whose occurrence rates and polarity varied depending on the
context; on the seed activity; or on an interaction between the two. Moreover, our method exposed the consis-
tency in effective connectivity patterns across subjects and time, allowing us to uncover links between PPI-CAPs
and specific stimuli contained in the video.

Our study reveals that explicitly tracking connectivity pattern transients is paramount to advance our under-
standing of how different brain areas dynamically communicate when presented with a set of cues.
1. Introduction

Since its introduction in the early 1990s (Ogawa et al., 1990), func-
tional magnetic resonance imaging (fMRI) has played a growing role in
advancing our knowledge of brain activity. Its technical developments
have allowed the study of brain function at increasingly high spatial and,
moreover, temporal resolution (Van Essen et al., 2013). Simultaneously,
the progress in analysis techniques has exposed the joint importance of,
on the one hand, how brain regions activate and, on the other hand, how
their activity interacts to support complex cognitive processes. This view
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of the brain as a network of functionally linked regions has spawned the
field of Functional Connectivity (FC) which, traditionally, uses Pearson’s
correlation to study temporal dependencies between separate brain re-
gions over the duration of an entire resting-state fMRI run—typically in
the order of several minutes (van den Heuvel and Hulshoff Pol, 2010).

The discovery that FC significantly fluctuates over time in resting-
state fMRI recordings (Chang and Glover, 2010) first suggested that
methods driven by averaging over long runs offer an incomplete picture
of brain function, which led to a widespread effort to investigate dynamic
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2014; Preti et al., 2016; Karahanoǧ;lu & Van De Ville, 2017). Since then,
several methodological developments have been proposed to capture this
feature. The most common technique involves computing a metric
characterising FC over gradually shifted temporal windows of data
(sliding window approach; Leonardi et al., 2013; Allen et al., 2014). While
this increases the temporal refinement of the analysis from minutes to
several seconds, it cannot fully benefit from the current sub-second res-
olution of fMRI recordings because a minimal window size of at least 30 s
is required to obtain reliable correlation estimates (Kucyi and Davis,
2014; Shen et al., 2016; Preti et al., 2016). Furthermore, shorter windows
demand more stringent high-pass filtering of the original time courses to
avoid spurious correlations due to aliasing, thus limiting the available
information (Leonardi & Van De Ville, 2015; Zalesky and Breakspear,
2015).

Essentially, the sliding window approach keeps the idea of computing
second-order statistics, but within each window. Dynamic Conditional
Correlation (DCC; Lindquist et al., 2014), a method based onmultivariate
generalized autoregressive conditional heteroskedasticity models, over-
comes some of the methodological issues inherent to traditional sliding
window correlation by gradually refining the FC estimate with each new
sample, thus requiring no ad hoc parameter settings. However, the
associated gain of performance in capturing meaningful neuronal fluc-
tuations has been inconsistent across studies (Choe et al., 2017; Damar-
aju et al., 2018). Other extensions include a more systematic use of the
wavelet coherence transform (Rack-Gomer and Liu, 2012; Yaesoubi
et al., 2015) as originally proposed in the exploratory results of Chang
and Glover (2010).

Another category of analyses follows a framewise approach. Good
examples of these are point process analysis (PPA)-based methods
(Tagliazucchi et al., 2012), which select a subset of frames where a
chosen seed is highly active and proceed from there. Liu et al. (2013)
benefited from this to identify co-activation patterns (CAPs) by clustering
the retained frames into groups of similar activation arrangements.
Another way of performing an implicit selection of relevant information
is through sparsity-driven detection of neuronal activation time points
(through Sparse Paradigm Free Mapping; Caballero Gaudes et al., 2011;
Petridou et al., 2013) or moments of transient activity (innovation-driven
CAPs; Karahanoglu & Van De Ville, 2015). All of these approaches have
been mainly used to study resting-state data.

Unsurprisingly, the dynamic nature of connectivity in the brain is also
expressed in the presence of external stimulation or during task perfor-
mance (Gonzalez-Castillo and Bandettini, 2018). The natural assumption
is thus that certain brain areas interact differently during the course of a
task experiment. Beta Series Correlations (BSC, Rissman et al., 2004)
analysis, for example, reveals the absolute FC between brain regions
under different stages of task performance. Another reasonable expec-
tation is that different regions may change the way they interact with
each other when performing different tasks. These can be studied using
methods such as Effective Connectivity (EC) analyses to look into the
influence one neural system has on another and how this relationship
changes between task settings (which we will refer to as contexts or
conditions in what follows). This can be done using methods as varied as
regression models such as Psychophysiological Interaction (PPI) analysis
(Friston et al., 1997) and its generalizations (McLaren et al., 2012); dif-
ferential equation models such as dynamic causal modelling (Friston
et al., 2003) and causal dynamic network modelling (Cao et al., 2019);
structural equation modelling (Zhuang et al., 2008); and Granger cau-
sality (Wen et al., 2013). These approaches, however, do not explicitly
reveal moment-to-moment interactions between experimental conditions
and brain activity, but rather average over the duration of the task/rest
epochs, which is probably too limiting as has been shown from high
temporal resolution neuroimaging techniques (Ploner et al., 2009; Zhang
et al., 2012). As a natural development from these, window-based ap-
proaches to compute time-varying networks have been used to capture
changes in task-related functional connectivity (Di et al., 2015; Bacz-
kowski et al., 2017; Ge et al., 2019), although this also comes with known
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disadvantages as discussed above. Recent studies (e.g., Fransson et al.,
2018) have steered from windowed correlations, but there is still a great
need for novel techniques to study how tasks modulate
moment-to-moment connectivity at high temporal resolution.

Here, we introduce Psychophysiological Interaction of Co-Activation
Patterns (PPI-CAPs) as a novel seed-based approach to investigate time-
resolved effective connectivity. Our aim was to create a method that
reveals the modulation of moment-to-moment connectivity between
brain regions under a specific context or during performance of a task. To
illustrate our framework, we applied PPI-CAPs to an fMRI dataset where
subjects were exposed to a naturalistic paradigm by watching a short
episode of a TV program containing two types of scenes (conditions). Our
method dissected the connectivity patterns elicited by subjects across
time, and found several PPI-CAPs with at least one of three possible ef-
fects: 1) a seed effect, indicating that the pattern was highly correlated
with the seed activity in general; 2) a condition effect, meaning that the
pattern in question was significantly more elicited during one of the types
of scenes than during the other one; and 3) an interaction effect, repre-
senting an interaction between condition and the relationship of that co-
activation pattern with the seed. Additionally, we shed light on the
consistency in effective connectivity patterns across subjects and time,
allowing to uncover links between PPI-CAPs and specific movie cues.
Overall, our approach contributes to the state-of-the-art by unraveling
time-resolved, relevant information on brain dynamics during task per-
formance that cannot be captured by other methods.

2. Methods

We first provide a global overview of the PPI-CAPs analysis pipeline
(see Fig. 1). We start from fMRI data where an experimental modulation
has been applied and the timing is known (Fig. 1A). Similar to the
framework of conventional PPA and CAPs, we start by selecting frames at
time points when a predefined is seed most highly (de-)activated (Fig. 1
B/C). A static analysis illustrates the relevance of the frames that have
been selected (Fig. 1D). Then, we proceed to the dynamic (PPI-CAPs)
analysis (Fig. 1E/F).

For the static analysis, we first multiply the selected frames by the
sign of the seed and the centred modulating term (i.e., the contrast var-
iable, as it encodes knowledge of the task paradigm) at the corresponding
time points. Note that this sequence is equivalent to multiplying the
original selected frames by the PPI variable, which corresponds to the
multiplication of the sign of the seed and the task time courses. The
average of these selected frames leads to a proxy of the conventional PPI
results (Fig. 1D, bottom), which we refer to as the static interaction map
(siMap). For a mathematical motivation of the link between conventional
PPI and static PPI-CAP analyses, as well as a toy example that illustrates
this relationship intuitively, we refer to A and Supplementary Fig. A1,
respectively.

For the dynamic analysis, all the originally retained frames are sub-
jected to K-meansþþ clustering (Arthur and Vassilvitskii, 2007) as
described in section 2.3 (Fig. 1E). This step yields PPI-CAPs, their
occurrence in time and the polarity of their constituting frames, which
allows us to eventually identify meaningful statistics (i.e., effects of task,
seed, or their interaction). The next sections further detail the different
steps of the pipeline.
2.1. Seed-based frame selection

The first step of the PPI-CAPs framework is to select a seed region
according to prior knowledge about the task being studied or on an
exploratory basis—a good discussion on how to choose a seed can be
found in O’Reilly et al. (2012). The fMRI frames in which the seed rea-
ches high magnitude values are then selected for further analysis. We
refer to frames in which absolute seed activity is above the stipulated
threshold as suprathreshold frames.



