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their long-range dependencies (Van De Ville et al., 2010). Conventional
HMMs are well-known for their efficiency in modeling short-term de-
pendencies between adjacent elements, but they cannot grasp long-
range interactions between distant elements (Yoon and Vaidyanathan,
2006). Here we give an overview on evidence of long-range dependen-
cies in microstate sequences of the resting brain.

1. Background—long-range dependency in complex systems

Long-range dependency (LRD) or “longmemory effect” describes an
exceptional behavior of a stochastic process, which appears in only a
minority of stationary stochastic processes. The importance of LRD
has become clear with the original work of H. E. Hurst, who developed
the basic methods to assess the dynamics of floods in River Nile
(Mandelbrot, 1965). LRD has become closely associated with self-
Dear Editor,

structure) (Mandelbrot, 1983), and the connection between the two
types of scaling is determined by a constant, often called the “Hurst ex-
We have read with great interest the recent paper by Gärtner et al.
(2015) on EEGmicrostate sequences. These authors propose a stochastic
model termed sampledmarked intervals (SMI), relating the observedmi-
crostate sequence to an assumed underlying stochastic process, similar to
earlier work that proposed Hidden Markov Models (HMM)(De Lucia
et al., 2011; Obermaier et al., 1999). We very much appreciate such a
theoretical approach to enrich the classical EEG microstate analysis
(Lehmann and Skrandies, 1984). In particular, we agree with the authors
about the decisive procedure of restricting the analysis to localmaxima of
global field power (so called GFP peaks). However, in our opinion, one of
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similarity. In geometry, a self-similarity depicts a shape being composed
of a basic pattern, which is repeated at multiple (or infinite) scale. In a
self-similar process a scaling in time equivalents scaling in space (fractal

ponent”, which determines whether or not the self-similar process
shows LDR (Samorodnitsky, 2006). Self-similar processes are based on
power-law degree distributions (heavy-tailed), especially in failure-
robust and self-regulating organizations of biological networks
(Barabasi and Albert, 1999).

There is currently growing awareness about the importance of
heavy-tailed distributions in a remarkable variety of biological and
life-science related fields (Arita, 2005; He et al., 2010; Limpert and
Stahel, 2011; Limpert et al., 2001). The lognormal distribution is increas-
ingly recognized not only as being the underlying principle of psycho-
physics (i.e. the Weber–Fechner-Law of perception), but equally being
present at multiple levels in neuronal structural–functional activity,
starting from the axon caliber (Wang et al., 2008), over synaptic
strength (Klinshov et al., 2014; Loewenstein et al., 2011; Yasumatsu
et al., 2008), the neuronal firing pattern (Mizuseki and Buzsaki, 2013;
Yasumatsu et al., 2008), up to the density of the brain's large-scale
connections (Markov et al., 2014; Oh et al., 2014; Wang et al., 2012).
The similarity of power-lawdistributions andother heavy-tailed distribu-
tions (e.g. lognormal) has been explained by our imperfect observation of
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Fig. 1. Examples of scale-free behavior in sequences of other domains. A. Scale-free behav-
ior has been repeatedly demonstrated in ethernet bytes-per-time arrival statistic, shown
here at two different aggregation levels (graph recreated following Riedi et al. 1999)
from the publicly available Bellcore internet traces (BC-pAug89)). B. Interval lengths be-
tween consecutive occurrences of the word “the” in the English language (Banchs,
2013) resembles strongly a scale-free behavior (original graph obtained by the author).

1 The sequence was created using MATLAB statistical toolbox with the following
commands:
[TransitionM, EmissionM ] = hmmestimate(orig_microstate_labelseq, orig_microstate_
labelseq);
HMMSeq = hmmgenerate(length(orig_microstate_labelseq), TransitionM, EmissionM);
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natural phenomena, which let power-law distributions arise from log-
normal distributions upon small tweaks, e.g. by the setting of a lower
boundary, or a non-uniform data sampling (Arita, 2005). In general, the
lognormal distribution emerges as the collective fingerprint of a multi-
tude of interactive processes, via a multiplication of a large number of
variables (Buzsaki and Mizuseki, 2014).

