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ABSTRACT

Functional magnetic resonance imaging (fMRI) is a non-invasive imaging technique that maps the brain’s re-
sponse to neuronal activity based on the blood oxygenation level dependent (BOLD) effect. This work proposes
a novel method for fMRI data analysis that enables the decomposition of the fMRI signal in its sources based
on morphological descriptors. Beyond traditional fMRI hypothesis-based or blind data-driven exploratory ap-
proaches, this method allows the detection of BOLD responses without prior timing information. It is based
on the deconvolution of the neuronal-related haemodynamic component of the fMRI signal with paradigm free
mapping and also furnishes estimates of the movement-related effects, instrumental drifts and physiological fluc-
tuations. Our algorithm is based on an overcomplete representation of the fMRI voxel time series with an additive
linear model that is recovered by means of a L1-norm regularized least-squares estimators and an adapted block
coordinate relaxation procedure. The performance of the technique is evaluated with simulated data and real
experimental data acquired at 3T.

Keywords: Functional Magnetic Resonance Imaging, Paradigm Free Mapping, Block Coordinate Relaxation,
Morphological Component Analysis

1. INTRODUCTION

Since its introduction in the early 1990s, functional magnetic resonance imaging (fMRI) has become a widespread
tool for neuroscientists and clinicians to study brain function.1 fMRI is a non-invasive functional imaging
technique that allows spatio-temporal mapping of local changes in blood magnetic susceptibility related to
changes in cerebral blood flow, cerebral blood volume, and oxygen metabolism that occur due to increased
neuronal activity, the blood oxygenation level dependent (BOLD) effect.

In general, the fMRI signal is modeled as the linear convolution of the haemodynamic response function
(HRF) with an input signal related to the neuronal activity (e.g. by means of the known stimulus timecourse).
Unfortunately, changes in the fMRI signal originating from neuronal activity are only of the order of few percent
of the signal’s amplitude. Besides, the fMRI signal also comprises instrumental and physiological confounds that
hamper the detection of the BOLD responses. Hence, assuming a priori knowledge of the timing of the events and
looking for evidence of stimulus-related activity is nowadays the prevalent approach for fMRI analyses. However,
this information can be difficult to obtain under certain clinical, behavioural or experimental conditions. For
instance, the study of brain activations associated to interictal epileptic discharges with concurrent EEG-fMRI
where the onset of the activations in the fMRI GLM model is obtained from the discharges detected on the scalp
EEG by an experimented electroencephalographer. Therefore, there is a growing need for fMRI data analysis
techniques that avoid a-priori specification of the onsets of BOLD responses, and which allow the use of more
unconstrained experimental paradigms.

If there is no information about when cortical activations occur or about the shape of the HRF, model free
techniques, such as principal component analysis (PCA), independent component analysis (ICA), or clustering
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methods, can be used to identify voxels showing consistent and common temporal or spatial patterns of activa-
tion.2 Despite the common belief, model-based techniques have also been developed to study the brains response
with no timing assumptions. To cope with certain flexibility in the onset and duration of the response, temporal
and dispersion derivatives of the canonical HRF can be used.3 Bayesian deconvolution of an asynchronous HRF
model in which the image acquisition rate is jittered has also been proposed.4, 5 Nevertheless, these are semi-
blind methods in that they still use the knowledge of the stimulus timing. Probabilistic frameworks based on
Hidden Markov models6, 7 or change point theory methods8–10 also have similar goals. More recently, dynamic
deconvolution of nonlinear stochastic haemodynamic models11, 12 has attempted to provide an estimate of the
neuronal-related signal without using timing information, along with the model parameters and physiological
variables underlying the BOLD effect.13–16 Nevertheless, these approaches are designed for the deconvolution
of regional time series exhibiting high signal-to-noise ratios and thus their practical use for single voxel analysis
is challenging. Finally, the combination of a new HRF-shaped wavelet basis, termed activelets, which sparsifies
the BOLD signal, and nonlinear sparse search algorithms has yielded satisfactory results for the analysis of slow
event-related fMRI data without prior information of the event timings.17

