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A B S T R A C T

Functional connectivity (FC) derived from resting-state functional magnetic resonance imaging (rs-fMRI)
allows for the integrative study of neuronal processes at a macroscopic level. The majority of studies to date have
assumed stationary interactions between brain regions, without considering the dynamic aspects of network
organization. Only recently has the latter received increased attention, predominantly in human studies.
Applying dynamic FC (dFC) analysis to mice is attractive given the relative simplicity of the mouse brain and the
possibility to explore mechanisms underlying network dynamics using pharmacological, environmental or
genetic interventions. Therefore, we have evaluated the feasibility and research potential of mouse dFC using
the interventions of social stress or anesthesia duration as two case-study examples. By combining a sliding-
window correlation approach with dictionary learning, several dynamic functional states (dFS) with a complex
organization were identified, exhibiting highly dynamic inter- and intra-modular interactions. Each dFS
displayed a high degree of reproducibility upon changes in analytical parameters and across datasets. They
fluctuated at different degrees as a function of anesthetic depth, and were sensitive indicators of pathology as
shown for the chronic psychosocial stress mouse model of depression. Dynamic functional states are proposed
to make a major contribution to information integration and processing in the healthy and diseased brain.

Introduction

Functional connectivity (FC) is a measure of statistical inter-
dependence of the activity traces of two brain regions, providing
insight into interactions between brain areas and how they jointly
support information processing (Power et al., 2014). FC analysis has
gained in importance over the past decade, shedding light on large-
scale brain organization by identifying a set of autonomous network
modules such as the default mode network (DMN), and contributing to
improved understanding of brain function and the changes underlying
several brain disorders (Greicius, 2008). While information processing
by the brain is a highly dynamic process requiring exquisitely orche-
strated regional interactions, the majority of FC studies on spontaneous
brain activity as assessed by functional magnetic resonance imaging
(fMRI) assume stationarity, i.e. constant interactions throughout the
duration of a resting-state scanning session. However, rapid changes in
EEG microstate, i.e. coherent activation at a sub-second time scale

within global functional brain networks, have been described (Van de
Ville et al., 2010). Dynamic functional connectivity (dFC) aims to
capture aspects of time-varying coupling patterns between regions and
therefore to reveal the dynamic features of network organization.
Interestingly, dynamic EEG microstates have been shown to correlate
significantly with activity in fMRI resting-state networks despite the
pronounced temporal filtering imposed by the hemodynamic response
function (Van de Ville et al., 2010).

A wide range of approaches has been used to analyze the dynamic
characteristics of the fMRI signal (Calhoun et al., 2014). Changes in FC
across time can be estimated by applying a so-called sliding-window
approach, in which the resting-state brain signals are subdivided into
time-shifted segments of short duration, each of which then undergoes
correlation analysis. For studies considering more than a few pairwise
interactions or aiming at group-level analysis, dimensionality reduction
is commonly achieved by applying multivariate techniques to the large
set of FC time courses. Allen and colleagues proposed the application of
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k-means clustering to identify dynamic functional states (dFS) (Allen
et al., 2014), while previous work by Leonardi et al. introduced
eigenconnectivities by the application of principal component analysis
(PCA) (Leonardi et al., 2013), and dictionary learning (Leonardi et al.,
2014).

The dynamic nature of FC raises questions concerning the neuronal
basis underlying this phenomenon, both in the normal and diseased
brain. It has been suggested that dynamic FC patterns in awake
humans at rest might be driven by both conscious and unconscious
brain processes, which may vary across subjects (Hutchison et al.,
2013), rendering the elucidation of mechanistic aspects difficult.
Analogous studies in anesthetized animals serve as a powerful com-
plementary approach to gain mechanistic insight. Hutchison et al.
demonstrated the non-stationary behaviour of FC in anesthetized
monkeys, proving the existence of dFS in the unconscious brain and
in the absence of potential confounds due to head motion (Hutchison
et al., 2013). Analysis of the dynamic properties of FC in anesthetized
rats revealed similarities with dFC patterns in awake humans and
monkeys (Majeed et al., 2011), and furthermore demonstrated a
correlation between dFS derived from resting-state fMRI and the
dynamics of electrophysiological recordings (Thompson et al., 2013).
Studies in mice offer additional opportunities to examine factors
regulating dFC aspects. Optogenetics (Lee et al., 2010) and pharma-
cological interventions (Razoux et al., 2013) may be used to modulate
specific neuronal populations in order to analyze their involvement in
wide-range neural networks and in dynamic network interactions. In
addition, models of human pathology might indicate disease-specific
alterations in dFC, which could be relevant from a mechanistic point of
view or serve as early disease indicators (Grandjean et al., 2014b).

We have evaluated whether dFC analysis of anesthetized mice
resting-state fMRI data enables the identification of dFS that is
sufficiently reproducible to study potential alterations due to changes
in physiological conditions or in response to pathological stress. The
results are organized into four sections: i) quality control with regard to
reproducibility of brain parcellation and stationary FC analysis, ii)
estimation of reference dFS based on rs-fMRI data of healthy mice, iii)
a test of dFC on surrogate data, as well as of the reproducibility and
generalization of dFS in an independent dataset, and iv) analysis of the
sensitivity of the approach in identifying dFC changes induced by
pathology (murine model of chronic psychosocial stress) or alterations
in physiological state (prolonged anaesthesia).

Stationary FC analysis revealed a segregated organization into
distinct modules such as the sensory-motor cortical networks, sub-
cortical networks, and DMN. To establish meaningful group-level
components of fluctuations of FC, we applied dictionary learning to
the dFC time courses obtained with sliding-window correlation. This
method allows for generalization upon conventional subspace methods
such as PCA and ICA by adding constraints such as temporal sparsity,
bounded values, and positivity (Leonardi et al., 2014). The positivity
constraint allows for discrimination of increases and decreases in
connectivity, so that these are not forced to have the same temporal
occurrence for the whole duration of data acquisition. Furthermore,
positivity enables the capturing of strongly anti-correlated patterns as
two different building blocks with anti-correlated time courses.
Inclusion of temporal sparsity can be justified in view of a recent
report providing evidence that the various networks are acting
together, but not the whole repertoire at once (Karahanoglu and Van
De Ville, 2015). This indicates that connectivity states exist economic-
ally, with only a subset being active together at a given time point.

The dFC analysis revealed dynamic interactions between and within
the modules derived by stationary FC analysis. Furthermore, we show
that the patterns identified by dictionary learning could be reproduced
in an independent dataset using a different preprocessing pipeline, and
that they are largely independent of parameter choices throughout the
analytical procedure. Finally, we demonstrate that dFS might consti-
tute sensitive indicators of: abnormal processing, as illustrated in a

mouse model of psychosocial stress-induced depression-like brain and
behaviour (Azzinnari et al., 2014; Grandjean et al., 2016a); and
physiological adaptations, as observed during prolonged anaesthesia.
The data show that dFC analysis identifies rich information on
functional brain organization that remains hidden under conventional
stationary FC approaches. Overall, we demonstrate that dFC analysis
constitutes a number of promising research avenues with practical
guidelines that can lead to better and more sensitive imaging-based
biomarkers.

Materials and methods

Animals and preparation

All experiments were conducted following the Swiss federal ordi-
nance for animal experimentation, and were licensed by the Zürich
cantonal veterinary office. A total of 92 C57BL/6 mice bred in-house,
14 females and 78 males aged 8–12 weeks, were studied. Animals were
kept in standard housing, with 12 h day/night cycle, and food and
water provided ad libitum. Anesthesia was induced with isoflurane
3.5% in 1:4 O2 to air mix. Mice were endotracheally intubated, and
positioned onto an animal MRI-compatible support, equipped with a
hot water-flowing bed, and ear-bars to maintain the animal stable.
Mice were ventilated mechanically with a small animal ventilator
(CWE, Ardmore, USA) at 80 breaths per minute, with 1.8 ml/min
flow. The tail vein was cannulated to administer anaesthetic and
muscle relaxant. A bolus injection of medetomidine 0.05 mg/kg and
pancuronium bromide 0.2 mg/kg was administered, and isoflurane was
reduced to 1.5%. After 5 min, an infusion of medetomidine 0.1 mg/kg/
h and pancuronium bromide 0.4 mg/kg/h was administered, and
isoflurane was further reduced to 0.5%. The temperature was mon-
itored using a rectal thermometer probe, and maintained at 36.5 ±
0.5 °C throughout measurement. Physiological parameters during
anaesthesia were acquired in 5 mice outside the magnet using a mouse
pulse oximeter placed on the left hind paw (MouseOX Plus, STARR Life
Sciences). During physiological testing, pancuronium was omitted to
allow testing of the reflex response to forelimb pinches.