Fig. 1. The PPI-CAPs analysis pipeline. A) We begin with an experimental design containing different task blocks or contexts. Here, we used data acquired in a
naturalistic paradigm in which subjects watched a film containing two main types of scenes: fun and science. B) For each subject, the z-scored signal from a selected
seed is thresholded so that frames in which it is highly active or deactive (darkened in the subject time course) can be considered for further analysis. Orange and blue
frames occur during fun and science scenes, respectively. C) Suprathreshold frames from all subjects are concatenated. From here on, we can proceed to a static or a
dynamic analysis. D) Static analysis: suprathreshold frames from each condition are multiplied by the sign of the seed and task time courses (which corresponds to the
PPI time course) and then averaged, yielding a proxy of the PPI analysis results: the static interaction map, or siMap, at either subject or group level. E) Dynamic
analysis: suprathreshold frames from all subjects are clustered into a set of PPI-CAPs. Frame labels allow us to count how often a PPI-CAP occurs in each condition in its
positive or negative polarity and compare these to the signs of each effect of interest. F) The frames’ polarity after clustering tends to correlate with the sign of the
effects it represents. By examining the confusion matrix for each effect (seed, task or PPI), we can determine if a PPI-CAP is strongly related to it (i.e., when the
confusion matrix is highly diagonal) or when there is no such effect (i.e., when the confusion matrix has no obvious pattern).
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2.2. Static analysis

In the context of CAP analysis (Tagliazucchi et al., 2012; Liu and
Duyn, 2013), simple averaging of selected frames provides a good proxy
for seed-based functional connectivity (see Appendix A), showing that
the chosen subset of data contains relevant information. For large data-
sets, this observation holds for a wide range of thresholds retaining
15–90% of frames (Liu and Duyn, 2013, Fig. 1B), while for smaller
datasets the threshold must aim at a trade-off between dramatically
decreasing the amount of data used for analysis while keeping enough
frames to reduce the effects of noise. Note that, besides improving the
signal-to-noise ratio, including more frames in the analysis of smaller
3

datasets improves the chance that enough frames will be available for the
dynamic analysis.

In a similar validation step, we perform an initial static analysis
procedure that can be compared against conventional PPI. Specifically,
suprathreshold frames were multiplied by a centred contrast varia-
ble—time points occurring during the first context had positive values
and those belonging to the second one had negative values—and sub-
sequently averaged (Fig. 1D, yellow inset). Here, we used the strategy
described in Liu and Duyn (2013) to improve the signal-to-noise ratio of
an fMRI frame, where a mask was created to cover voxels with the
highest 10% and lowest 5% values, and all other voxels were set to zero.
The spatial correlation between the resulting static interaction map
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(siMap) and the PPI results is measured using spatial Pearson’s correla-
tion coefficient. This correlation was repeatedly calculated for siMaps
including 5–100% of all frames both at subject and group levels, to test
the robustness of the method to the choice of threshold. Since correlation
values are range-constrained, when calculating their averages as
described in section 3.1 and shown in Fig. 2C we first applied Fisher’s z
transform (the inverse hyperbolic tangent) to all Pearson’s r values (Cox,
2008). After calculating the means, we then converted the results back to
Pearson’s r values by calculating the former’s hyperbolic tangent. For the
group maps, z-scored seed activations were calculated for all subjects,
whose data were concatenated and frames selected as per individual
subjects. The PPI analysis was performed using the standard procedure
from SPM8 where three regressors are included in a general linear model
design, relating to the time courses of the PPI, the seed, and the task,
respectively. Note that the PPI regressor in SPM is derived by decon-
volving the haemodynamic response function (HRF) from the seed time
course, multiplying the latter by the task time course, and then recon-
volving the final series with the HRF. The exact same task time course
and seed region were used for both analyses.
2.3. Dynamic analysis

For a dynamic analysis of brain function during task, we identify the
PPI-CAPs that may present a seed, task, or interaction effect (Fig. 1E). To
this end, we applied K-meansþþ clustering on the suprathreshold frames
of all subjects, using a modulo-π cosine distance as a similarity measure,
which we have named as such because it consists in the following: frames
among which only the sign of the voxels was reversed were considered to
be representations of the same pattern, with opposite polarity (e.g., if
frame a showed an active prefrontal cortex and deactive occipital cortex,
while frame b displayed a deactive prefrontal cortex and active occipital
cortex, then, assuming Fa and Fb are the frames’ voxel patterns, Fa � -Fb).

Traditionally, the iterative algorithm to implement K-means consists
of two steps: 1) assigning each data point to its closest centroid given the
defined similarity metric d; 2) updating the centroids according to their
assigned data points (e.g., by updating each centroid with the average of
the normalized data points most recently assigned to it). At each itera-
tion, the cluster label assigned to the ith frame, Li, is given by:

Li ¼ argmin
κ

ðdðCκ ;FiÞÞ; (1)

where κ runs over the number of clusters, Cκ is the value of the κth

cluster’s centroid, Fi is the voxelwise activation pattern for the ith frame,
and d is the selected distance metric.

To add information regarding the frame polarity in PPI-CAPs, in our
approach we set d to be the modulo-π cosine distance (mpcos):
Fig. 2. The static interaction Map (siMap) using a subset of fMRI frames accord
time points when the considered seed is highly active are selected. A fraction of seed
the PPI variable and averaged, yielding the static interaction map (siMap), as shown f
resulting from a PPI analysis using all frames is also shown with a red background. C
the former is computed using only 15% of the frames, and this similarity remains high
to the choice of threshold. The dark blue curve represents the average correlation bet
shading denotes the standard error. The correlation means were calculated by avera
back to Pearson’s r.
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dðx; yÞ¼mpcosðx; yÞ¼ 1� ���
x ⋅ y

kxk kyk
���; (2)
� �

where x � y ¼ P
k
xkyk is the standard inner product and the norm is x ¼

ffiffiffiffiffiffiffiffi
x � xp

. The polarity Pi of frame Fi is thus equivalent to sign(Cκ �Fi). From
here on, we will describe frames for which Pi ¼ 1 as having a “positive
polarity”, and those for which Pi ¼ �1 as having a “negative polarity”.
Note how the metric in equation (2) compares to the standard cosine
distance, given by:

cosðx; yÞ¼ 1� x ⋅ y
kxk kyk; (3)

meaning that modulo-π cosine implies no additional complexity as
compared to the standard cosine distance metric. The value of each
centroid Cκ is then updated as such:

Cκ ¼ 1
Nκ

XNκ

i¼1

Pi
Fi

kFik ; (4)

where Nκ is the number of frames in the κth cluster and kFik is the
magnitude of frame Fi.

The final cluster centroids then form the PPI-CAPs. Each frame is thus
annotated according to: 1) the time point it corresponds to; 2) the task or
condition label which corresponds to that time; 3) the subject to whom it
belongs; and 4) the polarity in which it occurred (positive or negative).
This information can then be used to investigate differences in PPI-CAP
occurrence across settings.

2.4. Significance assessment

If a PPI-CAP has a strong main or interaction effect, the polarity of the
frames that constitute it will tend to correlate with the sign of that effect
for the same time points. To visualise if this is the case, we can thus
generate confusion matrices for each effect and PPI-CAP. When there is a
strong correlation, the higher values of a confusion matrix will tend to
load on one of its diagonals, and the relevance of this relationship can be
measured by taking the matrix’s determinant, which we will call the det-
index. To test whether this value is significant, we can thus generate a null
distribution by performing random permutations of the effect of in-
terest’s labels and re-calculate the det-index each time. Finally, we see
where the real det-index stands in the distribution (Fig. 1F). For the re-
sults shown here, we performed 3000 random permutations for each test.
We disclose the uncorrected p-values and indicate the significance level
that should be used to correct for multiple corrections, controlling for the
number of PPI-CAPs.
s with the PPI contrast obtained from all the available data. A) Frames from
time course is shown for one subject. B) Retained frames are then multiplied by
or the same subject with a yellow background. For comparison, the contrast map
) The siMap and PPI contrast map are reasonably correlated (r> 0:7) even when
as more frames are used, showing that the selection of relevant frames is robust

ween the siMap and 1st-level PPI contrast map across subjects, and the light blue
ging Fisher’s z transforms of the Pearson’s r values, and transforming the result
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2.5. Choosing the number of PPI-CAPs

Effective Connectivity methods such as PPI provide a summary spatial
map of task-specific seed relationship modulation. To disentangle which
and when instantaneous patterns of activity support the summarized PPI
findings, we must first determine the number of clusters into which to
categorize the data. To this end, we employed Consensus Clustering
(Monti et al., 2003). This approach applies K-means clustering on several
subsamples of the data and calculates the consensus matrix M . Each
elementM ða; bÞ indicates the fraction of subsamples in which two frames
a and b were both retained and clustered together. The optimal number
of clusters can then be inferred by visual inspection of the ordered matrix
M , as well as of the cumulative distribution function (CDF) of M for
different values of k.

Additionally, for every k ¼ 3;4;…;8 we calculated the number of
frames from each subject that contributed to each of the k PPI-CAPs. This
helped us choose a k value for which the distribution of PPI-CAPs across
subjects was roughly uniform. We applied consensus clustering for k ¼
3; 4;…; 8 using 10 random subsamples for every k. Each subsample
included 80% of the suprathreshold frames of all subjects, and K-means
was computed for 50 random initializations for each subsample. To
obtain the final clustering result, we applied K-means clustering with the
optimum k on 100% of the suprathreshold frames and kept the best result
from 50 random initializations, i.e., the one that minimised the total sum
of modulo-π cosine distances between frames and centroids.
2.6. Experimental data

To validate the method, we used fMRI data from 16 healthy subjects
(mean age 22:92� 8:14 years) watching a short TV program about the
effects of sun exposure. The video alternated between two contexts: 1)
images of several children playing by the beach (from here on described
as fun); 2) scenes where scientific concepts were explained in a laboratory
(we will call this context science). The movie can be watched online,1 and
a detailed description of the dataset can be found in Jochaut et al. (2015).
One subject was excluded due to high motion for having>25% of frames
with framewise displacement (Power et al., 2010) higher than 0.5 mm.
Thus, 15 subjects were analysed (mean percentage of scrubbed frames ¼
2.2%, SD¼ 5.8%). 179 vol (Tim-Trio; Siemens, 40 transverse slices, voxel
size¼ 3 mm� 3 mm� 3 mm; repetition time¼ 2000 ms; echo time¼ 50
ms; field of view ¼ 192) were available per subject, as well as an
anatomical T1-weighted rapid acquisition gradient echo sequence (176
slices, voxel size¼ 1 mm� 1 mm� 1 mm, field of view¼ 256), acquired
at the end of the scanning. All participants have given their written
informed consent, which was approved by the local ethics committee
(Biomedical Inserm protocol C08–39).
2.7. fMRI preprocessing