Recently, we have presented two methods that aim to map the cortical response to single-trial BOLD events
with no prior information about their timing or location: Paradigm Free Mapping (PFM)18 and Sparse Paradigm
Free Mapping (SPFM).19 These methods are based on the voxelwise deconvolution of the HRF assuming a linear
haemodynamic model.20 For PFM, the ridge regression estimator was used for the deconvolution and time points
exhibiting significant changes in the deconvolved signal were detected based on a temporal t-statistic against
a baseline state.18 In contrast, Sparse Paradigm Free Mapping used the Dantzig Selector21 to deconvolve the
haemodynamic signal assuming a sparse activation model, enabling an automatic detection of the events and
avoiding the need to define a baseline period (free from neuronal activity). Due to its sparsifying features, the
Dantzig Selector reduces to zero those time points of the deconvolved signal where no BOLD events occur.19

In this paper, we propose a new extension to the family of Paradigm Free Mapping methods. This approach
decomposes the fMRI signal into its multiple sources according to their morphological signatures. Similar to
morphological component analysis (MCA),22 the components are estimated using an adaptation of the Block
Coordinate Relaxation (BCR) algorithm23 where the fMRI signal at each voxel is recursively projected onto
a set of dictionaries. Without prior timing models, our method extracts the neuronal-related haemodynamic
component of the signal assuming it admits a sparse representation into a haemodynamic dictionary. Further-
more, it also furnishes estimates of the baseline fluctuations related to scanner drifts, physiological confounds
and motion-related effects. Therefore, the algorithm can be understood as a generalization of partially linear
models or semiparametric generalized linear models for fMRI time series.24–26 As a proof of concept, the method
is evaluated using realistic simulations of fMRI data and we demonstrate its usefulness with experimental data
acquired at 3T.

2. PARADIGM FREE MAPPING WITH MORPHOLOGICAL COMPONENT
ANALYSIS

2.1 Signal model

Let us consider that the fMRI signal of a voxel can be decomposed as y(t) = x(t) + g(t) + e(t), where x(t), g(t)
and e(t) represent the neuronal-related haemodynamic component, the baseline fluctuations and random noise
of the signal, respectively. The haemodynamic signal x(t) is commonly assumed to be the output signal of a
linear time invariant system, x(t) = h(t) ∗ s(t), characterized by the haemodynamic response function h(t) and
whose input signal s(t) is related (but not equal) to the underlying neuronal signal. Sampling every TR seconds,
the continuous-domain model outlined above can be written as

yn =

D−1∑

d=0

hdsd−n + gn + en, n = 1, . . . , N, (1)

where N is the number of observations of the signal, and D is the discrete duration (at TR resolution) of the
haemodynamic response function. Typical values of TR range between 0.5 s and 3 s for whole brain coverage.
Equivalently, the model in (1) can be written as y = Hs + g + e, where y, s, g and e are N × 1 vectors, and
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the matrix H of size N × N is the Toeplitz convolution matrix with shifted HRFs such that x = Hs. Note
that traditional model-based techniques for fMRI data analysis test for the presence of a given haemodynamic
regressor, which is modeled as the convolution of the HRF with a stimulus signal based on the stimulus or event
times,3, 27 whereas our model just assumes the shape of the HRF without specifying a stimulus function.

On the other hand, baseline fluctuations consist of multiple confounding sources, such as scanner drifts,
physiological cardiac and respiratory fluctuations or movement-related effects.28 If each component were to be
described by a unique morphological dictionary, we envision that the baseline term could be decomposed in P
additive components as g =

∑P
i=1 gi =

∑P
i=1 Φiαi, where each component gi = Φiαi is expanded as a weighted

sum of the parametric functions in the dictionary matrix Φi. Henceforth, we will assume P=3 components for
the baseline.

The first component describes very low-frequency scanner drifts (below 0.01 Hz) due to hardware instabil-
ities that can be described by a set of Ls pairwise uncorrelated Legendre polynomials.29 We denote this first
component as gs = Φsαs, where Φs is a N × Ls matrix (dictionary) comprising the Legendre polynomials, and
αs is the Ls × 1 vector with the unknown coefficients.