Dataset description

Functional imaging data were acquired in three separate runs, and
then grouped into different datasets for the analysis. Run 1: 14 female
mice imaged at baseline (ME1 dataset). Run 2: 25 male mice imaged
first at baseline, during which two fMRI scans separated by 30 min
were acquired. The animals then underwent a chronic psychosocial
stress (CPS, see below) paradigm and were imaged post-treatment.
Data from this run were included in two datasets: ME2 consisting of
only the baseline session and CPS2 including both baseline and post-
treatment session. Run 3: 53 male mice imaged at baseline followed by
CPS paradigm and imaged post-treatment. Data from this run, for
which stationary FC analysis has been reported previously (Grandjean
et al., 2016a), were divided into the FIX dataset consisting of only the
baseline session and CPS1 dataset including baseline and post-CPS
session. These datasets were further grouped as ME(all), encompassing
datasets processed with mutli-echo pipeline (ME1 and ME2), and
CPS(all), encompassing all datasets from the CPS paradigm (CPS1 and
CPS2). Datasets and respective acquisition procedures are detailed in
Table 1.

Chronic psychosocial stress

Chronic psychosocial stress (CPS) was conducted as described pre-
viously (Azzinnari et al., 2014; Fuertig et al., 2016). Briefly, each C57BL/6
CPS mouse was placed singly in the home cage of an aggressive CD-1
mouse, separated by a transparent, perforated divider. Across 15 days, the
CPS mouse was placed daily in the same compartment as the CD-1 mouse
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for either a cumulative total of 60 s physical attack or 10 min maximum. To
prevent bite wounds, the lower incisors of CD-1 mice were trimmed
regularly. The CPS×CD-1 mouse pairings were rotated so that CPS mice
were placed in the home cage and confronted with a novel CD-1 mouse
each day. This CPS procedure was conducted for 15 days, between 14:00
and 16:00 h. Control mice remained in littermate pairs, the standard
condition in our laboratory, and were handled and weighed daily. On day
16, post-treatment fMRI measurements were conducted (Grandjean et al.,
2016). Group sizes for the two datasets (CPS1, CPS2, see previous section)
are detailed in Table 1.

MRI acquisition

Images were acquired on a Biospec 94/30 small animal MRI system
(Bruker BioSpin MRI, Ettlingen, Germany) equipped with a linear
volume resonator coil for transmission and a 2×2 phased-array
cryogenic surface receiver coil. Images were acquired using
Paravision 6 software. Tripilot images were acquired to ensure proper
positioning of the mice with respect to the coil and the magnet
isocenter. Shim gradients were adjusted using a mapshim protocol,
with an ellipsoid reference volume covering the whole cerebrum.
Gradient-echo echo planar images (EPIs) were acquired either with
multi-echo (me-) or single-echo (se-) EPI. Me-EPIs were acquired with
repetition time TR=1500ms, echo time TE=11.5/17.3/23.1ms, flip
angle FA=60°, matrix size MS=60×30, field of view
FOV=18.2×9 mm2, slice number NS=20, slice thickness ST=0.3 mm,
slice gap SG=0.05 mm, acceleration factor AF=1.4, band width
BW=250,000 Hz, and saturation slice covering the lower non-brain
portion of the head. Se-EPIs were acquired with TR=1000 ms,
TE=9.2 ms, FA=90°, MS=90×70, FOV=20×17.5 mm2, NS=12,
ST=0.5 mm, SG=0.2 mm, AF=1.2, and bandwidth BW=250,000 Hz.

Data processing

The datasets used in this study are publicly available on the
central.xnat.org repository; the project ID for each dataset is provided
in Table 1.

Multi-echo images were processed using meica.py script (AFNI,
http://afni.nimh.nih.gov/). Briefly, the script performs de-spiking,
motion correction and skull stripping, followed by an independent
component analysis (ICA) decomposition of the images. For each
component, the TE dependency of the signal time series is estimated.
Components with a time series scaling with TE are considered BOLD-
related, whereas components that do not scale with TE are considered
non-BOLD, e.g. motion-, physiology- or scanner-related artifacts. The
non-BOLD components are regressed out from the time series to
provide a de-noised image. These were corrected for B1 field
inhomogeneity and transformed to the AMBMC reference MRI
template space (Australian Mouse Brain Mapping Consortium,
http://www.imaging.org.au/AMBMC) using linear affine and non-
linear greedy SyN transformation (ANTs V2.1, http://picsl.upenn.
edu/software/ants/).

Single-echo images were processed as in Zerbi et al. (Zerbi et al., 2015)
using FMRIB's ICA-based Xnoiseifier (FIX v1.062 beta, http://fsl.fmrib.ox.
ac.uk) (Salimi-Khorshidi et al., 2014). Images were skull stripped and
transformed to the AMBMC reference MRI template space as described
above. Individual-level independent component analysis (ICA) was
performed, and the resulting components were classified using a classifier
from a previous study (Zerbi et al., 2015). The components classified as
noise were regressed out from the time series.

Brain parcellation was based on a components atlas previously
extracted in a group-level ICA containing 17 non-overlapping ROIs (Fig
S2) (Zerbi et al., 2015) and further described in (Grandjean et al., 2016b).
Dual regression (FSL 5.0.1, http://fsl.fmrib.ox.ac.uk) was performed to
estimate the reproducibility of the components at the individual level.

Table 1
Datasets description.

Condition Label Run Description Sample Parameters XNAT project ID

Baseline ME1 1 One fMRI scan measured in each animal. N=14 C57BL/6 females ME_epi_mouse
ME-EPI
TR=1.5 s,
volumes=600
meica.py

ME2 2 Two fMRI scans (S1, S2) were measured
30 min apart in each animals (obtained as
baseline scan of CSD2 dataset)

NS1=25 C57BL/6 males CSD_ME_MOUSE
NS2=25 ME-EPI

TR=1.5 s,
volumes=360
meica.py

ME(all) ME1 and ME2 datasets combined N=64
FIX 3 One fMRI scan measured in each animal.

(obtained as baseline scan of CPS1
dataset)

N=53 C57BL/6 males CSD_MRI_MOUSE
SE-EPI
TR=1 s,
volumes=360
FIX

CPS CPS1 3 Animals were measured during a baseline
session (FIX). Following that, animals
were separated into Chronic Psychosocial
Stress (CPS) and control (CON) groups.
The CSD paradigm was applied during 15
days. Animals were measured in a post-
session.

NCON=27 C57BL/6 males CSD_MRI_MOUSE
NCPS=26 SE-EPI

TR=1 s,
volumes=360
FIX

CPS2 2 Animals were measured during a baseline
session (ME2). Following that, animals
were separated into Chronic Psychosocial
Stress (CPS) and control (CON) groups.
The CSD paradigm was applied during 15
days. Animals were measured in a post-
session.

NCON=12-
NCPS=9

C57BL/6 CSD_ME_MOUSE
males
ME-EPI
TR=1.5 s,
volumes=360
meica.py

CPS(all) CPS1 and CPS2 datasets combined NCON=39
NCPS=35
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Sliding window correlation

The regional time courses extracted from the brain parcellation
were first high-pass filtered with a cut off frequency of 0.02 Hz (Fig. 1A)
(Leonardi and Van De Ville, 2015). Dynamic functional connectivity
between the filtered time series was computed with pairwise Pearson
correlations using rectangular sliding windows of length 30 TRs
corresponding to 45 s and step size 1 TR, in line with previous studies
of similar temporal resolution (Hutchison et al., 2013; Leonardi et al.,
2013; Sakoglu et al., 2010). Correlation values were z-transformed, and
the connectivity matrices obtained for each time window were vector-
ized and stacked to yield a K x Nmatrix As for each subject s, with K the
number of pair-wise connections and N the number of windows
(Fig. 1C). To solely address the fluctuations of connectivity over time
regardless of their mean level (which may differ across subjects), the
matrix As was row-wise de-meaned (Leonardi et al., 2013). This
changes the interpretation of the final derived dFC patterns, which
will highlight in our case increases/decreases in connectivity with
respect to the mean (stationary FC), rather than high/low connectivity
values. To further investigate the effect of demeaning, the computation
was repeated without this operation and the results were compared.
The S=64 subject-specific matrices (ME(all) dataset, Table 1) were then
concatenated into a data matrix c cC A A= [ |…| ] = [ |…| ]1 N S

K N S
S

× ∙
1 ∙ ,

with N S∙ the product between the number of windows and the number
of subjects.

Surrogate dataset generation

As sliding window correlation analysis has been shown to induce
spurious correlations (Leonardi and Van De Ville, 2015; Lindquist
et al., 2014), we performed a test for the presence of significant dFC in

the matrix C. We generated 1'000 surrogate sets of time courses for
each resting-state scan of the ME(all) dataset using the amplitude-
adjusted phase randomization procedure, similar to Betzel et al.
(2016). This means generating surrogate time courses with randomized
phase, but preserving a similar amplitude distribution, an approxi-
mately similar frequency spectrum, and a similar stationary connectiv-
ity pattern compared to the real data. Surrogate data underwent then
sliding window correlation analysis, and subsequent temporal demean-
ing of pair-wise correlations as applied to the real time courses. For
each scan, a distribution of dFC fluctuations around the mean was
obtained, and its 2.5th and 97.5th percentiles were extracted as
significance thresholds for dFC excursions.