Functional images were preprocessed using SPM8 (Wellcome
Department of Imaging Neuroscience, UK) where they were realigned to
correct for head motion; coregistered with structural images; normalized
in the Montreal Neurological Institute (MNI) stereotactic space; and
spatially smoothed using a 6 mm full width at half maximum isotropic
Gaussian kernel. In order to remove haemodynamic temporal blurring
and better approximate neural activity, blood oxygenation level-
dependent (BOLD) signals were deconvolved with the canonical hae-
modynamic response function from SPM8. This was done using an
implementation of the Wiener filter from spm_peb_ppi.m, an SPM8
function that computes BOLD deconvolution in the context of PPI ana-
lyses. Voxels were then z-scored in time (Liu and Duyn, 2013).
1 https://miplab.epfl.ch/index.php/miplife/research/supplement-asd-study.
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2.8. Considerations for the application of PPI-CAPs

We applied PPI-CAPs on a movie-watching dataset to illustrate its
potential to uncover task-related time-resolved effective connectivity in a
realistic setting. To this end, the Posterior Cingulate Cortex (PCC) was
selected as a seed region for this study due to its well documented con-
nectivity arrangements (Lin et al., 2017) and description as a hub region
(Andrews-Hanna et al., 2010). A previous study by our group on transient
brain activity also revealed the PCC as the node with the most spatial
overlap between networks (Karahanoglu & Van De Ville, 2015). We used
SPM8’s Check Orthogonality tool to understand how collinear the PCC
activity was with our task paradigm, MATLAB’s Skewness function to
check that the activity was not skewed, and we verified that the
magnitude of the seed time course did not correlate with the sign of the
task (Supplementary Material A.2). To keep in line with previous work
that inspired our method (Liu and Duyn, 2013), we report the thresh-
olding step based on the percentage of data points kept for the dynamic
analysis. As discussed later, PPI-CAPs is robust to a very wide range of
seed activity thresholds for selecting frames to retain for analysis. For the
results presented here, we use 60% of the available frames as a trade-off
between optimising data usage from our dataset and obtaining clear
brain patterns in the dynamic analysis, avoiding noise that is not aver-
aged out due to a lack of frames in some PPI-CAPs.

3. Results

3.1. Static analysis

Single subject level. At a single subject level, the spatial pattern from
the corresponding siMap, generated as the average of the 60% supra-
threshold fMRI frames (when the PCC seed was highly active), was
reasonably correlated with the resulting map from a 1st-level PPI Analysis
(average spatial correlation: r ¼ 0.76 � 0.28). This was the threshold we
chose in order to keep enough frames for the dynamic analysis, but the
similarity was robust to the choice of threshold for frame selection across
subjects (Fig. 2C): correlation was already high even when only 15% of
suprathreshold frames were kept (r ¼ 0.71 � 0.1). To further illustrate
that the correlation strength remains stable for varying cutoff values, we
first calculated the mean subject-level Fisher’s z-transformed correlations
(see section 2.2) for each threshold that kept from 15 to 60% of original
frames. Then, we computed the average of these means and transformed
it back to Pearson’s r, for which we obtained 0.76 with SD�0.04. The
correlation gradually drops when fewer than 15% of the frames are used,
which is expected as not enough frames are selected to average out the
noise.

Group level. At the group level, the spatial pattern from the siMap
obtained using 60% of frames also correlated (r ¼ 0.85) with the pattern
obtained from a 2nd-level PPI analysis (Supplementary Fig. A3), which
showed a significant increase in effective connectivity between the PCC
and the right V5 during fun scenes (height threshold T ¼ 3.8, p < 0.001;
right V5 MNI coordinates x ¼ 39, y ¼ �67, z ¼ �2; cluster size ¼ 185
voxels; pfwe-corr < 0.001).

Together, these results demonstrate that even a subset of fMRI frames,
selected when the seed activity is highly active or strongly deactivated,
contains relevant information about how its co-activation with other
regions changes based on task context.

3.2. Dynamic analysis

Choice of number of clusters. An analysis of PPI-CAP occurrences for
k ¼ 3; 4;…;8 showed that for k � 6, some patterns never occurred in
some subjects, while k ¼ 4 and k ¼ 5 were the cases with the most ho-
mogeneous distribution of pattern occurrence per subject (see Supple-
mentary Fig. A4). Visual inspection of the consensus matrices showed
that the most stable values for k (i.e., the values for which any two frames
would most consistently be clustered together or separately) were k ¼ 3

https://miplab.epfl.ch/index.php/miplife/research/supplement-asd-study
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and k ¼ 4. Taking these observations together, we proceeded with the
analysis generating 4 clusters, as this k value combined the beneficial
features of: 1) yielding PPI-CAPs that are homogeneously distributed
across subjects; 2) being highly stable (i.e., running the clustering several
times would always produce similar results); and 3) representing a
reasonable balance between variety and redundancy (Liu and Duyn,
2013).

Temporal decomposition of psychophysiological interactions into co-
activation patterns. Our dynamic analysis revealed four recurring pat-
terns of co-activation (Fig. 3A), all of which were significantly modulated
by the seed, the context or an interaction between the two (PPI effect)
after correcting for multiple comparisons (significance level α 0:05= 4 ¼
0.0125). PPI-CAP1 includes nodes of the visuospatial (VSN) and attention
(AN) networks correlated with the PCC and nodes of the fronto-parietal
network (FPN) and salience networks (SN) anti-correlated with the PCC
(p ¼ 0.008). Additionally, the VSN and AN had a tendency to be more
active, while the FPN and SNweremore deactive, during science scenes as
compared to fun ones (p ¼ 0.019). PPI-CAP2 combines the FPN corre-
lated, plus the posterior insula and visual nodes anti-correlated, with the
seed (p ¼ 0.0009). PPI-CAP3 corresponds to the default mode network
(DMN) and was significantly correlated with the seed (p ¼ 0.0009). It
also appeared more often during fun scenes rather than science ones (p ¼
0.008). PPI-CAP4, in turn, which contains the V5 and nodes of the VSN,
showed not only a significant seed effect (p ¼ 0.0009), but also a PPI
effect (p ¼ 0.0009). Supplementary Fig. A6 shows the exact times where
each PPI-CAP appeared more consistently in their positive—or negative
(meaning that the signs of the voxels should be flipped)—configuration
across subjects, and Supplementary Fig. A5 shows their corresponding
permutation histograms.

Consistency of PPI-CAPs across subjects and brain activity decoding. Our
time-resolved method allowed us to investigate how consistent each PPI-
CAP was across subjects and throughout the experiment. Fig. 4 illustrates
this analysis for PPI-CAP4. By inspecting moments when the PPI-CAP
appeared consistently for several subjects, we were able to identify
6

specific video frames that elicited the co-activation pattern. For PPI-
CAP4, moments of positive activation, that is, moments when the V5 and
visuospatial network were more active, corresponded to scenes in which
there was high motion (e.g., a group of children playing football),
whereas a negative polarity of this pattern was related to moments of
stillness (Fig. 4). Supplementary Figure A6 shows these results for all four
PPI-CAPs: for PPI-CAP1, moments of positive polarity corresponded to
scenes in which the main object (or character) was zoomed into and
movements were slow, whereas a negative polarity (meaning a negative
VSN and AN, with activated FPN and SN) was related to moments when
some goal-oriented action was being performed. For example, at 103800,
while a group of children are sat at the beach, one of the girls is clearly
reaching out for sand to build her castle. PPI-CAP2 seemed to be more
strongly active during moments when there are lots of people on the
scene, and more consistently negative (i.e., deactivated FPN and acti-
vated posterior insula) when the scene changes to only one person on
screen, explaining concepts about the danger of sun exposure. PPI-CAP3
appeared more with a positive polarity during zoomed-out scenes where
many people were present and interacting, or when science concepts had
been explained for a while in the laboratory scenario. These results
illustrate PPI-CAPs’ ability to link a pattern’s occurrence to specific
moments of the experimental paradigm.

4. Discussion

PPI-CAPs: a tool to more accurately reveal task-based brain dynamics. For
decades, parametric statistical methods have been used for the analysis of
task fMRI data (Friston et al., 1994; Eklund et al., 2016). Notably, the
information revealed by the family of PPI approaches, where statistical
analysis is performed on fMRI signal time courses to extract brain loca-
tions with context-dependent seed correlation, has greatly expanded our
knowledge of brain function in health and disease in that time. For
instance, Decety et al. (2008) investigated how healthy children expe-
rience empathy and moral reasoning when they view someone in pain.
Fig. 3. PPI-CAPs reveal patterns of co-
activation that have a seed; task; or an
interaction effect. A) We retrieved four PPI-
CAPs from the Movie Watching dataset by
clustering suprathreshold frames: PPI-CAP1
includes activated visuospatial and attention
networks and deactive nodes of the fronto-
parietal network (FPN) and salience net-
works; PPI-CAP2 includes an activated FPN
plus deactive posterior insula and visual
nodes; PPI-CAP3 corresponds to nodes of the
default mode network; and PPI-CAP4 con-
tains the V5 and visuospatial network. B)
Confusion matrices depict how closely the
polarity of the frames that make up each PPI-
CAP relate to the sign of each effect. A clear
diagonal (or anti-diagonal) pattern indicates
a strong effect. All PPI-CAPs show a signifi-
cant seed effect, PPI-CAP3 shows a significant
task effect, and PPI-CAP4 shows a significant
PPI effect, after Bonferroni correction for the
number of PPI-CAPs. Raw p-values reported
below the corresponding confusion matrices.