The second component describes residual movement-related artefacts that can be present in the fMRI signal
even after perfect rigid-body realignment. In case of smooth motion, it is normally sufficient to model the
motion-related effects by a linear combination of the 6 translation and rotation time series estimated during
realignment. Similar to the scanner drifts, the motion-related component can be described as gm = Φmαm,
where Φm is the N × 6 matrix (dictionary) with the realignement parameters.28, 30

The third component of the fMRI signal considered here describes physiological fluctuations (denoted as
gp) with noise-like properties, caused by changes in respiration and the heartbeat, which explain a substantial
percentage of the BOLD signal variance mainly in voxels located in cerebrospinal fluid (CSF) and gray matter
(GM).31–33 It is assumed that the physiological processes that give rise to the respiratory and cardiac fluctu-
ations are quasi-periodic signals at the fundamental respiratory and cardiac frequencies and their harmonics.
RETROICOR31 is one of the methods most commonly used to remove physiological artefacts from fMRI data if
the cardiac and respiratory phases are monitored during the scan acquisition. In RETROICOR, the physiological
component to be removed is expressed in continous time as:

gp(t) =

M∑

m=1

acm cos(mφc(t)) + bcm sin(mφc(t)) + arm cos(mφr(t)) + bcm sin(mφr(t)), (2)

where M is the number of harmonics including the fundamental frequency, and φc(t) and φr(t) are the time-
dependent cardiac and respiratory phases, respectively. Providing no abrupt changes in the cardiac and respira-
tory phases occurred during the scan acquisition, the physiological component in (2) can be written in discrete
time as a linear combination of cosine and sine functions:

gp(n) =
N−1∑

k=0

ak cos(ωkn) + bk sin(ωkn), (3)

for n = 0, . . . , N − 1, and ωk = 2πk/N , and where only those coefficients corresponding to the respiratory and
cardiac fundamental frequencies and their harmonics are nonzero. Following this assumption, in this work we
propose modelling the physiological noise component of the signal as gp = Φpαp, where Φp is the N×N Discrete
Fourier Transform (DFT) matrix and αp is the N ×1 complex vector of the unknown DFT coefficients such that
the physiological component would admit a sparse representation in the DFT dictionary.

In summary, our model for the fMRI signal is given as y = Hs + Φsαs + Φmαm + Φpαp + e. Our goal
is estimating these four components of the fMRI signal (x, gs, gm, and gp) from N observations with no prior
information about the haemodynamic events, no physiological monitoring, and only using the dictionaries H,
Φs, Φm, and Φp. Note that this problem is underdetermined since the total number of unknowns (N for
the haemodynamic component, Ls for the scanner drifts, 6 for the motion-related component and N for the
physiological component) largely exceeds the number of observations N .
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2.2 Estimation algorithm

In this work, we propose to estimate the components by solving the following constrained optimization problem:

{ŝ, α̂s, α̂m, α̂p} = min
s,αs,αm,αp

‖y−Hs−Φsαs −Φmαm −Φpαp‖22 + λ‖s‖1 + λ‖αp‖1, (4)

where the non-negative real regularization parameter λ balances the model imperfection measured in terms of
the residual sum of squares, and the sparsity of the representation of the neuronal-related haemodynamic and
physiological components in the haemodynamic and DFT dictionaries.

Since no constraints have been imposed on the vectors characterizing the scanner drifts αs and motion-
related effects αm, these components can be combined as gsm = gm + gm = Φsαs + Φmαm = Φsmαsm,
where Φsm = [Φs Φm] and αT

sm = [αT
s αT

m]. In contrast, penalty terms in terms the L1-norm are used for the
haemodynamic component s and the physiological component αp to favour sparse estimates of these vectors. In
first place, our model considers that the physiological source has a sparse representation in the DFT dictionary.
Secondly, we assume that in slow event-related paradigms or single-trial BOLD responses, the neuronal-related
signal s is a sparse vector at the fMRI timescale where few coefficients have amplitudes significantly different
from zero. In other words, the haemodynamic component of the fMRI signal admits a sparse representation in
the dictionary H characterized by the HRF shape.