Complex systems with inherent LRD have been described in many
other fields, and its mathematical concepts are fruitfully employed.
Numerous studies demonstrate LRD for example in geological and cli-
mate research (Scheffer et al., 2009; Varotsos and Kirk-Davidoff,
2006), finance market fluctuations (Matteo et al., 2005; Robinson,
2003), in Internet modeling and network traffic analysis (Abry et al.,
2002; Karagiannis et al., 2004; Riedi et al., 1999), or statistic analyses
of human language (Alvarez-Lacalle et al., 2006; Petersen et al., 2012).
Fig. 1A shows an example of an ethernet bytes-per-time arrival, at two
different aggregation levels. Short packages alternate with long pack-
ages in a typical manner, according to a heavy-tailed distribution
(Riedi et al., 1999). Another example with very similar, “bursty” inter-
vals originate from linguistic analysis: the frequency ofword occurrence
was at the origin of Zipf's Law in 1949 and shows similar LRD dynamics
(Alvarez-Lacalle et al., 2006; Petersen et al., 2012). Fig. 1B plots the in-
terval lengths between consecutive occurrences of the short word
“the” in the English language (Banchs, 2013).

2. The heavy-tailed distributions of EEG microstate durations and
intervals suggest long-range dependency

As Gärtner et al. (2015)mention, the duration of themicrostates ap-
pears to be one of the most informative properties (Dierks et al., 1997;
Lehmann et al., 2005; Wiedemann et al., 1998). However, it has rarely
been acknowledged that the consecutive durations of a selected micro-
state occur in a very irregular “bursty” order (Fig. 2A).Moreover, the se-
lected microstate also repeats at very irregular intervals, reflecting the
same irregular and “bursty” structure as the durations (Fig. 2B).

The histograms of both microstate durations and between-
microstate-intervals are reminiscent of a heavy-tailed distribution
(not to be confounded with the histogram of intervals between local
maxima of global field power, as shown in Gärtner et al. (2015). The
underlying distribution was compared against plausible heavy-tailed
distributions (lognormal, generalized pareto, gamma and exponential)
using quantile–quantile plots (Q–Q plots; Fig. 1C). Lognormal and pare-
to distribution seem closest to the empirical measures, but notice
that any of the four could be chosen based on different theoretical a
priori assumptions.

3. Evidence of self-similarity and quantification of
long-range dependency

In this sectionwe demonstrate self-similar properties and LDR in the
microstate sequence usingpopularmethods. For comparison,we gener-
ate a pseudo sequence, by estimating the Markovian transition proba-
bilities from our original microstate sequence using a simple Markov
Model,1 as used by Gärtner and colleagues (Gärtner et al., 2015). In
the following we refer to this pseudo sequence as “HMM sequence”.
Bothmicrostate andHMMsequences are then transformed into random
walks as described in Van De Ville et al. (2010), in order to apply the
below described methods.

3.a. Autocorrelation shows a slow decay

Compared to the HMMsequence, themicrostate sequence displays a
slower decaying autocorrelation function (ACF; Fig. 3A). Such a high and
slowly decaying ACF points to two properties of a stationary process, its
self-similarity and its long-memory properties. The self-similar pattern
also evokes scale invariance (scale-freeness), a synonym for “fractal
structure” in a statistical sense.

3.b. Power spectral density shows a negative slope (power-law behavior)

Time series of the type of Poisson or Markov rely on the assumption
of independence between the elements. Classical limit theorems, such as
the Law of Large Numbers, state that, at large scales, a Poisson process
can be approximated by its mean arrival rate. In the real world, howev-
er, various real world phenomena carry essential information at differ-
ent scales of observation; their traces are “spiky”, throughout all
scales. Such behavior is a sign of strong dependencies in the data:
large values come in clusters and clusters of clusters and so on. Their
power spectral density estimate, in double-logarithmic presentation,
is not horizontally balanced across the different frequencies like in
the HMM sequence, but it displays a negative slope, indicating with
power-law like behavior (He et al., 2010), as shown for a selected mi-
crostate sequence in Fig. 3B.

3.c. Rescaled range analysis (R/S) shows a Hurst exponent N0.5

Such a slowly decaying autocorrelation function and a negative
slope of the periodogramwas equally true for the classical hydrological
data of thefloods of RiverNile fromwhichH. E. Hurst, in the early 1950s,
developed the estimation of LDR using the “pox plot” of the “rescaled