Fig. 4. PPI-CAPs enables the time-resolved analysis of effective connectivity consistency across subjects. For PPI-CAP4: (Top) The plot shows the percentage
out of all 15 participants (y-axis) of subjects for whom this PPI-CAP was present at each fMRI frame (x-axis). Red and blue bars indicate the percentage for appearances
in positive and negative configurations, respectively. Orange and blue background patches correspond to fun and science scenes, respectively. The histogram on the
rightmost side of the top panel depicts the distribution of random consistency across subjects for each polarity, calculated by randomly permuting the time points on
which the PPI-CAP appeared for each subject, then re-calculating the subject consistency across time. The dashed line represents the value of the 99% percentile from
the random distribution, indicating that a subject consistency above this threshold is significant. Four sample time points of high consistency were highlighted.
Numbers above the brain slices correspond to MNI coordinates. (Bottom) Video frames spanning a duration of 2 s, centred at each frame which corresponds to the
timing of high consistency indicated in the top plot. For other PPI-CAPs see Supplementary Figure A6.

L.G.A. Freitas et al. NeuroImage 212 (2020) 116635
The connectivity observed in areas consistently engaged in moral
behaviour and social interaction depended highly on intention and on
whether the pain was self-inflicted or not, providing an empirical
framework for studies of social cognition disorders in children. Steuwe
et al. et al. (2015) showed that subcortical limbic and frontal loci become
more connected to the locus coeruleus in female post-traumatic stress
disorder patients when facing direct eye contact rather than averted gaze,
potentially indicating an innate alarm system. More recently, a PPI
analysis revealed that music intervention for preterm-born babies in
neonatal intensive care units induces functional connectivity changes
which suggest that music induces a more arousing and pleasant state
(Lordier et al., 2018).

Meanwhile, point process analyses (Tagliazucchi et al., 2012) have
proven to be a powerful tool for the study of resting-state brain data, by
showing that large-scale brain activity could be condensed by solely
analysing the time points when seed activity exceeds a given threshold,
while nonetheless closely approximating seed-based correlation findings
7

(Liu et al., 2013).
In this work, we brought the advantages of these two methodologies

together to expand the analysis of task-based recordings. Indeed, we
showed that after modulation by the centred contrast variable, averaging
as few as 15% fMRI frames with the strongest absolute seed activity
yielded a spatial interaction pattern resembling the conventional PPI map
calculated from the whole example dataset (Fig. 2C).

Beyond this initial equivalence as a first sanity check of the approach,
we showed that functional brain connectivity across task conditions
could be disentangled into a set of distinct building blocks, the PPI-CAPs,
in analogy to the resting-state CAP methodology (Liu and Duyn, 2013;
Liu et al., 2018). Whereas a traditional PPI map reflects, on average, the
functional seed interplays that differ across task conditions, PPI-CAPs
break this information down into separate seed co-activation patterns
with their own spatiotemporal features. In addition, our approach also
extends the information provided by traditional CAPs by capturing
interaction effects between the task and the relationship of a
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co-activation pattern with the seed.
Of note is the fact that the retrieved PPI-CAPs that do not show a

context or PPI effect highlight shared functions between task settings,
thus displaying common temporal expression features (i.e., similar
occurrence levels across conditions). Statistically probing for a context
effect enables, then, to distinguish these from co-activation patterns that
are indeed task-modulated. This information cannot be obtained from
previous PPI approaches. Further, extracting PPI-CAPs also enables the
analyst to overcome the caveats arising from multiple comparisons that
plague PPI analysis. This is because rather than mass univariate testing,
K-meansþþ clustering (a multivariate, unsupervised technique) is per-
formed to establish characteristic activation patterns, and only then fol-
lowed by statistical testing on a much lower dimensional space.

Our methodological pipeline also yields polarity labels for each frame
that contributes to a PPI-CAP, revealing moments among which a certain
pattern has opposite signs—that is, regions that are highly activated in a
frame labelled as “positive” will be deactivated in a “negative” frame of
that PPI-CAP, and vice-versa. Since a given pattern may contain activated
and deactivated voxels simultaneously, this also provides subregion-
specific information on their relationship with the seed, task, or both,
at any point in time. For instance, for a PPI-CAP whose frames’ polarities
correlate with the polarity of the seed (i.e., the confusion matrix with the
seed is clearly diagonal), both jointly show their strongest signal values at
the same time in all positively labelled frames. Accordingly, areas that
appear in blue on that same PPI-CAP represent areas of seed-to-voxel
anti-correlation when frames are labelled as positive, and vice-versa.
Conversely, when a PPI-CAP has, for instance, a seed effect with the
corresponding confusion matrix’s pattern being anti-diagonal, we know
that voxels depicted as red are, in fact, discordant with the seed at time
points when a negative frame appears. This is why the interpretation of a
PPI-CAP requires both the visualization of the co-activation map and the
confusion matrix that shows how the polarity labels of its contributing
frames relate to each effect’s time course.

In the current version of our method the appearance of a PPI-CAP is
defined only by averaging constituting frames, whose labels were
assigned automatically during the clustering step. Since the first centroid
initialization is made at random by K-meansþþ clustering, the polarity
labels and, consequently, the pattern of the PPI-CAP they constitute, may
be inverted in different runs. If preferred, this could be changed as a post-
processing step so that, if desired, the default pattern would be the one
with the largest polarity. For example, if a PPI-CAP is made up mainly of
negative frames, its flipped version could become the default (meaning
that the voxels that currently appear in the pattern as deactive would be
shown as active). In this case, the frame polarity labels would therefore
be updated for their distribution to be correctly represented in the plots.
Alternatively, polarity labels (as well as the pattern formed by the cor-
responding frames) could be arranged to default to the arrangement that
favours a diagonal confusion matrix with the seed, to facilitate the
interpretation of voxels in red or blue in relation to that region when
there is a seed effect. Yet another option would be for the appearance of a
PPI-CAP to default to the one that contains the most activated voxels
(with frame labels being updated when necessary). Note, however, that
none of these choices affects the interpretation of the results, as switching
the labels will also invert the appearance of the PPI-CAP when it is
updated as per Equation (4), so in the end the conclusions are unchanged;
these suggestions are merely for visualization purposes.

Neuroscientific relevance. The above touches upon the striking
complexity of functional brain activation during a task (Simony et al.,
2016; Bolton et al., 2018b; Gonzalez-Castillo and Bandettini, 2018): in
this, although standard PPI analysis already provides valuable insight
into brain function at the cross-condition level (Kucyi et al., 2016),
appropriately capturing truly occurring activity requires the deployment
of better temporal resolution approaches as introduced here. Along this
line of reasoning, none of the PPI-CAPs extracted in the present study
strongly correlated with the results of a 2nd-level PPI analysis (rPPI-CAP1 ¼
0.33; rPPI-CAP2 ¼ �0.07; rPPI-CAP3 ¼ 0.06; rPPI-CAP4 ¼ 0.31). The diversity
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of the patterns revealed by PPI-CAPs in this work confirms the hetero-
geneity of PCC connectivity to large scale networks seen in previous
studies (Liu and Duyn, 2013; Karahanoglu & Van De Ville, 2015), and
their occurrence counts reveal how some of these relationships are
modulated according to task. This suggests that the results from a con-
ventional PPI analysis may yield a distorted picture of modulated activity
as it likely never occurs as presented in the resulting map, and highlights
PPI-CAPs’ ability to reveal this effect more accurately.

The ability to characterise functional brain changes at the single
frame level also offers the advantage to tie PPI-CAPs to specific subparts
of the analysed task paradigm (see Spiers and Maguire, 2007 for a more
general review on this analytical direction): in the results illustrated here,
PPI-CAP4 (visuospatial network) occurred upon strong movement during
the displayed movie (Fig. 4), and all four patterns showed consistent,
time-locked expression across subjects at specific time points (Supple-
mentary Figure A6). The vivid and homogeneous recruitment of poste-
rior motion processing areas actually squares well with previous findings
considering the same dataset from another methodological angle (Bolton
et al., 2018a).

Recently, the fMRI research community has striven to improve
robustness and reproducibility by creating large-scale data acquisition
and sharing initiatives (Van Horn and Toga, 2014; Van Essen et al., 2013;
Poldrack et al., 2013), which brought along novel issues regarding data
analysis (Smith and Nichols, 2018; Choudhury et al., 2014). This is
because alongside the increase in data size, methods to analyse brain data
have become increasingly complex. This combination may make some
analyses simply computationally infeasible. It is thus an advantage for
new analytical methods to obtain robust results even if running only on a
portion of data, thereby circumventing computational cost issues that
could make them impractical. From a researcher’s point of view, even a
linear decrease in computation time is significant, as a reduction of
analysis time from weeks to several days can be decisive when trying to
meet deadlines. This further highlights the importance of PPI-CAPs’
efficient use of brain data, which is achieved by selecting a subset that
already contains the relevant information needed to uncover our
method’s novel results.

Potential extensions of the PPI-CAPs approach. In the current method-
ology, PPI-CAPs are derived through a K-means clustering step, and are
thus mutually exclusive in time. Previous work has already shown the
merit of considering separate brain states to accurately describe task-
based data (Leonardi et al., 2014; Gonzalez-Castillo et al., 2015). How-
ever, a possible avenue to be explored would be to disentangle patterns
that may overlap in time. An interesting option to achieve this would be
to translate a recent total variation framework tailored to fMRI data
(Karahanoglu & Van De Ville, 2015) to the task-based setting. As part of
this new approach, the deconvolution method we currently apply would
be replaced by Total Activation (TA) (Karahanoglu et al., 2013), which
deconvolves BOLD signals and the haemodynamic response function
using spatio-temporal regularisation to recover activity-inducing signals.
These signals more closely reflect true neuronal activation than the in-
direct and noisy BOLD signals. Still based on Karahanoglu et al.’s work,
by differentiating those, innovation signals are obtained—which reflect
changes in activation intensity rather than pure amplitude. The devel-
opment of our method would thus be to apply the frame selection and
clustering steps on these signals to yield innovation-driven PPI-CAPs,
which would represent spatial patterns of voxels whose signals transition
simultaneously. Backprojecting these would then recover their time
courses, thus revealing moments when different combinations of those
patterns may overlap.