To solve the optimization problem in (4), we use an adaptation of the Block Coordinate Relaxation (BCR)
algorithm23 and morphological component analysis,22, 34 similar to the procedure proposed in (Fadili and Bull-
more, 2005).24 The algorithm proceeds as follows. Let x(i) denote the value of an arbitrary variable x at iteration

i. The vector estimates are initialized (at iteration i=0) as ŝ(0) = 0, α̂p
(0) = 0, and α̂(0)

sm = (ΦT
smΦsm)−1ΦT

smy
(i.e. the orthogonal least squares (OLS) estimator of αsm given the original fMRI voxel time-series). Next, the

residuals of the OLS projection onto the subspace spanned by Φsm (i.e. r(0) = y −Φsmα̂(0)
sm) are decomposed

into the haemodynamic and DFT dictionaries such that the initial value of the regularization parameter is set
to the maximum absolute coefficient considering both decompositions, i.e. λ(0) = max{‖HT r(0)‖∞, ‖ΦT

p r
(0)‖∞},

which enforces the estimates of ŝ(0) and α̂p
(0) to be zero as initialized.

After initialization, the algorithm proceeds recursively by updating the solutions to the optimization problem
in (4) with decreasing values of λ. At each iteration, an inner loop with log2 N iterations is repeated to guarantee
convergence of the estimates for the corresponding λ. First, update α̂p by solving the following Basis Pursuit
Denoising (BPDN) problem35 assuming that ŝ and α̂sm are fixed:

α̂(i+1)
p = min

αp

‖y−Hŝ(i) −Φsmα̂(i)
sm −Φpαp‖22 + λ(i)‖αp‖1, (5)

which can be efficiently computed via soft-thresholding since the DFT is an orthonormal basis. Since the rest
of components have been removed from the signal, the BPDN estimator in (5) will choose the most salient
coefficients describing sinusoidal fluctuations. Second, the vector ŝ is then updated by solving the following
BPDN problem assuming that α̂p and α̂sm are fixed:

ŝ(i+1)
p = min

s
‖y −Hŝ−Φsmα̂(i)

sm −Φpα̂
(i+1)
p ‖22 + λ(i)‖s‖1. (6)

Since the haemodynamic dictionaryH is not orthonormal, solving (6) cannot be done via soft-thresholding. Here,
we use a primal-dual pursuit homotopy procedure36 to solve (6), but note that other convergent algorithms could
also be used without loss of generality of the procedure. Third, the estimate of αsm is updated via OLS assuming
that ŝ and α̂p are fixed:

α̂(i+1)
sm = (ΦT

smΦsm)−1ΦT
sm(y −Hŝ(i+1) −Φpα̂

(i+1)
p ). (7)

A convergence criterion is evaluated at the end of each loop (see section 2.3) and if not fulfilled, the reg-
ularization parameter λ is reduced and steps (5-7) are repeated for the new value of λ. Here, we choose to
exponentially decrease the value of λ from its initial value λ(0) to a minimum value, λmin, in Nmax iterations,
such that λ(i+1) = δλ(i) where δ = (λ(0) − λmin)/(Nmax − 1). Therefore, the accuracy of the estimates and
the speed of the algorithm depend on Nmax and the range of λ considered. The smaller the step factor δ is
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(either using larger Nmax or reducing the difference between λ(0) and λmin), the finer the minimization is, but
the slower the algorithm converges. In addition, the value of λmin must be chosen such that the condition of
the convergence criterion is met. Here, λmin is set to half of the Maximum Absolute Deviance estimate of the
noise standard deviation37 after decomposing the fMRI time series with a Daubechies wavelet with 2 vanishing
moments.38