Fig. 2.Distribution of durations ofmicrostates and between-state intervals. A – Top: The durations of consecutive occurrences of one selectedmicrostate. They are very irregular,with high
variance. Bottom: The histograms of durations for a set of 4microstates. All 4 histograms show a heavy-tailed shape. B – Top: The intervals between the samefirst consecutive occurrences
of the same microstate as in A. These between-state-intervals resemble the durations in irregularity and variance. Bottom: The corresponding histograms: all between-state-intervals
show similar histograms as the durations. C. Q–Q plots illustrating the comparison of the histogram of durations of a selectedmicrostatewith heavy-tailed distributions such as lognormal,
generalized pareto (power-law), gamma and exponential.
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range”. In this method the range of the data is rescaled at increasing
time blocks, using a division by the standard deviation (range/SD
or R/S). When plotting R/S over the increasing time blocks in logarith-
mic axes, a least-square line can befitted. The slope of thisfitting line in-
dicates the degree of LRD and is called the “Hurst exponent”. A slope of
Fig. 3. Basicmethods of determining long-range dependency inmicrostate sequences. A. The sa
500ms (black), and the sample autocorrelation function of the HMM sequence (blue). Both ACF
themicrostate sequence decaysmuch slower at lags N100ms, andmultiple Ljung-Box Q-tests d
spectral density estimation between 0.1 Hz and 10Hz of the wholemicrostate sequence (Welch
of the HMM sequence (blue line). The microstate sequence shows a strong negative slope (red
0.5 is indicating random behavior equivalent to white noise, while a
slope of N0.5 indicates the presence of LRD. Fig. 4A shows such a pox
plot for a selected microstate sequence (the slope of 0.65 indicates
LRD), compared to the HMM sequence (the slope is not different from
0.5).
mple autocorrelation function shown for a selectedmicrostate sequence for a time lag 1 to
exhibit a slow decay; however, the HMM sequence arrives at 0 at the lag of 260ms, while
emonstrated a significant autocorrelation for all possible lags (mean p=0). B. The power
'smethod, L=2048, overlap 87.5%, black line), and the power spectral density estimation
line) consistent with a power-law like pattern, while the HMM sequence is almost flat.



Fig. 4.Different quantification of long-range dependency (Hurst exponent estimators). A. The pox plot of “rescaled range” over increasing blocks of time shows a linear fit linewith a slope
of 0.65 indicating LRD (red line), the fitting of the “rescaled range” of the HMM sequence has a slope of 0.54, which is close to random white noise (blue dotted line). B. Time-variance
analysis relates variance and aggregate levels of time in a double logarithmic plot. The values of anHMMsequence (blue) follow the diagonal dotted line (β=1,H=0.5), while the values
of the microstate sequence follow a line (red), which lies more horizontal (1 NβN 0, 0.5 b H b 1), indicating present long-range dependency. C. Detrended fluctuation analysis (DFA) of a
microstate sequence. The fluctuation function F(n) plotted against the time window size n in log–log presentation. The values display a slightly curved line with a slope of 0.65 (red line),
while theHMMsequence follows the slope of 0.51 (blue). D. Thewavelet leader framework basedmethod used in (VanDeVille et al., 2010) estimates theHurst exponent across 6 different
orders of power exponents q (0 to 5), resulting in amore stable and complete estimation of the Hurst exponent. The resulting scaling spectra build a straight line (black) with a slope 0.84
showing strong LRD. The HMM sequence (blue) displays a slope of exactly 0.50, consistent with the expected behavior of random white noise.
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3.d. Time-variance analysis shows long-range dependency

There is no unique way to calculate the Hurst exponent, but several
techniques can be used for its estimation (Sarker, 2007). Another vari-
ant of LRD sensitive analysis is the time-variance analysis. When gener-
ating an temporal aggregation at different levels m and calculating the
variance at each level of aggregation, the logarithmic dependence dia-
gram will represent a descending line with a slope equal to −β, and
the Hurst exponent is 1− β / 2. As shown in Fig. 4B, the HMM sequence
follows directly the descending diagonal (β=1 and H=0.5), whereas
the selected microstate sequence stays clearly more horizontal, with
1 N β N 0 and 0.5 b H b 1, confirming LRD in the data.
3.e. Detrended fluctuation analysis shows self-similarity and power-law
behavior

Detrended fluctuation analysis (DFA), is another, very popular, ap-
proach of capturing self-similarity and the presence of LRD, which has
proven very useful in the analysis of a variety of complex physiological
signals of any kind (Goldberger et al., 2000; Peng et al., 1994). In this
method, the integrated sequence is divided into time windows of
equal length n. Each window is detrended and the fluctuation function
F(n) is measured as the average of all standard deviations in all n
detrended time windows. This measure is repeated for a whole scale
of different n and presented in a log–log plot. The fluctuation function
F(n) displays a straight line, with, in case of a LRD sequence, a slope
between 0.5 and 1, similar to the Hurst exponent (Fig. 4C). The linear
relationship on the log–log plot indicates the presence of power law
(fractal) scaling.

3.f. Wavelet framework shows fractal behavior

Wavelet frameworks (Arneodo et al., 1988; Jaffard, 2004; Wendt
et al., 2007) combine analyses at multiple scales in a robust way and
provide therefore a more natural and elegant analysis of scale invariant
properties of a complex system. In Van De Ville et al. (2010), the Hurst
exponent was estimated using scaling spectra (ζ) of 11 different
power exponents q (−5 to 5), allowing to go beyond second-order sta-
tistics as the time variance analysis. Fig. 4D shows the result of this
method, theplot of the estimates of the scaling exponents ζ as a function
of q. The slope of themicrostate sequence is significantly N0.5, the slope
of the HMM sequence is exactly 0.5 (dotted line), which is like a white
noise sequence.