Estimation of dynamic functional connectivity networks with
dictionary learning

Dictionary learning was then applied to derive a set of signature
connectivity patterns with strong explanatory capabilities, i.e. atoms. We
generated a dictionary d dD = [ |…| ]1 M

K M× , with M=20 K-dimensional
column vectors as simple building blocks of whole-brain connectivity, the
atoms, and a coefficient matrix w wW = [ |…| ]1 N S

M N S× ∙
∙ , with the columns

containing coefficients describing how these atoms should be combined to
generate a good approximation of the set of signals in C. Minimization of
the cost function:

∑ w c wf W D
N S

s t D λ( , ) = 1
∙

. . − ≤i i i
i

N S

=1

∙

1 2
2

using a sparsity-enforcing algorithm yielded D and W. To prevent
convergence to a set of atoms similar to the ones that would be retrieved
by PCA (by definition, an optimal set in terms of explained variance to

Fig. 1. Method summary. A) For each animal, the time series describing the activity of the atlas components were extracted. B) Full correlations between the time series were
computed and averaged across ME(all) dataset (see Table 1) to obtain a stationary functional connectivity matrix. Functional connectivity presents a modular organization, split into a
lateral cortical network (LCN), an associative cortical network (PCN), a default-mode network (DMN), a striatal-limbic network (SLN), and the thalamus (Th). C) The time series were
analyzed with Pearson's correlation coefficient within sliding windows. Sliding-window correlation matrices describing the degree of whole-brain regional interactions at each time point
for each mouse are obtained. D) Through dictionary learning, building blocks of dynamic functional connectivity, the atoms, are extracted. The algorithm imposes that they be spatially
sparse, non-negative, bounded, and that they occur sparsely over time. E) Separately for each mouse, sliding-window correlation matrices are approximated by an atom through
univariate regression using least-square minimization, which generates an animal-specific weight time course for each atom. ROI abbreviations shown in (B) correspond to: motor (Mc),
supplementary (SSc), barrel field 1 and 2 (B1c, B2c), limb (Lc), visual (Vc), auditory (Ac), prefrontal (pfc), and cingulate/retrosplenial cortices (Cg/Rg), dorsal and ventral hippocampus
(dHc, vHc), piriform cortex (Pir), dorsal, lateral, and ventral striatum (dStr, lStr, vStr), amygdala (Amg), and thalamus (Th).
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linearly reconstruct the signal), λ was set to

∑ c cλ E
N S

= 2∙ = 2
∙

− ∼
i iPCA

i

N S

1
=1

∙

2
2

with c∼i the signal frame approximation obtained by projection onto the
space of the first M PCA components. A range of λ1 values between λ0.5∙ 1
and λ2∙ 1 were tested, yielding qualitatively similar resulting atoms.

In order to retrieve easily interpretable atoms, we required them to
be energy-bounded and positive by imposing the set of constraints

 d dC D s t j M i K D≜ { ∈ . . ∀ = 1, …, ,∀ = 1, …, , ≤1, ≥0}j
T

j
K M

ji
×

We performed dictionary learning 100 times (or folds; 400 itera-
tions for the first fold, 200 for the subsequent ones). We matched the
obtained atoms with the Hungarian algorithm (Kuhn, 2010), using
spatial correlation as the similarity metric and the first fold as
reference. To recover a robust final dictionary, we averaged, for each
atom, the fold instances exhibiting similarity above the median value
across all folds (Fig. 1D). Similarity was notably elevated in the case of
most trials and the few outliers were not included in the averaging
process. Animal-specific time-dependent contributions of atoms were
obtained by back-projection of the dictionary onto the original dFC
dataset using least-square fitting (Fig. 1E).

Generalization of dictionary learning estimation

To assess the reproducibility of the estimated atoms, 100 new sets
of atoms were generated de novo, as described above for different
window lengths or datasets. The newly generated atoms were com-
pared to the reference atoms using spatial correlation as similarity
metric, and using a nonparametric approach to define a similarity
significance threshold. For each comparison (between reference and
new dataset), we generated a null distribution of similarity values by
including all within-dataset similarities across atoms. The 95th per-
centile (Bonferroni corrected forM tests performed) of this distribution
was chosen as significance threshold. Then, we matched the atoms of
the two datasets with the Hungarian algorithm and the resulting
similarities across matched atoms were compared to the threshold.

Statistical analysis of group difference

Statistical analysis was performed in R 3.2.4 (The R Foundation for
Statistical Computing, Vienna, Austria), using linear mixed models
(lme4 package) for each atom separately. The absolute sum of time-
dependent contributions of atoms relative to the number of sliding-
window frames was used as a response variable. In the case of CPS
analysis, session (baseline and post-treatment) and groups (CPS and
control) were modelled as fixed effects, and the individual animal
intercepts were modelled as random effects. Statistical comparisons
were performed using contrast analysis (multcomp package), testing
for a session X group interaction effect followed by post-hoc test
(chronic stress effect in CPS group, or post-treatment vs baseline in the
control group specifically). In the case of anaesthesia duration analysis,
scan order (scan 1 and scan 2) was modelled as a fixed effect, and the
individual animal intercepts were modelled as random effects. A
contrast was designed to compare scan order. False discovery rate
(FDR) was used to correct for multiple comparisons performed across
atoms. To thoroughly assess whether observed group differences in
dFC properties (upon modified anesthesia level or psychosocial stress
induction) were due to dynamic brain connectivity properties without
methodological confounds, we employed a similar surrogate data
generation strategy as that described above (see Surrogate dataset
generation), except we modified the phase of each time course
independently of the others for a full breakdown of connectivity
properties. 1'000 such surrogate sets were generated for each resting-
state scan (under the null hypothesis of a group difference not

generated by dFC), and statistical measures of group differences were
extracted to build a null distribution, to which the real group difference
values were compared. Significance was declared if the effects esti-
mated with contrast analysis in the linear mixed model survived both
FDR correction and were outside the 95th confidence interval estimated
in the surrogate datasets, and are indicated as (**) in the figures.
Significant effects estimated with contrast analysis that did not survive
the FDR correction threshold, but were outside of the 95th confidence
interval, are indicated as (*).

Results

Functional brain parcellation and quality control

Resting-state fMRI data sets acquired from anesthetized mice were
of high quality, and presented minimal distortions even at higher TE
(Fig S1A). The maximal relative displacement during acquisition was
estimated at 0.023 ± 0.010 mm, corresponding to 7% and 10% of the
voxel dimensions for multi-echo and single-echo EPI, respectively.
Group average and standard deviation of the co-registered images
indicated good overlap with the reference template, and a homoge-
neous standard deviation distribution (Fig S1B, ME(all) dataset). Time
series were extracted according to a mouse brain parcellation derived
from a prior group-level independent component analysis (ICA; Fig S2)
(Zerbi et al., 2015). Similar components were reported in previous
studies, including with different anaesthesia regimen, e.g. (Grandjean
et al., 2014a; Sforazzini et al., 2014). Mouse resting-state networks are
generally considered to be organized with a bilateral structure (Gozzi
and Schwarz, 2016), we have thus decided to use the components as
such rather than artificially separating ROI per hemisphere. Further,
we have opted for a data-driven parcellation in order to retain relevant
functional networks compared to anatomical-based atlases which may
artificially split or merge these networks. Frequency analysis for time
series extracted in the supplementary cortical component indicated a
spread frequency distribution peaking near 0.15 Hz (Fig S3A, B, and
C), comparable between datasets, and consistent with previously
described distributions related to medetomidine in both mice and rats
(Grandjean et al., 2014a; Kalthoff et al., 2011). In time series extracted
prior to noise removal with either meica.py or FIX, peaks likely related
to breathing artefacts were observed near 0.13 and 0.18 Hz in multi-
echo datasets (Fig S3D and E) and near 0.33 Hz in the single-echo
dataset (Fig S3F). These peaks were absent in the denoised dataset
time series, indicating effective identification and removal of artefact in
the fMRI time series. Dual regression was used to estimate individual-
level maps of each of the components. Most cortical components and
all striatal components displayed highly reproducible clusters, with
100% of the individual maps presenting β-estimates ≥15, while the
visual cortex, piriform cortex, dorsal and ventral hippocampus, and in
the most pronounced manner, the thalamus, were embedded in more
spatially disparate clusters across mouse subjects (Fig S4). Lower
reproducibility of these latter components may be due to susceptibility
artefacts in these regions, and in the case of the thalamus, anaesthesia
effect related to medetomidine (Fukuda et al., 2013; Grandjean et al.,
2014a; Nasrallah et al., 2014). Dual regression analysis carried on
ME1, ME2 and FIX datasets did not reveal substantial differences
related to data acquisition and processing (multi-echo vs. single-echo),
and there were no significant gender or body weight effects in control
animals. Group average stationary FC networks were reconstructed by
computing Pearson correlations for all the pairs of time-series ex-
tracted from the ICA-based atlas (Fig. 1A and B, ME(all) dataset). This
analysis revealed an organization of the components into distinct
modules. A lateral cortical network (LCN) was found to include the
motor, supplementary, and both barrel field cortical components
similarly to previous reports (Liska et al., 2015; Zerbi et al., 2015).
The posterior cortical network (PCN) included the limb, visual, and
auditory cortex. The DMN was found to encompass the prefrontal and

J. Grandjean et al. NeuroImage 152 (2017) 497–508

501



the cingulate/retrosplenial cortex as well as the dorsal and ventral
hippocampal components. A striatal-limbic network (SLN) included
dorsal, lateral, and ventral striatum, but also the amygdala and
piriform cortex. Again, the thalamus stood out, as it displayed minimal
correlation to any other component in the stationary FC map. Overall,
the different quality assurance steps indicate that the datasets used in
this study fulfil stringent quality standards, which is a prerequisite for
dFC analysis.