Another attractive avenue would be to consider the introduction of
temporal relationships between successive time points, a feat that can be
achieved both when considering sequential (Eavani et al., 2013; Vidaurre
et al., 2017; Chen et al., 2016) or overlapping (Sourty et al., 2016; Bolton
et al., 2018b) brain states. For instance, given that the present results
revealed default mode network (PPI-CAP3), fronto-parietal network
(PPI-CAP1 and PPI-CAP2) and salience network (PPI-CAP2) contributions
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during movie-watching, causal interplays across these networks could be
assessed in accordance with the so called triple network model (Menon,
2011).

Aside from addressing temporal dynamics, an equally important issue
is to optimally tackle the spatial dimension of the data. One extension
could be the injection of a spatial prior in deriving PPI-CAPs (Zhuang
et al., 2018). Another interesting aspect could be to study more closely
the spatial variability of task-related functional activity patterns (Kivi-
niemi et al., 2011). A possible direction for this purpose could be to
separately consider, for each PPI-CAP, the pools of frames linked to given
task contexts, and carry out statistical comparisons at this level (Amico
et al., 2014). Subtle spatial differences across task setting could then be
revealed. However, this aspect also depends on the number of clusters
used in the analysis: at larger values of K, different spatial patterns across
contexts may rather be seen as context-specific PPI-CAPs. Here, given the
relatively low amount of available data and the clearly optimal choice of
K ¼ 4 (Supplementary Figure A4), we did not pursue this side of the
analyses.

Yet other extensions could be, on the one hand, to consider more
sophisticated measures than PPI-CAP occurrences as features of interest
(Chen and Glover, 2015) and, on the other hand, to broaden the analysis
of PPI-CAPs to a meta-state perspective (Miller et al., 2016; Vidaurre
et al., 2017), where a meta-state would symbolise a particular combi-
nation of expression and polarity of the investigated patterns.

Ultimately, the goal is of course the application of the developed tools
to better understand both brain functions in healthy individuals, but also
dysfunction in the case of neurological pathologies. Our approach en-
ables us to easily address this last point, by adding a group factor to the
employed nonparametric statistical assessment, enabling at the same
time to gain insight into which features (seed, task, interaction) relate to
the studied disease.

Study considerations. A natural limitation of this method is a conse-
quence of the type of data: the spatiotemporal resolution can only be as
good as that of the fMRI data used. The threshold for seed activation is
the main free parameter in PPI-CAPs, but we showed that, as has been
confirmed in other independent studies that followed a PPA approach
(Liu et al., 2013; Tagliazucchi et al., 2012), the choice of this value does
not affect the results within a very wide range of options. If the magni-
tude of the seed activity is not correlated with the sign of the task, then
the resulting siMap will be proportional to the results of a PPI analysis,
and its interpretation can follow the same guidelines as for PPI (see
Friston et al., 1997 Fig. 5).

Recent work by Cole et al. (2019) has highlighted some challenges
related to analysis of task-based functional connectivity. The authors find
that simply describing the task paradigm as a dedicated regressor
convolved with a canonical HRF, such as in PPI analysis, leaves a
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relatively large amount of false positives in the data. This is partly
explained by the facts that the actual HRF shape varies across regions,
and that task-related increases in activation will not necessarily always
have the same amplitude, leaving residual activity in the data despite the
use of a task regressor. In our work, we consider data that is deconvolved,
a step for which we assume a canonical HRF shape. Given the impact of
HRF variability on task-based analyses, and the advantage offered by
approaches in which the HRF can bemodeled individually across regions,
future work should enable the use of similar strategies in a deconvolution
setting. A second point made by the authors relates to the possible impact
of differences in task-evoked activation amplitude across epochs. In our
case, while we consider a naturalistic paradigm, we delineate fun and
science task sub-blocks. There is thus the risk that during one type of
block, task-based activation takes varying amplitudes, which would not
be accounted for in the modelling of the task. Note that we do not
explicitly rely on amplitude information in deriving and interpreting
PPI-CAPs: rather, we examine howmuch the expression of a PPI-CAP (the
polarity that it takes) across frames is in line with that of the task para-
digm, the seed paradigm, or the PPI. A whole-brain pattern seen in a
PPI-CAP thus may jointly represent those three effects. In any case, future
work should keep the points above in mind.

5. Conclusion

We presented a novel analysis that temporally decomposes task-
modulated functional connectivity into dynamic building blocks which
cannot be captured by static methods such as PPI analysis. We demon-
strated that the PPI-CAPs approach successfully identifies dynamic task-
dependent patterns using only a subset of the available data, which will
lead to a linear decrease in computation time for large datasets propor-
tional to the reduction in data size. Moreover, we illustrated how our
method can be used to analyse brain activity at a resolution as low as the
scanner’s repetition time. Finally, we indicated how our method can
expand other existing techniques and proposed new avenues for future
research. Taken together, these show that our approach provides a more
accurate picture of brain activity during task performance.
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Appendix A. Link between conventional PPI and the stationary PPI-CAP

Within the PPA/CAPs framework, it is well known that averaging the frames where the seed exceeds a “well chosen” threshold φ, yields a proxy for
the conventional seed connectivity map (Tagliazucchi et al., 2012; Liu and Duyn, 2013). This observation can be explained in the following way: let us
assume that the activity time course SðtÞ of a seed voxel is a realization over time, t ¼ 1;…;N, of a random variable S for which E½S� ¼ 0 and E½S2� ¼ 1.
To construct conventional seed connectivity, a general linear model (GLM) is put forward to explain the time course VðtÞ of a target voxel as:

VðtÞ¼ βSðtÞ þ εðtÞ; (A.1)

where β is the parameter weight (i.e., functional connectivity) and εðtÞ is the residual and assumed to be a realization of the noise with E½ε� ¼ 0 and
E½ε2� ¼ σ2. In addition, we assume the noise to be independent from the seed voxel activity; i.e., E½S � ε� ¼ 0. Multiplying both sides of Eq. (A.1) with SðtÞ
and taking the expectation leads to:

E½V � S� ¼ βE
�
S2
�þ E½S � ε�; (A.2)

which simplifies into β ¼ E½V � S�.
To obtain the stationary map in the CAPs approach, we want the expectation value of the target voxel for frames where the seed exceeds a threshold
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φ:

ICAPþ ¼E½V : S>φ� (A.3)

¼ E½βSþ ε : S>φ� (A.4)

¼ βE½S : S>φ� þ E½ε : S>φ�; (A.5)

where in the first step we have substituted the previous GLM of Eq. (A.1) and “:” implies conditioning. Due to the independence of noise and seed voxel,
and E½ε� ¼ 0, the second term of Eq. (A.5) will vanish, and we obtain:

ICAPþ ¼ βE½S : S>φ�; (A.6)

which means that the expectation of suprathreshold frames in the PPAmethod will be proportional to the result of a conventional correlation map, with
the constant of proportionality given by E½SjS> φ�, which only depends on the seed, and not the target voxel. A similar relationship can be derived when
the seed activity is below the negative threshold:

ICAP� ¼E½V : S< �φ� (A.7)

¼ E½βSþ ε : S< �φ� (A.8)

¼ βE½S : S< �φ� þ E½ε : S< �φ� (A.9)

¼ βE½S : S< �φ� (A.10)

In the case of a two-sided threshold, using the identity signðAÞA ¼ jAj, we can conclude that:

ICAP ¼E½signðSÞV : jSj>φ� (A.11)

¼ E½βS signðSÞþ ε signðSÞ : jSj>φ� (A.12)

¼ βE½S signðSÞ : jSj>φ� þ E½ε signðSÞ : jSj>φ� (A.13)

¼ βE½jSj : jSj>φ�: (A.14)

Based on this observation, we can generalize to PPI for which the GLM becomes:

VðtÞ¼ βSSðtÞ þ βTTðtÞ þ βPPIPðtÞ þ εðtÞ; (A.15)

where TðtÞ is the time course of the task and PðtÞ is the “interaction term” given by PðtÞ ¼ SðtÞTðtÞ. The stationary map of the PPI-CAPs analysis then
averages values of the target voxel multipliedwith the sign of the interaction term, where the selection is based on the criterion of the seed exceeding the
threshold:

IPPI�CAP ¼E½signðSTÞV : jSj>φ�
¼ E½signðSTÞðβSSþ βTT þ βPPIPþ εÞ : jSj>φ�
¼ βSE½signðSTÞS : jSj>φ� þ βTE½signðSTÞT : jSj>φ� þ βPPIE½signðSTÞP : jSj>φ�:
Using the identities signðAÞA ¼ jAj and signðABÞA ¼ signðBÞjAj, this becomes:

IPPI�CAP ¼ βSE½signðTÞjSj : jSj>φ� þ βTE½signðSÞjT j : jSj>φ� þ βPPIE½jSTj : jSj>φ�
� βPPIE½jSTj : jSj>φ�:
The last approximation can be made when the contributions of the first two terms are negligible. For the first term, we assume the absolute value of S

to be independent of the task (that weights the expectation operator) and T has equal number of positive and negative values, in which case the first term
will be 0. For the second term, if the task is just a change of sign, then its absolute value will be fixed and uncorrelated to the sign of the seed. Thus the
second term is proportional to E½signðSÞ : jSj> φ�, which is necessarily bound between �1 and will be exactly 0 if S is symmetric.