Van De Ville et al. (2010) have ruled out that the observed long
memory effect appeared as an artifact of applied filters. The comparison
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of the original sequence with a shuffled-labels sequence (keeping
the temporal relations unchanged), and with an equalized-duration se-
quence, demonstrated the importance of the temporal properties of the
microstate sequence, with a large variety of durations, in order tomain-
tain fractal organization and LRD. The duration-equalized sequence has
similar dynamics as white noise, although the exact sequence of transi-
tions from one to the next state wasmaintained. The transition probabil-
ities of a simple Markov chain only reflect the proportion of the overall
presence for each of the four maps. They are not influenced by short-
range interactions, but they cannot capture the important long-range
interaction.

3.g. Multiscale permutation entropy shows the importance of local varia-
tion of higher order

Entropy is an information-theoretic measure of higher-order system
complexity that attracted much attention from various fields. Different
methods have been proposed to calculate the entropy of a complex sys-
tem (Bandt and Pompe, 2002; Costa et al., 2002; Ouyang et al., 2013;
Pincus, 1991). Here we use a recent approach, termed “multiscale per-
mutation entropy” (MPE) (Ouyang et al., 2013; Wu et al., 2014), com-
bining different scales (Costa et al., 2002) and permutation orders
(Bandt and Pompe, 2002), in order to demonstrate the relationship be-
tween local and global information content in themicrostates sequence.
Entropy of a single discrete random variable is a measure of its average
uncertainty (Costa et al., 2002):

H Xð Þ ¼ −
X

xi∈Θ

p xið Þ logp xið Þ:

MPE uses a scaling factor s defining the granularity, and an embed-
ding factorm defining the order of permutation. For example, to calcu-
late MPE with s = 10 and m = 5: first, every 10 non-overlapping time
points (x(t)…x(t + 10)) are averaged into a coarse grained surrogate
sequence; second, for every 5 of the resulting surrogate elements the
entropy is calculated for all possible permutations and averaged. Fig. 5
shows the MPE of a selected microstate sequence using permutations
from 2nd to 7th order, and for a scaling from 1 to 125 (corresponding
to 1 s; red circles), compared to the entropy of the HMM sequence
(blue dots). Globally, entropy almost linearly decreases with growing
permutation order. For each m, entropy is lowest in the fine scales, in-
creasing rapidly with coarser granularity.

This provides evidence that local variation (low s) of high order
(high m) contains most of the information in a microstate sequence;
the coarser the granulation is (high scale), the more flattened and the
more similar to noise it becomes, and the lower the permutation
order, the more noise like the sequence is. This converges with the
high importance of local variety for long-range dependency in micro-
state sequence.
Fig. 5. Multiscale permutation entropy (MPE) using permutations from 2nd to 7th order
(m), shown for different scales from 1 to 125 (sampling rate 125 Hz) for a microstate
sequence (red) and HMM sequence (blue) in log–log presentation. For each m, entropy
is lowest in the fine scales, increasing rapidly with coarser granularity. With growing
permutation order, entropy decreases and is clearly lower than for the HMM sequence.
4. Need of enhanced Markov models to adequately describe
microstate sequences

Markov chains have been used before to describe microstate se-
quences (Lehmann et al., 2005; Nishida et al., 2013; Wackermann
et al., 1993). These models seduce on the first glance by their simplicity
and direct application to the sequence of microstate. However, in a 1st-
order Markov chain, as Gärtner et al. (2015) mention themselves, the
probability that the next state is s, given a current state r, only depends
on the current r, and is given by the transition probabilities P(s|r). Time
is considered homogenous, meaning that the transition probability ma-
trix stays constant during the whole sequence. The probability of the n
following steps will spread out away from the initial random point,
and, with increasing n, approach the same limiting distribution π
when n → ∞ (i.e. the probability of 0.25 for each in a set of 4 micro-
states), given it is an aperiodic, irreducible, transient and stationary
Markov chain (central limit theorem). If n is limited, the transition prob-
ability matrix will simply reflect the occurrences per microstates
(Chang, 2007). Long-range dependency is not capturedwith theseMar-
kov models (Callut and Dupont, 2005; Park et al., 2012; Yoon and
Vaidyanathan, 2006).