2.3 Convergence criterion and debiasing

Since the aim of our approach is to decompose the fMRI signal into its morphological components, the residuals
after convergence would ideally become a stochastic, white noise process with an approximately flat power
spectrum and an approximately linear cumulative power spectrum. Hence, at the end of each iteration, under
the null hypothesis of white residuals, a test based on the linearity of the cumulative power spectrum of the
best linear unbiased scalar covariance residuals (BLUS)39, 40 is used to decide when to stop the convergence. A
detailed description of the test statistic and the corresponding approximate p-value can be found elsewhere;40

we use the software implementation of the test that is available in the SPMd (Statistical Parametric Mapping
Diagnosis) extension of SPM (FIL/UCL, UK). We propose stopping the convergence of the algorithm when the
p-value for the test statistic was above 0.01.

Finally, after convergence is achieved, a final debiasing step is performed in order to overcome the tendency of
estimators with L1-norm regularization terms to underestimate the true value of the nonzero coefficients of ŝ and
α̂p.

21 In other words, we rely on the iterative adapted BCR algorithm described above to select those coefficients
that better explain each component according to its morphological dictionary, and then update the weights of
these coefficients according to a least squares criterion to minimize estimation bias, keeping the non-selected
coefficients as zero.

In computing the BLUS residuals and debiasing, the model matrix is defined as X̃(i) = [H(i) Φs Φm ĝ(i)],
where H(i) is the matrix including the subset of columns of H corresponding to these nonzero coefficients of ŝ(i).
In general, using ĝ(i) results in better operation of the convergence criterion instead of using the corresponding
matrix Φ(i)

p (i.e. the subset of columns of the dictionary Φp corresponding to these nonzero coefficients of α̂(i)
p ).

3. RESULTS: SYNTHETIC DATA

The performance of the method is first evaluated on fMRI simulated time series of duration at 256 s with
a temporal resolution (TR) of 1 s (i.e. N = 256). Each time series was created as the sum of a neuronal-
related haemodynanamic component, a motion-related component, a physiological component, a signal with unit
constant amplitude, and uncorrelated Normal noise representing thermal noise. The haemodynamic component
was created as a neuronal-related signal including 6 events of duration of 4 s at onsets 10, 40, 100, 120, 190, and
230 s, convolved with the two gamma-variate canonical HRF:3, 27

h(t) = g(t, τ1, l1)− 1

6
g(t, τ2, l2); where g(t, τ, l) =

lτ tτ−1
+ e−lτ

Γ(τ)
, (8)

with standard SPM parameters (i.e. the time-to-peak (τ/l) and dispersion (τ/l2) are 6 s and 1 s for the initial
peak, and 16 s and 1 s for the undershoot, respectively, and the total duration of the HRF is 32 s corresponding to
a discrete length of D=33 time points). The neural-related input signal and the HRF were initially simulated at
intervals of 100 ms, then downsampled to TR of 1 s. The motion-related component consisted of a weighted sum
of the 6 timecourses of the translation and rotation parameters estimated in the realignment of an experimental
fMRI dataset, where the weights where randomly generated following a Normal distribution with zero mean
and unit variance. Following the RETROICOR model for the physiological fluctuations in (2), the physiological
component was simulated as

gp(t) =

2∑

m=1

1

2i−1
(sin(2πfr,it+ φr,i) + sin(2πfc,it+ φc,i)). (9)

The frequencies of each sinusoid were randomly generated following Normal distributions as fr,i ∼ N (ifr, 0.04)
and fc,i ∼ N (ifc, 0.04), where the fundamental frequencies were fr,1=0.3 Hz for the respiratory component,32
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and fc,1=1.1 Hz for the cardiac component,33 and the phases were randomly selected from an uniform distribu-
tion between 0 and 2π radians. Prior to adding the physiological, motion-related and thermal components to
the haemodynamic component, they were normalized to unit standard deviation and weighted according to a
comprehensive model of the noise in fMRI experiments.41, 42