Dynamic functional connectivity states reveal distinct structured
organization

Sliding-window correlation analysis with window length corre-
sponding to 45 s (30 TRs) was applied to the time-series of naïve mice
between every pair of components in order to estimate the temporal
variation in correlation strength (Fig. 1C, ME(all) dataset). dFC
matrices obtained for each mouse were Fisher r-to-z transformed and
centred across the scanning session. Surrogates to the ME(all) datasets
were generated to match amplitude and frequency spectra of the real
data. The sliding window correlation matrices in the surrogates
presented similar features as in the real data (Fig. 2A and B). The test
of FC non-stationarity yielded 5.6 ± 0.6% significant excursions be-
tween ROI pairs at the group level (Fig. 2C and D), well within the
range of the previously reported 6.8% in human datasets (Betzel et al.,
2016).

Atoms, i.e. elementary building blocks of whole-brain dynamic
connectivity representing specific dFS, were estimated from the
population data using dictionary learning. Different dictionary sizes
were tested, M=[10, 15, 20, 25, 30], and found to explain 41, 51, 58,
64, 69% of the variance when regressed back into the individual sliding
window correlation matrices. The final set of atoms were estimated
with M=20 as it explained ~60% of the dFC variance in ME(all) dataset.
The individual atoms exhibited a high degree of structure (Fig. 3, Fig
S5), in particular, many of the atoms revealed dominant between-
module and within-module interactions. For example, dFS #1 high-
lighted between- and within-module interactions encompassing the
PCN and DMN, dFS #3 an interaction between the LCN and SLN, and
dFS #5 between the LCN and PCN. Other dFS reflect predominant
within-module interactions such as dFS #10 and #12, revealing
interactions within the SLN and LCN, respectively. Interestingly,
among the dFS we did not observe connectivity patterns involving
the thalamus, with the exception of dFS #16 which showed strong
interaction between the thalamus and the other modules. We conclude
that dFC analysis reveals distinct dFS, the structure of which reflects

dominant within- and between-module interactions. This way, signal
variability over time is taken into account to provide a more complete
picture of brain activity.

Reproducibility of the atoms across parameters and data sets

Atoms are reproducible across a range of window length
To investigate the stability of the atoms across a range of different

parameters, we performed the same dictionary learning process using
varying window lengths corresponding to 15 s, 30 s, 45 s, 60 s, 75 s,
90 s, 105 s, 120 s, 135 s, and 150 s for the sliding-window correlation
(ME(all) dataset). For each window length, high pass filter was adapted
ranging from 0.0667 to 0.0067 Hz, corresponding to 1/window length
as the cutoff (Leonardi and Van De Ville, 2015).The 100 newly
estimated sets of 20 atoms were compared to the reference atoms
estimated with window length corresponding to 45 s using a similarity
index (Fig S5). Similarity indices for matched atoms across datasets
were compared to a null distribution generated from the similarities
estimated on within-dataset non-matched atoms. Indices above the
95th percentile threshold in the null distribution were considered
significant. The odds ratio denotes how many times more likely it is
that the similarity between matched atoms is significant compared to
chance level, i.e. 5%. For instance, for window length corresponding to
45 s, 16 out of 20 atoms presented odd ratios greater than 10,
indicating that the similarity for a given pair resulted in significance
in more than 50% of the cases, that is 10 times more significant than
chance. From this comparison, the patterns elucidated by dictionary
learning appear consistent across a wide range of window lengths. Only
for extreme window lengths (i.e. 15 s and 150 s) did we obtain
noticeably reduced similarity indices (Fig. 4A), consistent with the
notion that long window lengths result in lower sensitivity to the
dynamic features of the signal while too short ones may induce
spurious fluctuations (Leonardi and Van De Ville, 2015).

Dictionary atoms are reproduced in different datasets
To investigate if the derived atom patterns could be generalized, we

applied the dFC analysis to the FIX dataset (N=53)¸ which had not
been used for the estimation of the reference set of dFC, and which is
based on FMRIB's ICA-based Xnoiseifier (FIX) for artefact removal
(Salimi-Khorshidi et al., 2014; Zerbi et al., 2015). Additionally, we
estimated atoms in sub-sets of the ME(all) dataset, i.e. ME1 (N=14),
ME2(1) (N=25), and ME2(2) (N=25), to test for the generalisation of
the atom patterns within ME(all), in particular as these sub-sets differ
in gender, acquisition duration, and anaesthesia duration. In all

Fig. 2. Surrogate datasets and significant excursions. Surrogate datasets were generated to match the amplitude and frequency spectrum of original extracted time courses. The
corresponding sliding window correlation matrices in a representative individual (A) and corresponding surrogate (B) present comparable features. Dynamical correlation fluctuations in
the surrogate datasets were used to estimate 95th confidence interval for every individual and interactions between ROI pairs. Dynamical correlations outside the confidence intervals
are indicated as significant excursions, shown for a representative individual (C). At the group level, these significant excursions were observed between all ROI pairs and corresponded
to 5.6 ± 0.6% of the dynamic correlation fluctuations in the sliding window correlation matrices (D).
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Fig. 3. Selected dynamical functional states. Atoms resulting from the dictionary learning algorithm present a high degree of structure in the dynamical functional states (dFS),
with several states organized into dominant between- or within-module interactions. dFS #1 presents dominant connectivity strength within the PCN and within the DMN, as well as
interactions between the PCN and DMN. dFS #3, 5 and 8 indicate dominant interactions between the LCN and, respectively, the SLN, PCN, and DMN. dFS #9 shows interactions
between the SLN and the PCN and DMN, whereas dFS #10 displays interactions within the SLN. dFS #12 illustrates interactions within the LCN, and between the LCN and striatum.
dFS #16 denotes interactions between the thalamus and each other region. In both matrix and ‘ball and stick’ representations, modules are color-coded as: LCN = dark blue, PCN = light
blue, DMN=green, SLN=orange, thalamus=red. The ball and stick representation shows edges with connectivity strength ≥0.15, overlaid on sagittal mouse brain delineations. ROI
indices are provided in Fig. 1B and further detailed in Fig. S2.

Fig. 4. Reproducibility of the atoms across different window lengths and datasets. A) Sliding window correlations were estimated using window length 15 s, 30 s, 45 s, 60 s,
75 s, 90 s, 105 s, 120 s, 135 s, and 150 s (corresponding to 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 TRs). Atoms were estimated with dictionary learning and compared to the reference
atoms in Fig. S4 with similarity index. The odds ratio indicates how many times more likely it is for the similarity outcome to be real rather than random. High odds ratios ( > 10) are
observed for 19/20 atoms, and large range of window length (except for atoms #10, 11, 18, 20), denoting comparable features in these atoms to the reference set of atoms. B) Atoms were
estimated using different datasets: ME1 (n=14, volumes=600), scans 1 and 2 from ME2 (n=25 each, volumes=360), and FIX (n=53, volumes 360) using window length corresponding to
45 s. Reproducibility of the atoms in individual datasets varied for each atom and dataset. High odds ratios were observed for atoms #1, #2, #3, and #8 in ME1 dataset. Atoms #4, #7,
#10, and #12 were recovered in both ME2 scans 1 and 2 with significant similarity to the reference atoms. Data from the FIX dataset were not used to estimate the reference atoms, but
nevertheless, significant similarity to the reference set was observed for atoms #1, #3, #5, #6, #7, #8, #12, and #16.
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datasets, the reference atoms displaying a high degree of structure,
such as dFS #1, #3, #6, #7, #8, #9, #12 and #16, exhibited significant
similarity across datasets and an odds ratio above 5 (Fig. 4B), whereas
atoms containing fewer indication of structure, such as #11, #13, #15
and #20, were less reproducible in individual datasets. Several atoms
were highly reproduced in individual datasets but not in others, for
instance atom #2 presents low odd ratios in both ME2(S2) and FIX
datasets but high odd ratios in ME1 and ME2(S1). These observations
are consistent with the notion that some of the atoms estimated with
dictionary learning may be generalized, even following a different
preprocessing pipeline, whereas others may represent states occurring
less frequently or may actually constitute confounding noise contribu-
tions. Notably, the individual datasets used in the latter analysis
contained fewer sliding-window correlation frames available to the
dictionary learning algorithm compared to ME(all), a factor which may
explain the presence of less reproducible atoms. Finally, we estimated
atoms in ME(all) using 45 s window length but omitting the de-
meaning of the sliding window correlation matrix. Newly estimated
atom sets did not present any significant similarity to the reference set.
Indeed, atoms generated in the absence of de-meaning (Fig S6)
presented patterns comparable to the stationary FC matrix (Fig. 1B).
To explain this, we estimated the average power across subjects of the
stationary FC Estat (that we remove in the demeaning) and compare it
to the average power of the demeaned and non-demeaned dFC (Edyn
and Estat+dyn, respectively). In our data, Estat=16.79, Edyn=6.14
and Estat+dyn =22.93, verifying therefore the following equations:

E E E

E E

≥ +

>>
stat dyn stat dyn

stat dyn

+

These results highlight the predominance of the stationary FC on
top of the dFC changes, and therefore explain why de-meaning is
important to highlight the dFC patterns, otherwise covered by the
stationary FC.