One of the classic models based on local interactions, but capable of
long-range dependency and generation of scale-free signals is the Ising
model. It is a ferromagnetic model consisting of discrete integer vari-
ables (spins, taking values −1 or +1), organized in a lattice. Normally
this system behaves only according to short-term interactions, but
there is a critical parameter adjustment, by which long-range depen-
dence does emerge. Similar to the Isingmodel, where a spatial arrange-
ment (lattice) and a contextual behavior of the ferromagnetic spins is a
precondition in order to produce, under certain circumstances, long-
range dependencies, there have been several propositions to improve
the long-range capability of Markov models. For example, a context-
sensitive HMMwas introduced (Yoon and Vaidyanathan, 2006), associ-
ated at a dynamic programming in order to find the optimal state se-
quence, as well as a parameter re-estimation algorithm for optimizing
the model parameters, given training sequences. Another example is
the introduction of structure, associated at non-linear optimization
and iterative state splitting (Callut and Dupont, 2005). A third example
is the proposition to include a variational Gaussian process dynamical
system in the HMM used in phoneme classification (one of the most
successful practical fields of HMM application), enabling the complex
dynamic structure and long-range dependency of speech to be better
represented than that by an HMM (Park et al., 2012).

5. Conclusion

In sum, we retain that scale-free dynamics in EEG microstate se-
quences are reminiscent of the complex system of the brain, likely as a
result of self-organizing mechanisms (Bak et al., 1987; Barabasi and
Albert, 1999) with uncountable activators (Buzsaki and Mizuseki,
2014), all operating far from homeostasis (Breakspear and Stam,
2005). Scale-freeness is a sign of efficient and flexible information
flow between multiple sources (Kello et al., 2010), and from an evolu-
tionary point of viewmight enable the system to adapt and reconfigure
rapidly, so that learning can occur on this basis (de Arcangelis and
Herrmann, 2010; Lewis et al., 2009). Fractal organization has been dem-
onstrated in an increasing number of physiological measurements, such
asheartbeat rhythm(Goldberger et al., 2000) and gait stride (Peng et al.,
2000).

The microstate analysis of the resting brain provides therefore an
ideal macroscopic observational window of these global temporal as-
pects of spontaneous brain activity. In the light of the above-presented
evidence, further adequate modeling of microstate sequences needs to
go beyond the step-by-step short-term interactions of the states. As
demonstrated here and initially by Van De Ville et al. (2010), the long-
range dependency of the microstate sequence is not based on the



454 M. Gschwind et al. / NeuroImage 117 (2015) 449–455
sequence of the labels alone, but much more on the temporal relations
within and between the states. As a consequence, an empirical micro-
state sequence, which was arbitrarily “re-labeled” by an applied HMM,
still would display LRD in case the durations and intervals are preserved,
i.e. the “shuffled label” condition in Van De Ville et al. (2010). It is the
microstate durations and between-state intervals that involve higher-
order relationships with quantifiable long-range dependency.

We would therefore like to encourage the authors of Gärtner et al.
(2015) to solicit their HMM model like approach of “sampled marked
intervals” (SMI) also for its capability to capture long-range dependen-
cy. In case the presented SMI model indeed lets emerge LRD, this prop-
erty should also be described. If, however, the SMImodel does not allow
to capture LRD, we would suggest the authors to consider an extension
of their model that would allow for LRD, a key feature of the EEGmicro-
state sequence.

Acknowledgment

This work was supported by the Swiss National Science Foundation,
grants number 33CM30_124115/2SPUM and 326030_128775.

The authors do not report any conflict of interest.

References

Abry, P., Baraniuk, R.G., Flandrin, P., Riedi, R.H., Veitch, D., 2002. Multiscale nature of net-
work traffic. IEEE Signal Process. Mag. 19, 28–46.

Alvarez-Lacalle, E., Dorow, B., Eckmann, J.P., Moses, E., 2006. Hierarchical structures in-
duce long-range dynamical correlations in written texts. Proc. Natl. Acad. Sci. U. S.
A. 103, 7956–7961.

Arita, M., 2005. Scale-freeness and biological networks. J. Biochem. 138, 1–4.
Arneodo, A., Grasseau, G., Holschneider, M., 1988. Wavelet transform of multifractals.

Phys. Rev. Lett. 61, 2281–2284.
Bak, P., Tang, C., Wiesenfeld, K., 1987. Self-organized criticality: an explanation of the 1/f

noise. Phys. Rev. Lett. 59, 381–384.
Banchs, R.E., 2013. Text Mining with MATLAB®. Springer, New York.
Bandt, C., Pompe, B., 2002. Permutation entropy: a natural complexity measure for time

series. Phys. Rev. Lett. 88.
Barabasi, A.L., Albert, R., 1999. Emergence of scaling in random networks. Science 286,

509–512.
Breakspear, M., Stam, C.J., 2005. Dynamics of a neural system with a multiscale architec-

ture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 1051–1074.
Buzsaki, G., Mizuseki, K., 2014. The log-dynamic brain: how skewed distributions affect

network operations. Nat. Rev. Neurosci. 15, 264–278.
Callut, J., Dupont, P., 2005. Inducing hidden Markov models to model long-term depen-

dencies. 16th European Conference on Machine Learning (ECML), Lecture Notes in
Artificial Intelligence, pp. 513–521.