In fMRI studies, the temporal signal-to-noise ratio (tSNR) is defined as tSNR=S/σ where S is the mean of
the signal in the absence of events and physiological or systematic trends, and σ is the standard deviation of the
time series. In our simulation model, the mean of the fMRI signal was set as S = 1, whereas the signal variability
is σ2 = σ2

p+σ2
m+σ2

0, where σ
2
p is the variance of the physiological component, σ2

m of the motion component, and
σ2
0 of the thermal noise.42 We simulated a tSNR = 60 (i.e. σ = 0.0167), and considered the following distribution

for the variance of the components: σ2
p = 0.0105, σ2

m = 0.0024, σ2
0 = 0.0127, based on realistic relationships

between the components.42, 43 In addition to the tSNR, the detection of the BOLD responses also depends on
the contrast-to-noise ratio of the BOLD response defined as CNR = tSNR(ΔS/S), where ΔS is the BOLD signal
change due to the haemodynamic events.41, 42 After normalization of the haemodynamic signal to a maximum
amplitude of 1, the BOLD events were scaled to have a signal change ΔS of 4%, typically observed at 3T MR
scanners,44 resulting in a CNR of 2.4.

The results for one simulated fMRI time series are illustrated in Figure 1. It can be seen that the method is
able to provide accurate estimates of the neuronal-related haemodynamic (second row), physiological (third row),
motion-related signals (fourth row) and the constant signal which, when summed, provide a good denoised version
of the fMRI signal (first row). Using sparse regression for the recovery of the haemodynamic and physiological
components provides well-tuned estimates of the haemodynamic events without prior information of their timing
and amplitude, and the fundamental harmonics of physiological component (the component at 0.3 Hz corresponds
to the respiratory signal, whereas the one at 0.1 Hz corresponds to the aliased cardiac component) without prior
information on their frequencies. In contrast, the harmonic at 0.2 Hz is only captured with very low amplitude,
whereas the harmonic at 0.4 Hz is not detected, probably due to the fact that the percentage of both harmonics
on the total fMRI signal variance is not sufficient to be accurately estimated. Furthermore, the algorithm is able
to recover the motion-related signal despite nearly exhibiting a flat spectrum, benefiting from the morphological
information about this component that is available in the realignment parameters.

Figure 2 shows the results averaged over 1000 realisations of the previous fMRI simulated time series with
varying physiological component and thermal noise. Each plot displays the true simulated signals, and the median
and confidence interval of the estimates defined by the 50% , and 10% and 90% percentiles respectively. It can
be observed that debiasing the estimates (right column) helps to recover the amplitude of the haemodynamic
events and the sinusoidal harmonics better, and adjust the trajectory of the motion-related signal better than not
performing the final debiasing step. Nevertheless, if the initial estimates are incorrect (i.e. the algorithm detects
false events or sinusoids), the estimation error increases with debiasing. This drawback is mainly observed in
the form of errors in the estimate of the haemodynamic component (top figure, right column) even though, on
average (median), the recovered haemodynamic signal closely follows the simulated one. Interestingly, errors in
the estimation of the simulated haemodynamic signal are located in the neighbourhood of the real events, which
might reflect an interaction between all components that leads to offsets in the recovery of the event onset. Finally,
the confidence interval for the motion-related component is larger than that for the other components. This can
be explained due to the small percentage of the fMRI signal attributed to the motion-effects in our simulations
since the variance of the motion-related component is 5% of the variance of the physiological component. One
can expect that the larger the ratio of signal variance explained by a component, the more accurate its estimate,
providing it can be adequately described by its morphological dictionary and with negligible collinearity between
the dictionaries.34

4. RESULTS: FMRI EXPERIMENTAL DATA

As a proof of concept, the usefulness of the algorithm was tested in an fMRI experimental dataset obtained after
scanning one subject (27 years, male) in a Siemens TIM Trio 3T MR system with a 32-channel head coil. The
paradigm consisted of 10 events of visual flickering checkerboard (8Hz frequency) with duration 1 s and random
onsets. Visual stimuli were projected from the back of the scanner room onto a screen that the subject observed
with a mirror. When no visual stimuli were presented, the subject was instructed to maintain visual fixation
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Figure 1. Decomposition of a simulated fMRI time series into the neuronal-related haemodynamic (6 BOLD events of
duration 4 s), physiological and motion-related signals.