Therefore, what remains is the final term and we find that the result of a PPI analysis will be proportional to the SiMap. This brief derivation also
shows that the stationary PPI-CAP can be contaminated by “leakage” from the seed and/or task contributions if these assumptions are not fulfilled.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.neuroimage.2020.116635.
10

https://doi.org/10.1016/j.neuroimage.2020.116635


L.G.A. Freitas et al. NeuroImage 212 (2020) 116635
References

Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D., 2014.
Tracking whole-brain connectivity dynamics in the resting state. Cerebr. Cortex 24,
663–676. https://doi.org/10.1093/cercor/bhs352.

Amico, E., Gomez, F., Di Perri, C., Vanhaudenhuyse, A., Lesenfants, D., Boveroux, P.,
Bonhomme, V., Brichant, J.F., Marinazzo, D., Laureys, S., 2014. Posterior cingulate
cortex-related co-activation patterns: a resting state fMRI study in propofol-induced
loss of consciousness. PloS One 9, 1–9. https://doi.org/10.1371/
journal.pone.0100012.

Andrews-Hanna, J.R., Reidler, J.S., Sepulcre, J., Poulin, R., Buckner, R.L., 2010.
Functional-anatomic fractionation of the brain’s default network. Neuron 65,
550–562. https://doi.org/10.1016/j.neuron.2010.02.005.

Arthur, D., Vassilvitskii, S., 2007. K-Means þþ : the advantages of careful seeding.
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms
1027–1035.

Baczkowski, B.M., Johnstone, T., Walter, H., Erk, S., Veer, I.M., 2017. Sliding-window
analysis tracks fluctuations in amygdala functional connectivity associated with
physiological arousal and vigilance during fear conditioning. Neuroimage 153,
168–178. https://doi.org/10.1016/j.neuroimage.2017.03.022.

Bolton, T.A., Jochaut, D., Giraud, A.L., Van De Ville, D., 2018a. Brain dynamics in ASD
during movie-watching show idiosyncratic functional integration and segregation.
Hum. Brain Mapp. 39, 2391–2404. https://doi.org/10.1002/hbm.24009.

Bolton, T.A.W., Tarun, A., Sterpenich, V., Schwartz, S., Van De Ville, D., 2018b.
Interactions between large-scale functional brain networks are captured by sparse
coupled HMMs. IEEE Trans. Med. Imag. 37, 230–240. https://doi.org/10.1109/
TMI.2017.2755369.

Caballero Gaudes, C., Petridou, N., Francis, S.T., Dryden, I.L., Gowland, P.A., 2011.
Paradigm free mapping with sparse regression automatically detects single-trial
functional magnetic resonance imaging blood oxygenation level dependent
responses. Hum. Brain Mapp. https://doi.org/10.1002/hbm.21452 n/a–n/a.

Calhoun, V.D., Miller, R., Pearlson, G., Adal, T., 2014. The chronnectome : time-varying
connectivity networks as the next frontier in fMRI data discovery, 84, 262–274.
https://doi.org/10.1016/j.neuron.2014.10.015.

Cao, X., Sandstede, B., Luo, X., 2019. A Functional Data Method for Causal Dynamic
Network Modeling of Task-Related fMRI, vol. 13, pp. 1–19. https://doi.org/10.3389/
fnins.2019.00127.

Chang, C., Glover, G.H., 2010. Time–frequency dynamics of resting-state brain
connectivity measured with fMRI. Neuroimage 50, 81–98. https://doi.org/10.1016/
j.neuroimage.2009.12.011.

Chen, J.E., Glover, G.H., 2015. Functional Magnetic Resonance Imaging Methods 2,
289–313. https://doi.org/10.1007/s11065-015-9294-9.

Chen, T., Cai, W., Ryali, S., Supekar, K., Menon, V., 2016. Distinct global brain dynamics
and spatiotemporal organization of the salience network. PLoS Biol. 14, 1–21.
https://doi.org/10.1371/journal.pbio.1002469.

Choe, A.S., Nebel, M.B., Barber, A.D., Cohen, J.R., Xu, Y., Pekar, J.J., Caffo, B.,
Lindquist, M.A., 2017. Comparing test-retest reliability of dynamic functional
connectivity methods. Neuroimage 158, 155–175. https://doi.org/10.1016/
j.neuroimage.2017.07.005.

Choudhury, S., Fishman, J.R., McGowan, M.L., Juengst, E.T., 2014. Big data, open science
and the brain: lessons learned from genomics. Front. Hum. Neurosci. 8, 1–10. https://
doi.org/10.3389/fnhum.2014.00239.

Cole, M.W., Ito, T., Schultz, D., Mill, R., Chen, R., Cocuzza, C., 2019. Task activations
produce spurious but systematic in fl ation of task functional connectivity estimates.
Neuroimage 189, 1–18. https://doi.org/10.1016/j.neuroimage.2018.12.054.

Cox, N.J., 2008. Speaking Stata: correlation with confidence, or Fisher’s z revisited.
STATA J. 8, 413–439. https://doi.org/10.1177/1536867x0800800307.

Damaraju, E., Tagliazucchi, E., Laufs, H., Calhoun, V.D., 2018. Connectivity Dynamics
from Wakefulness to Sleep. bioRxiv preprint. https://doi.org/10.1101/380741.

Decety, J., Michalska, K.J., Akitsuki, Y., 2008. Who caused the pain? An fMRI
investigation of empathy and intentionality in children. Neuropsychologia 46,
2607–2614.

Di, X., Fu, Z., Chan, S.C., Hung, Y.S., Biswal, B.B., 2015. Task-related Functional
Connectivity Dynamics in a Block-Designed Visual Experiment, vol. 9, pp. 1–11.
https://doi.org/10.3389/fnhum.2015.00543.

Eavani, H., Satterthwaite, T.D., Gur, R.E., Gur, R.C., Davatzikos, C., 2013. Unsupervised
Learning of Functional Network Dynamics in Resting State fMRI. Lecture Notes in
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 7917, pp. 426–437. https://doi.org/10.1007/
978-3-642-38868-2_36. LNCS.

Eklund, A., Nichols, T.E., Knutsson, H., 2016. Cluster failure: why fMRI inferences for
spatial extent have inflated false-positive rates. In: Proceedings of the National
Academy of Sciences, p. 201602413.

Fransson, P., Schiffler, B.C., Thompson, W.H., 2018. Brain network segregation and
integration during an epoch-related working memory fMRI experiment. Neuroimage
178, 147–161. https://doi.org/10.1016/j.neuroimage.2018.05.040.

Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.-P., Frith, C.D., Frackowiak, R.S., 1994.
Statistical parametric maps in functional imaging: a general linear approach. Hum.
Brain Mapp. 2, 189–210.

Friston, K., Buechel, C., Fink, G., Morris, J., Rolls, E., Dolan, R., 1997. Psychophysiological
and modulatory interactions in neuroimaging. Neuroimage 6, 218–229. https://
doi.org/10.1006/nimg.1997.0291.

Friston, K.J., Harrison, L., Penny, W., 2003. Dynamic causal modelling. Neuroimage 19,
1273–1302. https://doi.org/10.1016/S1053-8119(03)00202-7.

Ge, B., Wang, H., Wang, P., Tian, Y., Zhang, X., Liu, T., 2019. Discovering and
Characterizing Dynamic Functional Brain Networks in Task FMRI.
11
Gonzalez-Castillo, J., Bandettini, P.A., 2018. Task-based dynamic functional connectivity:
recent findings and open questions. Neuroimage 180, 526–533. https://doi.org/
10.1016/j.neuroimage.2017.08.006.

Gonzalez-Castillo, J., Hoy, C.W., Handwerker, D.A., Robinson, M.E., Buchanan, L.C.,
Saad, Z.S., Bandettini, P.A., 2015. Tracking ongoing cognition in individuals using
brief, whole-brain functional connectivity patterns. Proc. Natl. Acad. Sci. Unit. States
Am. 112, 8762–8767. https://doi.org/10.1073/pnas.1501242112.arXiv arXiv:
1408.1149.

Hutchison, R.M., Womelsdorf, T., Allen, E.A., Bandettini, P.A., Calhoun, V.D.,
Corbetta, M., Della Penna, S., Duyn, J.H., Glover, G.H., Gonzalez-Castillo, J.,
Handwerker, D.A., Keilholz, S., Kiviniemi, V., Leopold, D.A., de Pasquale, F.,
Sporns, O., Walter, M., Chang, C., 2013. Dynamic functional connectivity: promise,
issues, and interpretations. Neuroimage 80, 360–378. https://doi.org/10.1016/
j.neuroimage.2013.05.079.arXiv:NIHMS150003.

Jochaut, D., Lehongre, K., Saitovitch, A., Devauchelle, A.-D., Olasagasti, I., Chabane, N.,
Zilbovicius, M., Giraud, A.-L., 2015. Atypical coordination of cortical oscillations in
response to speech in autism. Front. Hum. Neurosci. 9, 1–12. https://doi.org/
10.3389/fnhum.2015.00171.

Karahanoglu, F.I., Van De Ville, D., 2015. Transient brain activity disentangles fMRI
resting-state dynamics in terms of spatially and temporally overlapping networks.
Nat. Commun. 6, 7751. https://doi.org/10.1038/ncomms8751.

Karahanoǧlu, F.I., Van De Ville, D., 2017. Dynamics of large-scale fMRI networks:
deconstruct brain activity to build better models of brain function. Current Opinion in
Biomedical Engineering 28–36. https://doi.org/10.1016/j.cobme.2017.09.008.