Chang, J.T., 2007. Stochastic Processes. (http://www.scribd.com/doc/206500071/Stochastic-
Processes-by-Joseph-T-Chang).

Costa, M., Goldberger, A., Peng, C.K., 2002. Multiscale entropy analysis of complex physi-
ologic time series. Phys. Rev. Lett. 89.

de Arcangelis, L., Herrmann, H.J., 2010. Learning as a phenomenon occurring in a critical
state. Proc. Natl. Acad. Sci. U. S. A. 107, 3977–3981.

De Lucia, M., Constantinescu, I., Sterpenich, V., Pourtois, G., Seeck, M., Schwartz, S., 2011.
Decoding sequence learning from single-trial intracranial EEG in humans. PLoS One
6, e28630.

Dierks, T., Jelic, V., Julin, P., Maurer, K., Wahlund, L.O., Almkvist, O., Strik, W.K., Winblad, B.,
1997. EEG-microstates in mild memory impairment and Alzheimer's disease:
possible association with disturbed information processing. J. Neural Transm. 104,
483–495.

Gärtner, M., Brodbeck, V., Laufs, H., Schneider, G., 2015. A stochastic model for EEGmicro-
state sequence analysis. Neuroimage 104, 199–208.

Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E.,
Moody, G.B., Peng, C.K., Stanley, H.E., 2000. PhysioBank, PhysioToolkit, and PhysioNet:
components of a new research resource for complex physiologic signals. Circulation
101, E215–E220.

He, B.J., Zempel, J.M., Snyder, A.Z., Raichle, M.E., 2010. The temporal structures and func-
tional significance of scale-free brain activity. Neuron 66, 353–369.

Jaffard, S., 2004. Wavelet techniques in multifractal analysis, fractal geometry and
applications: a jubilee of Benoît Mandelbrot. In: Lapidus, M., van Frankenhuijsen, M.
(Eds.), Proceedings of Symposia in Pure Mathematics. AMS, Providence, RI, pp. 91–152.

Karagiannis, T., Molle,M., Faloutsos,M., 2004. Long-range dependence—ten years of Inter-
net traffic modeling. IEEE Internet Computing 6, 57–64.

Kello, C.T., Brown, G.D., Ferrer, I.C.R., Holden, J.G., Linkenkaer-Hansen, K., Rhodes, T., Van
Orden, G.C., 2010. Scaling laws in cognitive sciences. Trends Cogn. Sci. 14, 223–232.

Klinshov, V.V., Teramae, J.N., Nekorkin, V.I., Fukai, T., 2014. Dense neuron clustering
explains connectivity statistics in cortical microcircuits. PLoS One 9, e94292.

Lehmann, D., Skrandies, W., 1984. Spatial analysis of evoked potentials in man—a review.
Prog. Neurobiol. 23, 227–250.
Lehmann, D., Faber, P.L., Galderisi, S., Herrmann, W.M., Kinoshita, T., Koukkou, M., Mucci,
A., Pascual-Marqui, R.D., Saito, N., Wackermann, J., Winterer, G., Koenig, T., 2005. EEG
microstate duration and syntax in acute, medication-naive, first-episode schizophre-
nia: a multi-center study. Psychiatry Res. 138, 141–156.

Lewis, C.M., Baldassarre, A., Committeri, G., Romani, G.L., Corbetta, M., 2009. Learning
sculpts the spontaneous activity of the resting human brain. Proc. Natl. Acad. Sci.
U. S. A. 106, 17558–17563.

Limpert, E., Stahel, W.A., 2011. Problems with using the normal distribution—and ways to
improve quality and efficiency of data analysis. PLoS One 6, e21403.

Limpert, E., Stahel, W.A., Abbt, M., 2001. Log-normal distributions across the sciences:
keys and clues. Bioscience 51, 341–352.

Loewenstein, Y., Kuras, A., Rumpel, S., 2011. Multiplicative dynamics underlie the emer-
gence of the log-normal distribution of spine sizes in the neocortex in vivo.
J. Neurosci. 31, 9481–9488.

Mandelbrot, B.B., 1965. Une classe de processus stochastiques homothétiques a soi.
Application a la loi climatologique de H. E. Hurst. Comptes Rendus Academic Sciences
Paris 260, 3274–3277.