We conclude that the majority dFS yields a high degree of
consistency across datasets acquired with different sets of animals or
using different experimental parameters, as well as in the face of
changes in parameters used in the analysis procedure.

Dynamic functional states are sensitive indicators of physiological
and pathological states

Chronic psychosocial stress alters cortico-limbic dynamic functional
state

Given the high degree of reproducibility of the estimated atoms, we
examined whether these readouts could be used as sensitive indicators
of alterations in physiological or pathological conditions. The CPS
model comprises social stress leading to depression-relevant beha-
viours including increased fatigue and aversion to negative stimuli, and
reduced interest in positive stimuli (Azzinnari et al., 2014). Two
datasets were acquired (CPS1, CPS2; Table 1): Both datasets included
a baseline fMRI scan, followed by the CPS or control paradigm, and a
post-treatment fMRI scan. The CPS paradigm was associated with an
increase in stationary FC within the cortical networks including the
supplementary cortical component and DMN, as well as an increased
connectivity between the amygdala and the DMN (Grandjean et al.,
2016a). Sliding-window correlation analysis was performed with
window length 45 s (corresponding to 30TRs for me-EPI datasets
and 45TRs for se-EPI). The reference atoms resulting from dictionary
learning estimated in healthy control animals (Fig S5) were back-fitted
using least-square regression onto the original dFC matrices to obtain
time-dependent weights of each atom in each individual (Fig. 1E). This
approach is comparable to the dual-regression framework where
group-level components estimated in healthy controls individuals are
used as reference to estimate individual-level networks, as applied
previously to estimate stationary FC changes in CPS mice (Grandjean

et al., 2016a). Indeed, the approach assumed in this analysis is not to
test for the presence of different atoms in the CPS groups, but to put in
evidence differences in the atom fluctuations between CPS and control
individuals. In order to test if the reference atoms estimated in control
animals contributed equally in control and CPS individuals, explained
variance was estimated in the CPS1 dataset which was not used to
estimate the reference atoms. During the baseline session, the mean (
± 1 standard deviation) explained variance was 48.2 ± 5.8 and 45.1 ±
5.7 for control and CPS groups, and 48.6 ± 6.4 and 47.7 ± 6.5 during
the post-treatment session. Explained variance was lower than that in
ME(all), which is to be expected as the latter was used to estimate the
reference atoms. No significant session X group interaction or CPS
effect could be put in evidence using a linear mixed model analysis,
suggesting that the reference atoms explained similar portions of the
sliding-window correlation matrices in all groups.

The absolute sum of the time-dependent weights relative to the number
sliding-window frames for each atom was used as a response variable in
linear mixed-model statistical analyses, one per atom, with contrasts to test
for the interaction between group and session and CPS effect (post- vs.
baseline in the CPS group specifically). The analysis was carried on CPS(all)
dataset, which include scans acquired with se- (CPS1) and me-EPI (CPS2),
yielding differences in sequence parameters, preprocessing pipeline, SNR,
acquisition length, among other. In order to compensate for this, a balanced
linear mixed model approach was used, with each individual including both
a baseline and post-treatment session. Individual intercepts were added as
random effects in the model in order to account for individual variability
including the differences in these parameters in the statistical analysis.
Significant interaction effects were found for dFS #2, surviving both FDR
correction and comparison to the surrogate-based null distribution, and to
a lesser extend dFS #11 and #16, which did not survive strict FDR
correction, but were outside the 95th confidence interval defined using
surrogate datasets. In all three instances, the interaction effect was
confirmed to reflect a CPS group-specific effect in a post-hoc analysis
(Fig. 5A). The atoms showing significant differences revealed an increased
interaction effect between the LCN and the limbic areas (hippocampus,
piriform cortex, and amygdala; dFS #2), and between the DMN and both
LCN and SLN (cingulate/retrosplenial cortex and dorsal hippocampus to
LCN and SLN; dFS #11), while the interaction between the thalamus and
the other regions (dFS #16) appeared to be reduced (Fig. 5B). Statistics
carried separately in individual datasets, CPS1 and CPS2 (Fig S7A and B),
indicate the presence of similar effects in both datasets as described above.
There was no comparable effect in the control group of any of the dFS
shown to present a chronic stress effect (Fig S7C). Together, these underline
the robustness of the effect induced by CPS on dFC patterns in the murine
brain.

Anaesthesia duration alters both stationary and dynamic functional
connectivity

The duration of anesthesia is a confounding element in rodent
functional imaging studies; for example, Magnuson et al. (2014) found
that long exposure to isoflurane compared to shorter exposure led to
lasting altered connectivity patterns when anaesthesia was switched to
medetomidine during fMRI recordings. We were therefore interested
in studying the effects of prolonged anesthesia on stationary and
dynamic FC. We compared two datasets obtained with the same mice
under medetomidine/isoflurane anesthesia, one obtained 30 min after
the other (ME2(S1), ME2(S2); Table 1). Physiological parameters
recorded in a separate animal cohort indicated an increase in heart
rate (336.8 ± 62.1 vs. 534.4 ± 157.0 beats per minute) and a corre-
sponding decrease in pulse distension (21.8 ± 2.8 vs. 16.5 ± 6.1 µm) for
time points corresponding to the second fMRI acquisition (55 to
60 min after medetomidine infusion onset) compared to the first (20
to 25 min after medetomidine infusion onset). At both time points,
mice responded to mild pinches to the fore limb but presented no
spontaneous motion. O2 saturation was comparable at both times
(99.0 ± 1.1 vs. 99.3 ± 0.2%). Physiological parameters denote a brachy-
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cardia effect induced by medetomidine for time points corresponding
to the first scan as previously reported (Grandjean et al., 2014a) and a
corresponding return to rates similar to those in isoflurane anaesthe-
tised mice for the second time points, indicating a wash-out of the
initial medetomidine bolus over time. Dual regression analysis revealed
an increase in stationary FC in the second scan in the components
barrel field 1 and 2, limb, visual and cingulate/retrosplenial cortices,
and ventral hippocampus (Fig. 6A), while there was an opposite effect
for the dorsal and lateral striata. The bidirectional nature of the
changes is unlikely to be due to systemic cardiovascular changes only,
indeed systemic physiological changes have been reported to lead to
unidirectional BOLD changes (Schroeter et al., 2014). In fact, these
changes are consistent with reduced medetomidine effect combined
with isoflurane cumulative effects over time. Indeed, longer exposure to
isoflurane has been reported to induce lasting FC (Magnuson et al.,
2014). Isoflurane has been reported to reduce FC in the striatum, while
medetomidine reduces cortical FC in a dose-dependent fashion
(Grandjean et al., 2014a; Nasrallah et al., 2014). Despite the presence
of the effects described above, atoms estimated with dictionary learning
could be reproduced in both scans (Fig. 4B). The reference atoms
resulting from dictionary learning (Fig S5) were back-fitted using least-
square regression onto the original dFC matrices estimated with
window length of 45 s (30TRs). Mixed model analysis comparing scans
1 and 2 revealed significantly increased atom fluctuations for dFS #3,
#8, and #15 that were also above or below the 95th confidence interval
estimated in surrogate datasets (Fig. 6B). The dFS found to exhibit the
strongest anesthesia effects were associated with the LCN and DMN
dynamic interaction (dFS #8), and LCN and PCN with the SLN (dFS
#15) (Fig. 6C). Dynamic interactions involving LCN and SLN (dFS #3)
also presented a significant anesthesia effect found with both mixed-
model analysis and comparison to the null distribution estimated with
surrogate dataset, however the latter did not survive FDR correction.
We conclude that dFS display distinct responses to alterations in brain
states induced by psychological and physiological factors.

Discussion

Studies of FC in humans and experimental animal models have
shed light on the network topology of the healthy and diseased brain at
a macroscopic level, revealing important information on the interplay
between brain regions. Increasing evidence indicates that the assump-
tion of a stationary connectivity network, inherent in the majority of
the studies published to date, represents an oversimplified view of
brain organization. Rather, functional networks have been proposed to
be dynamic (Calhoun et al., 2014), i.e. the strength of connectivity
between various brain regions is proposed to change over time and
these changes are considered to be biologically meaningful. In contrast
to conventional stationary FC analysis, dFC approaches allow for the
exploration of dynamic aspects of brain network interactions. Despite
the great potential of dFC as demonstrated in studies involving
humans, the basis of this dynamic organization remains poorly under-
stood. Animal studies should help in relating intrinsic FC fluctuations
to other readouts of activity as well as in understanding the significance
of dFC states induced by etiological factors of importance in brain
disorders or pharmacological interventions. For the first time, we have
investigated dynamic properties of FC in the mouse brain by applying
dictionary learning to establish interpretable dFS. The combination of
careful animal handling to optimize physiological stability, high
magnetic field strength and cryogenic receiver coil to increase signal-
to-noise ratio, and use of an fMRI acquisition sequence that enhances
the sensitivity to the blood oxygenation level dependent contrast,
enabled us to record mouse brain datasets of a quality appropriate
for valid dFC analysis.