Karahanoglu, F.I., Caballero-Gaudes, C., Lazeyras, F., Van De Ville, D., 2013. Total
activation: FMRI deconvolution through spatio-temporal regularization. Neuroimage
73, 121–134. https://doi.org/10.1016/j.neuroimage.2013.01.067.

Kiviniemi, V., Vire, T., Remes, J., Elseoud, A.A., Starck, T., Tervonen, O., Nikkinen, J.,
2011. A sliding time-window ICA reveals spatial variability of the default mode
network in time. Brain Connect. 1, 339–347. https://doi.org/10.1089/
brain.2011.0036.

Kucyi, A., Davis, K.D., 2014. Dynamic functional connectivity of the default mode
network tracks daydreaming. Neuroimage 100, 471–480. https://doi.org/10.1016/
j.neuroimage.2014.06.044.

Kucyi, A., Hove, M.J., Esterman, M., Hutchison, R.M., Valera, E.M., 2016. Dynamic brain
network correlates of spontaneous fluctuations in attention. Cerebr. Cortex bhw029.
https://doi.org/10.1093/cercor/bhw029.

Leonardi, N., Van De Ville, D., 2015. On spurious and real fluctuations of dynamic
functional connectivity during rest. Neuroimage 104, 430–436. https://doi.org/
10.1016/j.neuroimage.2014.09.007.

Leonardi, N., Richiardi, J., Gschwind, M., Simioni, S., Annoni, J.-m., Schluep, M.,
Vuilleumier, P., Ville, D.V.D., 2013. Principal components of functional connectivity :
a new approach to study dynamic brain connectivity during rest. Neuroimage 83,
937–950. https://doi.org/10.1016/j.neuroimage.2013.07.019.

Leonardi, N., Shirer, W.R., Greicius, M.D., Van De Ville, D., 2014. Disentangling dynamic
networks: separated and joint expressions of functional connectivity patterns in time.
Hum. Brain Mapp. 35, 5984–5995. https://doi.org/10.1002/hbm.22599.

Lin, P., Yang, Y., Gao, J., Pisapia, N.D., Ge, S., Wang, X., Zuo, C.S., Levitt, J.J., Niu, C.,
2017. Dynamic Default Mode Network across Different Brain States. Nature
Publishing Group, pp. 1–13. https://doi.org/10.1038/srep46088.

Lindquist, M.A., Xu, Y., Nebel, M.B., Caffo, B.S., 2014. Evaluating dynamic bivariate
correlations in resting-state fMRI: a comparison study and a new approach.
Neuroimage 101, 531–546. https://doi.org/10.1016/
j.neuroimage.2014.06.052.arXiv:NIHMS150003.

Liu, X., Duyn, J.H., 2013. Time-varying functional network information extracted from
brief instances of spontaneous brain activity. Proc. Natl. Acad. Sci. Unit. States Am.
110, 4392–4397. https://doi.org/10.1073/pnas.1216856110.arXiv arXiv:
1408.1149.

Liu, X., Chang, C., Duyn, J.H., 2013. Decomposition of spontaneous brain activity into
distinct fMRI co-activation patterns. Front. Syst. Neurosci. 7, 1–11. https://doi.org/
10.3389/fnsys.2013.00101.

Liu, X., Zhang, N., Chang, C., Duyn, J.H., 2018. Co-activation patterns in resting-state
fMRI signals. Neuroimage 180, 485–494. https://doi.org/10.1016/
j.neuroimage.2018.01.041.

Lordier, L., Loukas, S., Grouiller, F., Vollenweider, A., Vasung, L., Meskaldij, D.,
Lejeune, F., Pittet, M.P., Borradori-Tolsa, C., Lazeyras, F., et al., 2018. Music
processing in preterm and full-term newborns: a psychophysiological interaction
(PPI) approach in neonatal fMRI. Neuroimage 185, 857–864. https://doi.org/
10.1016/j.neuroimage.2018.03.078.

McLaren, D.G., Ries, M.L., Xu, G., Johnson, S.C., 2012. A generalized form of context-
dependent psychophysiological interactions (gPPI): a comparison to standard
approaches. Neuroimage 61, 1277–1286. https://doi.org/10.1016/
j.neuroimage.2012.03.068.arXiv:NIHMS150003.

Menon, V., 2011. Large-scale brain networks and psychopathology: a unifying triple
network model. Trends Cognit. Sci. 15, 483–506. https://doi.org/10.1016/
j.tics.2011.08.003 arXiv:NIHMS150003.

Miller, R.L., Yaesoubi, M., Turner, J.A., Mathalon, D., Preda, A., Pearlson, G., Adali, T.,
Calhoun, V.D., 2016. Higher dimensional meta-state analysis reveals reduced resting
fMRI connectivity dynamis in schizophrenia patients. PloS One 11, e0149849.
https://doi.org/10.1371/journal.pone.0149849.

Monti, S., Tamayo, P., Mesirov, J., Golub, T., 2003. Consensus clustering : a resampling-
based method for class discovery and visualization of gene expression microarray
data. Mach. Learn. 52, 91–118.

O’Reilly, J.X., Woolrich, M.W., Behrens, T.E.J., Smith, S.M., Johansen-Berg, H., 2012.
Tools of the trade: psychophysiological interactions and functional connectivity. Soc.
Cognit. Affect Neurosci. 7, 604–609. https://doi.org/10.1093/scan/nss055.

https://doi.org/10.1093/cercor/bhs352
https://doi.org/10.1371/journal.pone.0100012
https://doi.org/10.1371/journal.pone.0100012
https://doi.org/10.1016/j.neuron.2010.02.005
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref4
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref4
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref4
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref4
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref4
https://doi.org/10.1016/j.neuroimage.2017.03.022
https://doi.org/10.1002/hbm.24009
https://doi.org/10.1109/TMI.2017.2755369
https://doi.org/10.1109/TMI.2017.2755369
https://doi.org/10.1002/hbm.21452
https://doi.org/10.1016/j.neuron.2014.10.015
https://doi.org/10.3389/fnins.2019.00127
https://doi.org/10.3389/fnins.2019.00127
https://doi.org/10.1016/j.neuroimage.2009.12.011
https://doi.org/10.1016/j.neuroimage.2009.12.011
https://doi.org/10.1007/s11065-015-9294-9
https://doi.org/10.1371/journal.pbio.1002469
https://doi.org/10.1016/j.neuroimage.2017.07.005
https://doi.org/10.1016/j.neuroimage.2017.07.005
https://doi.org/10.3389/fnhum.2014.00239
https://doi.org/10.3389/fnhum.2014.00239
https://doi.org/10.1016/j.neuroimage.2018.12.054
https://doi.org/10.1177/1536867x0800800307
https://doi.org/10.1101/380741
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref19
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref19
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref19
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref19
https://doi.org/10.3389/fnhum.2015.00543
https://doi.org/10.1007/978-3-642-38868-2_36
https://doi.org/10.1007/978-3-642-38868-2_36
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref22
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref22
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref22
https://doi.org/10.1016/j.neuroimage.2018.05.040
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref24
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref24
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref24
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref24
https://doi.org/10.1006/nimg.1997.0291
https://doi.org/10.1006/nimg.1997.0291
https://doi.org/10.1016/S1053-8119(03)00202-7
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref27
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref27
https://doi.org/10.1016/j.neuroimage.2017.08.006
https://doi.org/10.1016/j.neuroimage.2017.08.006
https://doi.org/10.1073/pnas.1501242112.arXiv
https://doi.org/10.1016/j.neuroimage.2013.05.079.arXiv:NIHMS150003
https://doi.org/10.1016/j.neuroimage.2013.05.079.arXiv:NIHMS150003
https://doi.org/10.3389/fnhum.2015.00171
https://doi.org/10.3389/fnhum.2015.00171
https://doi.org/10.1038/ncomms8751
https://doi.org/10.1016/j.cobme.2017.09.008
https://doi.org/10.1016/j.neuroimage.2013.01.067
https://doi.org/10.1089/brain.2011.0036
https://doi.org/10.1089/brain.2011.0036
https://doi.org/10.1016/j.neuroimage.2014.06.044
https://doi.org/10.1016/j.neuroimage.2014.06.044
https://doi.org/10.1093/cercor/bhw029
https://doi.org/10.1016/j.neuroimage.2014.09.007
https://doi.org/10.1016/j.neuroimage.2014.09.007
https://doi.org/10.1016/j.neuroimage.2013.07.019
https://doi.org/10.1002/hbm.22599
https://doi.org/10.1038/srep46088
https://doi.org/10.1016/j.neuroimage.2014.06.052.arXiv:NIHMS150003
https://doi.org/10.1016/j.neuroimage.2014.06.052.arXiv:NIHMS150003
https://doi.org/10.1073/pnas.1216856110.arXiv
https://doi.org/10.3389/fnsys.2013.00101
https://doi.org/10.3389/fnsys.2013.00101
https://doi.org/10.1016/j.neuroimage.2018.01.041
https://doi.org/10.1016/j.neuroimage.2018.01.041
https://doi.org/10.1016/j.neuroimage.2018.03.078
https://doi.org/10.1016/j.neuroimage.2018.03.078
https://doi.org/10.1016/j.neuroimage.2012.03.068.arXiv:NIHMS150003
https://doi.org/10.1016/j.neuroimage.2012.03.068.arXiv:NIHMS150003
https://doi.org/10.1016/j.tics.2011.08.003
https://doi.org/10.1016/j.tics.2011.08.003
https://doi.org/10.1371/journal.pone.0149849
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref50
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref50
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref50
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref50
https://doi.org/10.1093/scan/nss055


L.G.A. Freitas et al. NeuroImage 212 (2020) 116635
Ogawa, S., Lee, T.M., Kay, A.R., 1990. Brain magnetic resonance imaging with contrast
dependent on blood oxygenation. Proc. Natl. Acad. Sci. Unit. States Am. 87,
9868–9872.