Mandelbrot, B.B., 1983. The Fractal Geometry of Nature. W. H. Freeman and Co., San
Francisco.

Markov, N.T., Ercsey-Ravasz, M.M., Ribeiro Gomes, A.R., Lamy, C., Magrou, L., Vezoli, J.,
Misery, P., Falchier, A., Quilodran, R., Gariel, M.A., Sallet, J., Gamanut, R., Huissoud,
C., Clavagnier, S., Giroud, P., Sappey-Marinier, D., Barone, P., Dehay, C., Toroczkai, Z.,
Knoblauch, K., Van Essen, D.C., Kennedy, H., 2014. A weighted and directed interareal
connectivity matrix for macaque cerebral cortex. Cereb. Cortex 24, 17–36.

Matteo, T.D., Aste, T., Dacorogna, M.M., 2005. Long-term memories of developed and
emerging markets: using the scaling analysis to characterize their stage of develop-
ment. J. Bank. Financ. 29, 827–851.

Mizuseki, K., Buzsaki, G., 2013. Preconfigured, skewed distribution of firing rates in the
hippocampus and entorhinal cortex. Cell Rep 4, 1010–1021.

Nishida, K., Morishima, Y., Yoshimura, M., Isotani, T., Irisawa, S., Jann, K., Dierks, T., Strik,
W., Kinoshita, T., Koenig, T., 2013. EEG microstates associated with salience and
frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer's
disease. Clin. Neurophysiol. 124, 1106–1114.

Obermaier, B., Guger, C., Pfurtscheller, G., 1999. Hidden Markov models used for the
offline classification of EEG data. Biomed Tech (Berl) 44, 158–162.

Oh, S.W., Harris, J.A., Ng, L., Winslow, B., Cain, N., Mihalas, S., Wang, Q., Lau, C., Kuan, L.,
Henry, A.M., Mortrud, M.T., Ouellette, B., Nguyen, T.N., Sorensen, S.A.,
Slaughterbeck, C.R., Wakeman, W., Li, Y., Feng, D., Ho, A., Nicholas, E., Hirokawa,
K.E., Bohn, P., Joines, K.M., Peng, H., Hawrylycz, M.J., Phillips, J.W., Hohmann, J.G.,
Wohnoutka, P., Gerfen, C.R., Koch, C., Bernard, A., Dang, C., Jones, A.R., Zeng, H.,
2014. A mesoscale connectome of the mouse brain. Nature 508, 207–214.

Ouyang, G., Li, J., Liu, X., Li, X., 2013. Dynamic characteristics of absence EEG recordings
with multiscale permutation entropy analysis. Epilepsy Res. 104, 246–252.

Park, H., Yun, S., Park, S., Kim, J., Yoo, C.D., 2012. Phoneme classification using constrained
variational Gaussian process dynamical system. Advances in Neural Information Pro-
cessing Systems 25, 2015–2023.

Peng, C.K., Buldyrev, S., Havlin, S., Simons, M., Stanley, H., Goldberger, A., 1994. Mosaic or-
ganization of DNA nucleotides. Phys. Rev. E 49, 1685–1689.

Peng, C.-K., Hausdorff, J.M., Goldberger, A.L., 2000. Fractal mechanisms in neural control:
human heartbeat and gait dynamics in health and disease. I. In: Walleczek, J. (Ed.),
Self-organized Biological Dynamics and Nonlinear Control. Cambridge University
Press, Cambridge.

Petersen, A.M., Tenenbaum, J.N., Havlin, S., Stanley, H.E., Perc, M., 2012. Languages cool as
they expand: allometric scaling and the decreasing need for newwords. Sci. Rep. 2, 943.

Pincus, S.M., 1991. Approximate entropy as a measure of system complexity. Proc. Natl.
Acad. Sci. U. S. A. 88, 2297–2301.

Riedi, R.H., Crouse, M.S., Ribeiro, V.J., Baraniuk, R.G., 1999. A multifractal wavelet model
with application to network traffic. Information Theory, IEEE Transactions on 45,
992–1018.

Robinson, P., 2003. Time Series with Long Memory. Oxford University Press.
Samorodnitsky, G., 2006. Long range dependence. Foundations and Trends in Stochastic

Systems 1, 163–257.
Sarker, M.M.A., 2007. Estimation of the self-similarity parameter in long memeory

processes. J Mechanical Engeneering ME 38, 32–37.
Scheffer, M., Bascompte, J., Brock, W.A., Brovkin, V., Carpenter, S.R., Dakos, V., Held, H., van

Nes, E.H., Rietkerk, M., Sugihara, G., 2009. Early-warning signals for critical transi-
tions. Nature 461, 53–59.