on a cross in the center of the screen. The fMRI data comprised N = 140 T2*-weighted gradient echo images
acquired with an echo planar imaging (EPI) trajectory (TR = 2 s, echo time (TE) = 30 ms, flip angle = 85o, voxel
size = 3.25x3.25x3.5 mm3). As for preprocessing, fMRI data were first corrected for head motion by realigning
all images to the first image, and then smoothed spatially with a 3D isotropic Gaussian filter with full-width
at half-maximum of 5 mm, and both steps were performed with the SPM8 software (Wellcome Trust Centre
for Neuroimaging, UCL, UK).27 A T1-weighted MPRAGE anatomical image was also acquired, and registered
to the first fMRI image using AFNI (NIMH/NIH)45 to help with the anatomical localization of the functional
activations.

Figure 3 illustrates the operation of the algorithm in a voxel located in the primary visual area exhibiting
a clear response to the visual events. To select this voxel, we performed a conventional GLM analysis using
SPM8 with 27 regressors: two regressors for each individual event (20 regressors) resulting from the convolution
of delta functions at the onset of the events with the canonical haemodynamic response function and its first
temporal derivative,3 the 6 translation and rotation time series estimated during realignment, and a constant
term to model the signal mean. The activation map shown on the right reveal the common response to the
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Figure 2. Averaged estimates with (left) and without debiasing (right) of the neuronal-related haemodynamic, physiological
and motion-related signals over 1000 realisations with varying physiological and thermal noise. Grey shadow areas indicate
the confidence interval of the estimates, defined by the 10% and 90% percentiles.

10 events (F -test) thresholded at uncorrected p ≤ 0.001 (F -statistic = 2.51) at one slice covering the occipital
cortex, overlaid over the corresponding T1-weighted image slices. The F -statistic of the selected voxel is F20,128

= 9.276. The maps obtained with our approach also display this voxel as active. As it can be seen in the figure,
the BOLD responses to the 10 visual events (whose onsets are marked with arrows) are clearly deconvolved in
the haemodynamic signal. In addition, the algorithm is able to separate the part of the signal due to sinusoidal
fluctuations, motion-related effects and scanner drifts. For the sake of simplicity, the signals modeling scanner
drifts and motion-related changes are combined into a single timecourse.

5. CONCLUSIONS

We have presented an extension of paradigm free mapping which aims to decompose the fMRI data into its
sources based on an overcomplete representation the fMRI voxel time series with multiple morphological dic-
tionaries. Unlike conventional fMRI data processing methods, our algorithm does not need the knowledge of
the stimulus events (i.e. it is a form of paradigm free mapping). Without loss of generalization, our model
considered four sources: scanner drifts, motion-related effects, physiological sinusoidal fluctuations and the
neuronal-related haemodynamic signal, that were estimated by means of regularized least-squares estimators
with L1-norm penalties for the neuronal-related haemodynamic and Fourier coefficients modeling the physiologi-
cal fluctuations. Similar to morphological component analysis, an adapted block coordinate relaxation algorithm
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Figure 3. Decomposition of the fMRI time series of a voxel located in the primary visual area into the neuronal-related
haemodynamic, physiological and motion-related signals. This voxel showed a significant response to the 10 visual stimuli
whose onsets are marked with arrows, which are clearly deconvolved in the estimate of the haemodynamic signal.

was used to solve this problem and the criterion to assess convergence of the algorithm was based on a statistical
test on the whiteness of the residuals.

We envisage that this way of decomposing fMRI data (based on a-priori expertise regarding the shape
of the fMRI signal sources) will become particularly useful for ultrahigh-field MR systems where the large
contrast and signal-to-noise ratios makes feasible the deconvolution of the components of the fMRI signal with
overcomplete representations and using sparsity constraints. This technique provides a useful new method for
exploratory analysis of fMRI data situated between conventional general-linear-model fitting (with a fixed model)
and relatively unconstrained approaches such as independent component analysis.
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