Petridou, N., Gaudes, C.C., Dryden, I.L., Francis, S.T., Gowland, P.A., 2013. Periods of rest
in fMRI contain individual spontaneous events which are related to slowly fluctuating
spontaneous activity. Hum. Brain Mapp. 34, 1319–1329. https://doi.org/10.1002/
hbm.21513.

Ploner, M., Schoffelen, J.M., Schnitzler, A., Gross, J., 2009. Functional integration within
the human pain system as revealed by Granger causality. Hum. Brain Mapp. 30,
4025–4032. https://doi.org/10.1002/hbm.20826.

Poldrack, R.A., Barch, D.M., Mitchell, J.P., Wager, T.D., Wagner, A.D., Devlin, J.T.,
Cumba, C., Koyejo, O., Milham, M.P., 2013. Toward open sharing of task-based fMRI
data: the OpenfMRI project. Front. Neuroinf. 7, 1–12. https://doi.org/10.3389/
fninf.2013.00012.

Power, J.D., Fair, D.A., Schlaggar, B.L., Petersen, S.E., 2010. The development of human
functional brain networks. Neuron 67, 735–748. https://doi.org/10.1016/
j.neuron.2010.08.017.

Preti, M.G., Bolton, T., Van De Ville, D., 2016. The dynamic functional connectome : state-
of-the-art and perspectives. Neuroimage. https://doi.org/10.1016/
j.neuroimage.2016.12.061.

Rack-Gomer, A.L., Liu, T.T., 2012. Caffeine increases the temporal variability of resting-
state BOLD connectivity in the motor cortex. Neuroimage 59, 2994–3002.

Rissman, J., Gazzaley, A., Esposito, M.D., 2004. Measuring Functional Connectivity
during Distinct Stages of a Cognitive Task, vol. 23, pp. 752–763. https://doi.org/
10.1016/j.neuroimage.2004.06.035.

Shen, H., Li, Z., Qin, J., Liu, Q., Wang, L., Zeng, L.L., Li, H., Hu, D., 2016. Changes in
functional connectivity dynamics associated with vigilance network in taxi drivers.
Neuroimage 124, 367–378. https://doi.org/10.1016/j.neuroimage.2015.09.010.

Simony, E., Honey, C.J., Chen, J., Lositsky, O., Yeshurun, Y., Wiesel, A., Hasson, U., 2016.
Dynamic reconfiguration of the default mode network during narrative
comprehension. Nat. Commun. 7, 12141. https://doi.org/10.1038/ncomms12141.

Smith, S.M., Nichols, T.E., 2018. Statistical challenges in “big data” human neuroimaging.
Neuron 97, 263–268. https://doi.org/10.1016/j.neuron.2017.12.018.

Sourty, M., Thoraval, L., Roquet, D., Armspach, J.-P., Foucher, J., Blanc, F., 2016.
Identifying dynamic functional connectivity changes in dementia with lewy bodies
based on product hidden markov models. Front. Comput. Neurosci. 10, 1–11. https://
doi.org/10.3389/fncom.2016.00060.

Spiers, H.J., Maguire, E.A., 2007. A navigational guidance system in the human brain.
Hippocampus 626, 618–626. https://doi.org/10.1002/hipo.
12
Steuwe, C., Daniels, J.K., Frewen, P.A., Densmore, M., Theberge, J., Lanius, R.A., 2015.
Effect of direct eye contact in women with PTSD related to interpersonal trauma:
psychophysiological interaction analysis of connectivity of an innate alarm system.
Psychiatr. Res. Neuroimaging 232, 162–167.

Tagliazucchi, E., Balenzuela, P., Fraiman, D., Chialvo, D.R., 2012. Criticality in Large-
Scale Brain fMRI Dynamics Unveiled by a Novel Point Process Analysis, vol. 3,
pp. 1–12. https://doi.org/10.3389/fphys.2012.00015.

van den Heuvel, M.P., Hulshoff Pol, H.E., 2010. Exploring the brain network: a review on
resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol 20, 519–534.
https://doi.org/10.1016/j.euroneuro.2010.03.008.

Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K., 2013.
The Wu-minn human connectome project: an overview. Neuroimage 80, 62–79.
https://doi.org/10.1016/j.neuroimage.2013.05.041.arXiv:NIHMS150003.

Van Horn, J.D., Toga, A.W., 2014. Human neuroimaging as a "big data" science. Brain
Imaging and Behavior 8, 323–331. https://doi.org/10.1007/s11682-013-9255-y.

Vidaurre, D., Smith, S.M., Woolrich, M.W., 2017. Brain network dynamics are
hierarchically organized in time. Proc. Natl. Acad. Sci. Unit. States Am. 114,
201705120. https://doi.org/10.1073/pnas.1705120114.arXiv arXiv:1408.1149.

Wen, X., Rangarajan, G., Ding, M., 2013. Is granger causality a viable technique for
analyzing fMRI data? PloS One 8. https://doi.org/10.1371/journal.pone.0067428.

Yaesoubi, M., Allen, E.A., Miller, R.L., Calhoun, V.D., 2015. Dynamic coherence analysis
of resting fMRI data to jointly capture state-based phase , frequency , and time-
domain information. Neuroimage 120, 133–142. https://doi.org/10.1016/
j.neuroimage.2015.07.002.

Zalesky, A., Breakspear, M., 2015. Towards a statistical test for functional connectivity
dynamics. Neuroimage 114, 466–470. https://doi.org/10.1016/
j.neuroimage.2015.03.047.

Zhang, Z.G., Hu, L., Hung, Y.S., Mouraux, A., Iannetti, G.D., 2012. Gamma-band
oscillations in the primary somatosensory cortex–A direct and obligatory correlate of
subjective pain intensity. J. Neurosci. 32, 7429–7438. https://doi.org/10.1523/
JNEUROSCI.5877-11.2012.

Zhuang, J., Peltier, S., He, S., LaConte, S., Hu, X., 2008. Mapping the connectivity with
structural equation modeling in an fMRI study of shape-from-motion task.
Neuroimage 42, 799–806. https://doi.org/10.1016/j.neuroimage.2008.05.036.

Zhuang, X., Walsh, R.R., Sreenivasan, K., Yang, Z., Mishra, V., Cordes, D., 2018.
Incorporating spatial constraint in co-activation pattern analysis to explore the
dynamics of resting-state networks: an application to Parkinson’s disease.
Neuroimage 172, 64–84. https://doi.org/10.1016/j.neuroimage.2018.01.019.

http://refhub.elsevier.com/S1053-8119(20)30122-1/sref52
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref52
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref52
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref52
https://doi.org/10.1002/hbm.21513
https://doi.org/10.1002/hbm.21513
https://doi.org/10.1002/hbm.20826
https://doi.org/10.3389/fninf.2013.00012
https://doi.org/10.3389/fninf.2013.00012
https://doi.org/10.1016/j.neuron.2010.08.017
https://doi.org/10.1016/j.neuron.2010.08.017
https://doi.org/10.1016/j.neuroimage.2016.12.061
https://doi.org/10.1016/j.neuroimage.2016.12.061
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref58
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref58
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref58
https://doi.org/10.1016/j.neuroimage.2004.06.035
https://doi.org/10.1016/j.neuroimage.2004.06.035
https://doi.org/10.1016/j.neuroimage.2015.09.010
https://doi.org/10.1038/ncomms12141
https://doi.org/10.1016/j.neuron.2017.12.018
https://doi.org/10.3389/fncom.2016.00060
https://doi.org/10.3389/fncom.2016.00060
https://doi.org/10.1002/hipo
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref65
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref65
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref65
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref65
http://refhub.elsevier.com/S1053-8119(20)30122-1/sref65
https://doi.org/10.3389/fphys.2012.00015
https://doi.org/10.1016/j.euroneuro.2010.03.008
https://doi.org/10.1016/j.neuroimage.2013.05.041.arXiv:NIHMS150003
https://doi.org/10.1007/s11682-013-9255-y
https://doi.org/10.1073/pnas.1705120114.arXiv
https://doi.org/10.1371/journal.pone.0067428
https://doi.org/10.1016/j.neuroimage.2015.07.002
https://doi.org/10.1016/j.neuroimage.2015.07.002
https://doi.org/10.1016/j.neuroimage.2015.03.047
https://doi.org/10.1016/j.neuroimage.2015.03.047
https://doi.org/10.1523/JNEUROSCI.5877-11.2012
https://doi.org/10.1523/JNEUROSCI.5877-11.2012
https://doi.org/10.1016/j.neuroimage.2008.05.036
https://doi.org/10.1016/j.neuroimage.2018.01.019

	Time-resolved effective connectivity in task fMRI: Psychophysiological interactions of Co-Activation patterns
	1. Introduction
	2. Methods
	2.1. Seed-based frame selection
	2.2. Static analysis
	2.3. Dynamic analysis
	2.4. Significance assessment
	2.5. Choosing the number of PPI-CAPs
	2.6. Experimental data
	2.7. fMRI preprocessing
	2.8. Considerations for the application of PPI-CAPs

	3. Results
	3.1. Static analysis
	3.2. Dynamic analysis

	4. Discussion
	5. Conclusion
	Funding
	Appendix A. Link between conventional PPI and the stationary PPI-CAP
	Appendix B. Supplementary data
	References