The major finding of the study is the identification of reproducible
dFS of the mouse brain exhibiting remarkable structure. The dominant
dFS reflect interactions between and within network modules such as
the default-mode, lateral cortical, posterior cortical and striatal-limbic
networks. Previous dFC studies in humans, monkeys and rats did not
capture such dynamics, possibly due to the complexity of the functional

Fig. 5. Dynamic functional states are affected by chronic psychosocial stress. A) Chronic psychosocial stress leads to a significant increase in dFS fluctuations in several
atoms in the CPS group post-treatment session compared to baseline, specifically in dFS #2, #11 and #16. Error bars indicate the 95th confidence interval for statistics estimated in
surrogate datasets. B) The CPS group presents increased fluctuations compared to control and baseline in dFS #2 which describes interactions between the LCN and limbic-associated
regions, the hippocampus, the amygdala, and the piriform cortex, and #11 which describes interactions between DMN (cingulate/retrosplenial cortex and hippocampus) and both the
LCN and SLN. There was an opposite effect in atom #16, which describes interactions between the thalamus and all other regions in the atlas. Bar plots show mean absolute sum of dFS
fluctuations ± 1 SD. * p≤0.05, ** p≤0.05 (FDR).
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organization in primates and the methodological approaches applied to
study dFC. In several reports, dFC analysis focused on a subset of brain
regions such as the DMN (Chang and Glover, 2010), the oculomotor
network (Hutchison et al., 2013), the motor cortex and caudate
putamen (Keilholz et al., 2013), or the somatosensory cortex
(Thompson et al., 2013). Other studies in humans employed a whole-
brain approach (Allen et al., 2014; Chen et al., 2016; Leonardi et al.,
2013; Liu and Duyn, 2013). In particular, Leonardi et al. introduced a
PCA-based method to decompose whole-brain connectivity patterns
into a set of orthogonal components termed eigenconnectivities
(Leonardi et al., 2013). Allen et al. made use of an ICA-based brain
parcellation followed by temporal clustering into a limited subset of
connectivity states (Allen et al., 2014). Although both approaches could
extract meaningful connectivity patterns, their interpretation remained
difficult due to the contributions of numerous region-to-region rela-
tionships. More importantly, the dFC patterns did not reveal distinct
interactions between modules of the stationary functional network. The
refinement of previous analytical strategies through the addition of a
dictionary-learning step enabled us to unravel the presence of struc-
tured dynamic interactions among modules of the stationary functional
network organization of the mouse brain.

The use of sliding window correlations remains a matter of debate.
Firstly, difficulties in reliably estimating individual-level dFC with

sliding windows were reported; however, these limitations could be
offset by longer acquisitions or session and subject averaging (Hindriks
et al., 2016). By concatenating sliding window correlation matrices
from healthy control individuals, we obtained robust estimates of
group-level atoms. These atoms were also extracted from smaller
datasets, yet were found to be less robust, consistent with the notion
mentioned above. Secondly, the selection of window length parameters
remains an essential aspect of dFC analyses, as too small window
lengths have been shown to induce spurious correlations (Leonardi and
Van De Ville, 2015; Lindquist et al., 2014; Shakil et al., 2016). We have
observed that the window length did not noticeably influence the
estimation of atoms in this dataset as long as extreme values were
avoided. Furthermore, we have generated surrogate datasets, and could
confirm the presence of significant dynamic excursions in our datasets
comparable to previous reports (Betzel et al., 2016). Finally, surrogate
time series was also used to estimate confidence intervals in our
statistical comparisons, indicating that the presence of the effect in our
real datasets cannot be directly related to artefacts induced by the
sliding window correlation process.

Atoms established with dictionary learning in this study were found
in an independent dataset, supporting the notion these dFS could be
generalized to other mouse fMRI datasets. A few limitations need to be
considered. Firstly, datasets were acquired with high SNR dataset, se-

Fig. 6. Dynamic functional states are affected by anesthesia duration. A) Comparison of the stationary functional connectivity with dual regression of ME2(S1) and ME2(S2),
acquired 30 min apart, highlights significant differences between the two scans. Cortical functional connectivity in the barrel field, limb, visual, and cingulate/retrosplenial cortices, as
well as functional connectivity in the ventral hippocampus was increased in scan 2 compared to 1. The opposite effect was found in the dorsal and lateral striata, denoting a decrease in
FC in scan 2 relative to 1 in each case. The color bar indicates the p-value. B) Significant changes in dFS fluctuations between the two scans were observed in several atoms and with
different window lengths, namely dFS #3, #8 and #15. Error bars indicate the 95th confidence interval for statistics estimated in surrogate datasets. C) Anaesthesia effects are detailed
for 3 dFS. These describe interactions within the DMN and between the LCN and SLN (dFS #3), LCN and DMN (dFS #8), and LCN and SLN (dFS #15). Bar plots show mean absolute
sum of dFS fluctuations ± 1 SD. * p≤0.05, ** p≤0.05 (FDR).
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EPI acquired with this protocol were reported to yield SNR ~170 (Zerbi
et al., 2015), and while me-EPI yielded lower SNR for each individual
echo, the effective SNR is expected to be increased when the individual
echo images are combined. Other datasets may not yield comparably
high SNR, which may impair the detection of such dynamic events. The
minimal SNR requirements for optimal dFC detection remain a moot
point to be addressed. Secondly, not all atoms could be recovered
equally in all datasets. It is likely that some dFS are less frequent than
others, or that they capture noise patterns, as supported by our results.
Contrary to stationary FC, where methods exists identify nuisance
components based either on feature recognition using FIX (Salimi-
Khorshidi et al., 2014; Zerbi et al., 2015) or physical properties of the
BOLD signal using me-EPI (Kundu et al., 2012), methods to rationalize
‘signal’ from ‘noise’ dFS remain lacking. Similarly, the optimal number
of atoms to include in the analysis remains a point to be addressed, as
too few or too many atoms may lead to under- or over-fitting issues. In
the present study, 60% of the variance explained was used as a
heuristic-based choice leading to the identification of 20 reference
atoms. In light of the above, all atoms were included in the analysis in
order to avoid user selection bias. Finally, analyses were carried using
reference atom estimated in healthy control. A study carried in human
with post-traumatic stress disorder found that the patient group
presented specific dFS (Li et al., 2014), it is thus plausible that the
CPS paradigm causes not only changes in the reference atom fluctua-
tion as reported in this study, but also in the atom structure. As
mentioned above, robust atom estimation relies on the number of time
frames available, which was insufficient in the CPS groups to carry the
latter analysis. However, it should be noted that the reference atoms
explained comparable variance in both control and CPS individuals,
supporting the notion that changes in atom fluctuation rather that
atom structure may explain changes taking place in the CPS model.

The biological relevance of these dynamic states is supported by the
alterations observed in a model of social stress-induced depression-like
brain and behaviour. CPS was associated with increased fluctuations in
dFS involving interactions between the LCN and limbic regions: the
prefrontal cortex, hippocampus, the piriform cortex, and the amygdala.
In human major depression, increased dynamic interactions have been
reported between the prefrontal cortex and the insula when comparing
unmedicated patients with controls, an observation that has been
linked to increased self-referential information processing and rumina-
tion (Kaiser et al., 2016). This may relate directly to our observation, as
the insula overlaps with the supplementary cortical component in the
mouse, a central structure of the LCN. While the human study focused
on highlighting network fluctuations involving the prefrontal cortex
(Sheline et al., 2010), the use of dictionary learning in our study
enabled the identification of reoccurring states across the whole brain.
Thus, we found increased fluctuations in dFS linking the LCN to the
SLN and DMN in CPS mice, while interactions between the thalamus
and all other elements of the ICA-based atlas were reduced in CPS
mice, specifically. This may indicate increased cortico-cortical interac-
tions between sensory-motor and higher-level networks such as the
DMN, when thalamo-cortical interactions are decreased, consistent
with the notion of dFC changes promoting the increased self-referential
processes that occur in human depression (Manoliu et al., 2013;
Sheline et al., 2010). Our dFC findings yield new insights into
functional alterations induced by chronic social stress, relevant to
human depression and complementing conventional stationary FC
analysis (Grandjean et al., 2016a).

Anesthesia is a major factor affecting neural processing and thus
functional networks and their interactions. A previous study in rat
identified a notable effect of anesthesia duration on FC (Magnuson
et al., 2014). We found that changes in the anesthesia duration had
little effect on the qualitative nature of detected dFS, although there
were quantitative effects on fluctuation amplitudes. The strongest
anesthesia-duration effects on dFS involved the DMN, consistent with
the importance of this network in controlling cognition, information

integration and wakefulness (Boly et al., 2012). Our results, in line with
earlier reports from primates and rats (Barttfeld et al., 2015; Hutchison
et al., 2013; Thompson et al., 2013), illustrate that aspects of dFC are
retained in the anesthetized state. Nevertheless, dFC analysis appears
sensitive to mild changes in anesthesia levels.