Van De Ville, D., Britz, J., Michel, C.M., 2010. EEG microstate sequences in healthy humans
at rest reveal scale-free dynamics. Proc. Natl. Acad. Sci. U. S. A. 107, 18179–18184.

Varotsos, C., Kirk-Davidoff, D., 2006. Long-memory processes in ozone and temperature
variations at the region 60°S–60°N. Atmospheric Chemistry and Physics European
Geosciences Union (EGU) 6, 4093–4100.

Wackermann, J., Lehmann, D., Michel, C.M., Strik, W.K., 1993. Adaptive segmentation of
spontaneous EEG map series into spatially defined microstates. Int. J. Psychophysiol.
14, 269–283.

Wang, S.S., Shultz, J.R., Burish, M.J., Harrison, K.H., Hof, P.R., Towns, L.C., Wagers, M.W.,
Wyatt, K.D., 2008. Functional trade-offs in white matter axonal scaling. J. Neurosci.
28, 4047–4056.

Wang, Q., Sporns, O., Bu`rkhalter, A., 2012. Network analysis of corticocortical connections
reveals ventral and dorsal processing streams in mouse visual cortex. J. Neurosci. 32,
4386–4399.

Wendt, H., Abry, P., Jaffard, S., 2007. Bootstrap for empirical multifractal analysis. IEEE
Signal Process. Mag. 24, 38–48.

Wiedemann, G., Stevens, A., Pauli, P., Dengler, W., 1998. Decreased duration and altered
topography of electroencephalographic microstates in patients with panic disorder.
Psychiatry Res. 84, 37–48.

http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0005
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0005
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0010
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0010
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0010
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0015
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0020
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0020
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0025
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0025
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0030
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0035
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0035
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0040
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0040
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0045
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0045
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0050
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0050
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0280
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0280
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0280
http://www.scribd.com/doc/206500071/Stochastic-Processes-by-Joseph-T-Chang
http://www.scribd.com/doc/206500071/Stochastic-Processes-by-Joseph-T-Chang
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0055
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0055
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0290
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0290
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0065
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0065
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0070
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0070
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0070
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0075
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0075
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0080
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0080
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0080
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0085
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0085
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0090
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0090
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0090
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0095
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0095
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0100
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0105
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0105
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0115
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0115
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0110
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0110
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0110
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0120
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0120
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0120
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0125
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0125
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0130
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0130
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0135
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0135
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0135
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0140
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0140
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0140
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0145
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0145
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0150
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0150
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0155
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0155
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0155
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0160
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0160
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0165
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0165
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0165
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0170
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0170
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0175
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0180
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0180
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0185
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0185
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0185
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0195
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0195
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0190
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0190
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0190
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0190
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0200
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0200
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0205
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0205
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0210
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0210
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0210
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0215
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0220
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0220
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0295
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0295
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0225
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0225
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0230
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0230
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0235
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0235
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0235
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0240
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0240
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0240
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0250
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0250
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0245
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0245
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0245
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0255
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0255
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0260
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0260
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0260


455M. Gschwind et al. / NeuroImage 117 (2015) 449–455
Wu, S.D., Wu, C.W., Lin, S.G., Lee, K.Y., Peng, C.K., 2014. Analysis of complex time series
using refined composite multiscale entropy. Phys. Lett. A 378, 1369–1374.

Yasumatsu, N., Matsuzaki, M., Miyazaki, T., Noguchi, J., Kasai, H., 2008. Principles of
long-term dynamics of dendritic spines. J. Neurosci. 28, 13592–13608.
Yoon, B.J., Vaidyanathan, P.P., 2006. Context-sensitive hidden Markov models for
modeling long-range dependencies in symbol sequences. Ieee Transactions on Signal
Processing 54, 4169–4184.

http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0265
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0265
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0270
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0270
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0275
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0275
http://refhub.elsevier.com/S1053-8119(15)00452-8/rf0275

	Long-range dependencies make the difference—Comment on “A�stochastic model for EEG microstate sequence analysis”
	1. Background—long-range dependency in complex systems
	2. The heavy-tailed distributions of EEG microstate durations and intervals suggest long-range dependency
	3. Evidence of self-similarity and quantification of long-range dependency
	3.a. Autocorrelation shows a slow decay
	3.b. Power spectral density shows a negative slope (power-law behavior)
	3.c. Rescaled range analysis (R/S) shows a Hurst exponent >0.5
	3.d. Time-variance analysis shows long-range dependency
	3.e. Detrended fluctuation analysis shows self-similarity and power-law behavior
	3.f. Wavelet framework shows fractal behavior
	3.g. Multiscale permutation entropy shows the importance of local variation of higher order

	4. Need of enhanced Markov models to adequately describe microstate sequences
	5. Conclusion
	Acknowledgment
	References