Dynamic analysis is a highly attractive measure as the organization
of the dFS may actually reflect a composite aspect of neuronal
computation. In fact, while, in mice, stationary FC reveals mostly
homotopic coupling between brain functional units, dFC analysis
suggests a potential wealth of functional interactions among these
regions. The dFC between entire modules, e.g. LCN and DMN, may
reflect the sharing of information from sensory integration in the LCN
to higher-order associative processing within the DMN. Hence, the
temporal interplay of dFS may enable episodes of segregation and
integration between modules to support neuronal processing of
information (Friston, 2002). The important question in this context
refers to the link between neuronal events occurring at a millisecond
timescale and episodes of dFS activation detected by fMRI, which span
several seconds. Compared to electrophysiological measurements,
current studies of dFC with resting-state fMRI are inherently limited
to this slow time-scale due to the low-pass filtering effect of the
hemodynamic response, as well as additional low-pass filtering intro-
duced by sliding-window correlations (Leonardi and Van De Ville,
2015). As a consequence, linking neuronal events to dFS remains a
major challenge. A first approach towards understanding this interplay
combined invasive local electrophysiological recordings in the rat
sensory cortex with fMRI, which indicated a correlation between
sliding-window correlation in the slow frequency bands in the electro-
physiological signal and in the fMRI signal (Thompson et al., 2013).
Similarly, in human studies, scalp electroencephalogram topographies
have been correlated with fMRI resting state networks (Britz et al.,
2010). Studies linking direct readouts of neuronal activity to hemody-
namic responses will be critical in order to relate dFS to neuronal
events across the different time scales.

In conclusion, using stationary FC analysis in the mouse brain, we
could identify five distinct modules from resting-state mouse fMRI data
sets. Combining sliding-window correlation measurements with dic-
tionary learning into a novel refined dFC framework, revealed con-
sistent interaction patterns driven by fluctuations of connectivity, i.e.
the occurrence of transient dFS that showed between- and within-
module interactions. The structured dFS states were found to be
remarkably robust against variations in experimental conditions and
in processing parameters. Similarly, changes in brain state caused by
psychosocial stress or altered physiology did not affect the nature of the
dFS, but rather the coupling strength between the modules in a
biologically meaningful manner. Analyzing dynamic aspects of func-
tional networks at a whole-brain level significantly enhances our
capabilities of studying the complex interplay of brain regions in
information processing. Future studies in mice using either combined
activity readouts or strategies to modulate network interactions are
expected to shed light into the nature of this phenomenon, and to
elucidate new biomarkers for brain disorders.

Acknowledgments

This work was supported in part by the Swiss National Science
Foundation (grant number 310030_141202 and 310030_160310 to
MR; 205321_163376 to DVDV), the Swiss Foundation for Excellence
and Talent in Biomedical Research (to CRP and MR), the Bertarelli
Foundation (to TB and DVDV) and the Center for Biomedical Imaging
(CIBM; to MGP). We thank Valerio Zerbi for critical reading of the
manuscript and Prof. Thomas Yeo for providing the resources for the
manuscript revisions.

J. Grandjean et al. NeuroImage 152 (2017) 497–508

507



Appendix A. Supporting information

Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.neuroimage.2017.03.026.

References

Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D., 2014.
Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24,
663–676.

Azzinnari, D., Sigrist, H., Staehli, S., Palme, R., Hildebrandt, T., Leparc, G., Hengerer, B.,
Seifritz, E., Pryce, C.R., 2014. Mouse social stress induces increased fear
conditioning, helplessness and fatigue to physical challenge together with markers of
altered immune and dopamine function. Neuropharmacology 85, 328–341.

Barttfeld, P., Uhrig, L., Sitt, J.D., Sigman, M., Jarraya, B., Dehaene, S., 2015. Signature of
consciousness in the dynamics of resting-state brain activity. Proc. Natl. Acad. Sci.
USA 112, 887–892.

Betzel, R.F., Fukushima, M., He, Y., Zuo, X.N., Sporns, O., 2016. Dynamic fluctuations
coincide with periods of high and low modularity in resting-state functional brain
networks. NeuroImage 127, 287–297.

Boly, M., Massimini, M., Garrido, M.I., Gosseries, O., Noirhomme, Q., Laureys, S.,
Soddu, A., 2012. Brain connectivity in disorders of consciousness. Brain Connect 2,
1–10.

Britz, J., Van De Ville, D., Michel, C.M., 2010. BOLD correlates of EEG topography reveal
rapid resting-state network dynamics. NeuroImage 52, 1162–1170.

Calhoun, V.D., Miller, R., Pearlson, G., Adali, T., 2014. The chronnectome: time-varying
connectivity networks as the next frontier in fMRI data discovery. Neuron 84,
262–274.

Chang, C., Glover, G.H., 2010. Time-frequency dynamics of resting-state brain
connectivity measured with fMRI. NeuroImage 50, 81–98.

Chen, S., Langley, J., Chen, X., Hu, X., 2016. Spatiotemporal modeling of brain dynamics
using resting-state functional magnetic resonance imaging with gaussian hidden
markov model. Brain Connect 6, 326–334.

Friston, K., 2002. Beyond phrenology: what can neuroimaging tell us about distributed
circuitry? Annu. Rev. Neurosci. 25, 221–250.

Fuertig, R., Azzinnari, D., Bergamini, G., Cathomas, F., Sigrist, H., Seifritz, E., Vavassori,
S., Luippold, A., Hengerer, B., Ceci, A., Pryce, C.R., 2016. Mouse chronic social stress
increases blood and brain kynurenine pathway activity and fear behaviour: both
effects are reversed by inhibition of indoleamine 2 3-dioxygenase. Brain Behav.
Immun. 54, 59–72.

Fukuda, M., Vazquez, A.L., Zong, X., Kim, S.G., 2013. Effects of the alpha(2)-adrenergic
receptor agonist dexmedetomidine on neural, vascular and BOLD fMRI responses in
the somatosensory cortex. Eur. J Neurosci. 37, 80–95.

Gozzi, A., Schwarz, A.J., 2016. Large-scale functional connectivity networks in the rodent
brain. NeuroImage 127, 496–509.

Grandjean, J., Schroeter, A., Batata, I., Rudin, M., 2014a. Optimization of anesthesia
protocol for resting-state fMRI in mice based on differential effects of anesthetics on
functional connectivity patterns. NeuroImage 102 (Pt 2), 838–847.

Grandjean, J., Azzinnari, D., Seuwen, A., Sigrist, H., Seifritz, E., Pryce, C.R., Rudin, M.,
2016a. Chronic psychosocial stress in mice leads to changes in brain functional
connectivity and metabolite levels comparable to human depression. NeuroImage.

Grandjean, J., Derungs, R., Kulic, L., Welt, T., Henkelman, M., Nitsch, R.M., Rudin, M.,
2016b. Complex interplay between brain function and structure during cerebral
amyloidosis in APP transgenic mouse strains revealed by multi-parametric MRI
comparison. NeuroImage 134, 1–11.

Grandjean, J., Schroeter, A., He, P., Tanadini, M., Keist, R., Krstic, D., Konietzko, U.,
Klohs, J., Nitsch, R.M., Rudin, M., 2014b. Early alterations in functional connectivity
and white matter structure in a transgenic mouse model of cerebral amyloidosis. J.
Neurosci. 34, 13780–13789.

Greicius, M., 2008. Resting-state functional connectivity in neuropsychiatric disorders.
Curr. Opin. Neurol. 21, 424–430.

Hindriks, R., Adhikari, M.H., Murayama, Y., Ganzetti, M., Mantini, D., Logothetis, N.K.,
Deco, G., 2016. Can sliding-window correlations reveal dynamic functional
connectivity in resting-state fMRI? NeuroImage 127, 242–256.

Hutchison, R.M., Womelsdorf, T., Gati, J.S., Everling, S., Menon, R.S., 2013. Resting-
state networks show dynamic functional connectivity in awake humans and
anesthetized macaques. Hum. Brain Mapp. 34, 2154–2177.

Kaiser, R.H., Whitfield-Gabrieli, S., Dillon, D.G., Goer, F., Beltzer, M., Minkel, J., Smoski,
M., Dichter, G., Pizzagalli, D.A., 2016. Dynamic resting-state functional connectivity
in major depression. Neuropsychopharmacology 41, 1822–1830.

Kalthoff, D., Seehafer, J.U., Po, C., Wiedermann, D., Hoehn, M., 2011. Functional
connectivity in the rat at 11.7T: impact of physiological noise in resting state fMRI.
NeuroImage 54, 2828–2839.

Karahanoglu, F.I., Van De Ville, D., 2015. Transient brain activity disentangles fMRI
resting-state dynamics in terms of spatially and temporally overlapping networks.
Nat. Commun. 6, 7751.

Keilholz, S.D., Magnuson, M.E., Pan, W.J., Willis, M., Thompson, G.J., 2013. Dynamic

properties of functional connectivity in the rodent. Brain Connect 3, 31–40.
Kuhn, H.W., 2010. The Hungarian method for the assignment problem. In: Jünger, M.,

Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi,
G., Wolsey, L.A. (Eds.), 50 Years of Integer Programming 1958-2008: From the Early
Years to the State-of-the-Art. Springer Berlin Heidelberg, Berlin, Heidelberg, 29–47.

Kundu, P., Inati, S.J., Evans, J.W., Luh, W.M., Bandettini, P.A., 2012. Differentiating
BOLD and non-BOLD signals in fMRI time series using multi-echo EPI. NeuroImage
60, 1759–1770.

Lee, J.H., Durand, R., Gradinaru, V., Zhang, F., Goshen, I., Kim, D.S., Fenno, L.E.,
Ramakrishnan, C., Deisseroth, K., 2010. Global and local fMRI signals driven by
neurons defined optogenetically by type and wiring. Nature 465, 788–792.

Leonardi, N., Van De Ville, D., 2015. On spurious and real fluctuations of dynamic
functional connectivity during rest. NeuroImage 104, 430–436.

Leonardi, N., Shirer, W.R., Greicius, M.D., Van De Ville, D., 2014. Disentangling dynamic
networks: separated and joint expressions of functional connectivity patterns in
time. Hum. Brain Mapp. 35, 5984–5995.

Leonardi, N., Richiardi, J., Gschwind, M., Simioni, S., Annoni, J.M., Schluep, M.,
Vuilleumier, P., Van De Ville, D., 2013. Principal components of functional
connectivity: a new approach to study dynamic brain connectivity during rest.
NeuroImage 83, 937–950.

Li, X., Zhu, D., Jiang, X., Jin, C., Zhang, X., Guo, L., Zhang, J., Hu, X., Li, L., Liu, T.,
2014. Dynamic functional connectomics signatures for characterization and
differentiation of PTSD patients. Hum. Brain Mapp. 35, 1761–1778.

Lindquist, M.A., Xu, Y., Nebel, M.B., Caffo, B.S., 2014. Evaluating dynamic bivariate
correlations in resting-state fMRI: a comparison study and a new approach.
NeuroImage 101, 531–546.

Liska, A., Galbusera, A., Schwarz, A.J., Gozzi, A., 2015. Functional connectivity hubs of
the mouse brain. NeuroImage 115, 281–291.

Liu, X., Duyn, J.H., 2013. Time-varying functional network information extracted from
brief instances of spontaneous brain activity. Proc. Natl. Acad. Sci. USA 110,
4392–4397.

Magnuson, M.E., Thompson, G.J., Pan, W.J., Keilholz, S.D., 2014. Time-dependent
effects of isoflurane and dexmedetomidine on functional connectivity, spectral
characteristics, and spatial distribution of spontaneous BOLD fluctuations. NMR
Biomed. 27, 291–303.

Majeed, W., Magnuson, M., Hasenkamp, W., Schwarb, H., Schumacher, E.H., Barsalou,
L., Keilholz, S.D., 2011. Spatiotemporal dynamics of low frequency BOLD
fluctuations in rats and humans. NeuroImage 54, 1140–1150.

Manoliu, A., Meng, C., Brandl, F., Doll, A., Tahmasian, M., Scherr, M., Schwerthoffer, D.,
Zimmer, C., Forstl, H., Bauml, J., Riedl, V., Wohlschlager, A.M., Sorg, C., 2013.
Insular dysfunction within the salience network is associated with severity of
symptoms and aberrant inter-network connectivity in major depressive disorder.
Front. Hum. Neurosci. 7, 930.

Nasrallah, F.A., Tay, H.C., Chuang, K.H., 2014. Detection of functional connectivity in
the resting mouse brain. NeuroImage 86, 417–424.

Power, J.D., Schlaggar, B.L., Petersen, S.E., 2014. Studying brain organization via
spontaneous fMRI signal. Neuron 84, 681–696.

Razoux, F., Baltes, C., Mueggler, T., Seuwen, A., Russig, H., Mansuy, I., Rudin, M., 2013.
Functional MRI to assess alterations of functional networks in response to
pharmacological or genetic manipulations of the serotonergic system in mice.
NeuroImage 74, 326–336.

Sakoglu, U., Pearlson, G.D., Kiehl, K.A., Wang, Y.M., Michael, A.M., Calhoun, V.D., 2010.
A method for evaluating dynamic functional network connectivity and task-
modulation: application to schizophrenia. MAGMA 23, 351–366.

Salimi-Khorshidi, G., Douaud, G., Beckmann, C.F., Glasser, M.F., Griffanti, L., Smith,
S.M., 2014. Automatic denoising of functional MRI data: combining independent
component analysis and hierarchical fusion of classifiers. NeuroImage 90, 449–468.

Schroeter, A., Schlegel, F., Seuwen, A., Grandjean, J., Rudin, M., 2014. Specificity of
stimulus-evoked fMRI responses in the mouse: the influence of systemic
physiological changes associated with innocuous stimulation under four different
anesthetics. NeuroImage 94, 372–384.

Sforazzini, F., Schwarz, A.J., Galbusera, A., Bifone, A., Gozzi, A., 2014. Distributed BOLD
and CBV-weighted resting-state networks in the mouse brain. NeuroImage 87,
403–415.

Shakil, S., Lee, C.H., Keilholz, S.D., 2016. Evaluation of sliding window correlation
performance for characterizing dynamic functional connectivity and brain states.
NeuroImage 133, 111–128.

Sheline, Y.I., Price, J.L., Yan, Z., Mintun, M.A., 2010. Resting-state functional MRI in
depression unmasks increased connectivity between networks via the dorsal nexus.
Proc. Natl. Acad. Sci. USA 107, 11020–11025.

Thompson, G.J., Merritt, M.D., Pan, W.J., Magnuson, M.E., Grooms, J.K., Jaeger, D.,
Keilholz, S.D., 2013. Neural correlates of time-varying functional connectivity in the
rat. NeuroImage 83, 826–836.

Van de Ville, D., Britz, J., Michel, C.M., 2010. EEG microstate sequences in healthy
humans at rest reveal scale-free dynamics. Proc. Natl. Acad. Sci. USA 107,
18179–18184.

Zerbi, V., Grandjean, J., Rudin, M., Wenderoth, N., 2015. Mapping the mouse brain with
rs-fMRI: an optimized pipeline for functional network identification. NeuroImage
123, 11–21.

J. Grandjean et al. NeuroImage 152 (2017) 497–508

508

http://dx.doi.org/10.1016/j.neuroimage.2017.03.026
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref1
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref1
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref1
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref2
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref2
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref2
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref2
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref3
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref3
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref3
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref4
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref4
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref4
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref5
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref5
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref5
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref6
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref6
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref7
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref7
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref7
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref8
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref8
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref9
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref9
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref9
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref10
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref10
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref11
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref11
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref11
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref11
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref11
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref12
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref12
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref12
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref13
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref13
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref14
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref14
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref14
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref15
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref15
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref15
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref16
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref16
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref16
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref16
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref17
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref17
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref17
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref17
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref18
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref18
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref19
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref19
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref19
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref20
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref20
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref20
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref21
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref21
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref21
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref22
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref22
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref22
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref23
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref23
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref23
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref24
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref24
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref25
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref25
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref25
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref25
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref26
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref26
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref26
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref27
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref27
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref27
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref28
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref28
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref29
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref29
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref29
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref30
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref30
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref30
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref30
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref31
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref31
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref31
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref32
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref32
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref32
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref33
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref33
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref34
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref34
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref34
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref35
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref35
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref35
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref35
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref36
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref36
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref36
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref37
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref37
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref37
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref37
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref37
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref38
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref38
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref39
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref39
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref40
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref40
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref40
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref40
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref41
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref41
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref41
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref42
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref42
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref42
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref43
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref43
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref43
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref43
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref44
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref44
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref44
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref45
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref45
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref45
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref46
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref46
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref46
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref47
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref47
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref47
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref48
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref48
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref48
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref49
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref49
http://refhub.elsevier.com/S1053-8119(17)30234-3/sbref49

	Dynamic reorganization of intrinsic functional networks in the mouse brain
	Introduction
	Materials and methods
	Animals and preparation
	Dataset description
	Chronic psychosocial stress
	MRI acquisition
	Data processing
	Sliding window correlation
	Surrogate dataset generation
	Estimation of dynamic functional connectivity networks with dictionary learning
	Generalization of dictionary learning estimation
	Statistical analysis of group difference

	Results
	Functional brain parcellation and quality control
	Dynamic functional connectivity states reveal distinct structured organization
	Reproducibility of the atoms across parameters and data sets
	Atoms are reproducible across a range of window length
	Dictionary atoms are reproduced in different datasets

	Dynamic functional states are sensitive indicators of physiological and pathological states
	Chronic psychosocial stress alters cortico-limbic dynamic functional state
	Anaesthesia duration alters both stationary and dynamic functional connectivity


	Discussion
	Acknowledgments
	Supporting information
	References




