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ABSTRACT  |  Modern neuroimaging techniques provide us with 

unique views on brain structure and function; i.e., how the brain 

is wired, and where and when activity takes place. Data acquired 

using these techniques can be analyzed in terms of its network 

structure to reveal organizing principles at the systems level. Graph 

representations are versatile models where nodes are associated 

to brain regions and edges to structural or functional connections. 

Structural graphs model neural pathways in white matter, which 

are the anatomical backbone between regions. Functional graphs 

are built based on functional connectivity, which is a pairwise 

measure of statistical interdependency between pairs of regional 

activity traces. Therefore, most research to date has focused on 

analyzing these graphs reflecting structure or function. Graph 

signal processing (GSP) is an emerging area of research where 

signals recorded at the nodes of the graph are studied atop the 

underlying graph structure. An increasing number of fundamental 

operations have been generalized to the graph setting, allowing to 
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analyze the signals from a new viewpoint. Here, we review GSP 

for brain imaging data and discuss their potential to integrate 

brain structure, contained in the graph itself, with brain function, 

residing in the graph signals. We review how brain activity can 

be meaningfully filtered based on concepts of spectral modes 

derived from brain structure. We also derive other operations 

such as surrogate data generation or decompositions informed 

by cognitive systems. In sum, GSP offers a novel framework for 

the analysis of brain imaging data.

KEYWORDS  |  Brain; functional MRI; graph signal processing 

(GSP); network models; neuroimaging

I .   IN TRODUCTION

Advances in neuroimaging techniques such as magnetic 
resonance imaging (MRI) have provided opportunities to 
measure human brain structure and function in a noninva-
sive manner [2]. Diffusion-weighted MRI allows to meas-
ure major fiber tracts in white matter and thereby map the 
structural scaffold that supports neural communication. 
Functional MRI (fMRI) takes an indirect estimate of the 
brain approximately each second, in the form of blood oxy-
genation level-dependent (BOLD) signals. An emerging 
theme in computational neuroimaging is to study the brain at 
the systems level with such fundamental questions as how it 
supports coordinated cognition, learning, and consciousness.

Shaped by evolution, the brain has evolved connectiv-
ity patterns that often look haphazard yet are crucial in 
cognitive processes. The apparent importance of these con-
nectomes has motivated the emergence of network neuro-
science as a clearly defined field to study the relevance of 
network structure for cognitive function [3]–[5]. The fun-
damental components in network neuroscience are graph 
models [6] where nodes are associated to brain regions and 
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edge weights are associated with the strength of the respec-
tive connections. This connectivity structure can be measured 
directly by counting fiber tracts in diffusion-weighted MRI or 
can be inferred from fMRI BOLD measurements. In the latter 
case, networks are said to be functional and represent a meas-
ure of co-activation, e.g., the pairwise Pearson correlation 
between the activation time series of nodes. Functional con-
nectivity networks do not necessarily represent physical con-
nections although it has been observed that there is a strong 
basis of anatomical support for functional networks [7].

Connectomes, structural and functional alike, have been 
successfully analyzed utilizing a variety of tools from graph 
theory and network science [6]. These analyses have uncov-
ered a variety of measures that reflect organizational prin-
ciples of brain networks such as the presence of communi-
ties where groups of regions are more strongly connected 
between each other than with other communities [7], [8]. 
Network analysis has also been related to behavioral and 
clinical measures by statistical methods or machine learning 
tools to study development, behavior, and ability [9]–[11].

As network neuroscience expands from understanding 
connectomes into understanding how connectomes and func-
tional brain activity support behavior, the study of dynamics 
has taken center stage. In addition, there is a rise of interest 
in analyzing and understanding dynamics of functional signals 
and with them, network structure. Such changes happen at 
different timescales, from years—e.g., in developmental stud-
ies [12]—down to seconds within a single fMRI run of several 
minutes [13], or following tasks such as learning paradigms 
[1], [11], [14]. So far, common approaches include examin-
ing changes in network structure (e.g., reflecting segregation 
and integration) [15] or investigating time-resolved measures 
of the underlying functional signals [16]–[18]. In the case of 
developmental studies, the evolution of structural networks is 
important, but large-scale anatomical changes do not occur in 
the shorter time scales that are involved in behavior and abil-
ity studies. In the latter case, the notion of a dynamic network 
itself makes little sense and the more pertinent objects of inter-
est are the dynamic changes in brain activity signals [1], [14]. 
Inasmuch as brain activity is mediated by physical connections, 
the underlying network structure must be taken into account 
when studying these signals. Tools from the emerging field of 
graph signal processing (GSP) are tailored for this purpose.

Put simply, GSP addresses the problem of analyzing and 
extracting information from data defined not in regular 
domains such as time or space, but on more irregular domains 
that can be conveniently represented by a graph. The funda-
mental GSP concepts that we utilize to analyze brain signals 
are the graph Fourier transform (GFT) and the correspond-
ing notions of graph frequency components and graph filters. 
These concepts are generalizations of the Fourier transform, 
frequency components, and filters that have been used in regu-
lar domains such as time and spatial grids [19]–[21]. As such, 
they permit the decomposition of a graph signal into pieces that 
represent different levels of variability. We can define low graph 
frequency components representing signals that change slowly 

with respect to brain networks, and high graph frequency com-
ponents representing signals that change swiftly with respect 
to the connectivity networks. This is crucial because low and 
high temporal variability have proven to be important in the 
analysis of neurological disease and behavior [22], [23]. GFT-
based decompositions permit a similar analysis of variability 
across regions of the brain for a fixed time—a sort of spatial 
variability measured with respect to the connectivity pattern. 
We review a recent study [1] that such a decomposition can be 
used to explain individual cognitive differences, as illustrated 
in Figs. 6 and 7, and offer other perspectives to apply GSP to 
functional brain analytics. The theory of GSP has been growing 
rapidly in recent years, with development in areas including 
sampling theory [24], [25], stationarity [26], [27] and uncer-
tainty [28]–[31], filtering [32]–[34], directed graphs [35], and 
dictionary learning [36]. Applications have been spanning 
many areas including neuroscience [14], [37], imaging [38], 
[39], medical imaging [40], video [41], online learning [42], 
and rating prediction [43]–[45].

In this work, we broadly cover how GSP can be applied for 
an elegant and principled analysis of brain activity. In Section 
II, we start by constructing a graph from structural connectiv-
ity—the backbone of the brain—and considering brain activ-
ity as graph signals. Then, in Section III, we derive the graph 
spectral domain by the eigendecomposition of a graph shift 
operator. Such eigenmodes have already been recognized as 
useful by providing robust representation of the connectome 
in health and disease [46]. We introduce a number of graph 
signal operations that are particularly useful for processing 
the activity time courses measured at the nodes of the graph; 
i.e., filtering in terms of anatomically aligned or liberal modes, 
randomization preserving anatomical smoothness, and local-
ized decompositions that can incorporate additional domain 
knowledge. In the following sections, we review a recent 
study in [1] demonstrating the relevance of these GSP tools 
as an integrated framework to consider structure and func-
tion: in the context of an attention task, we discuss the poten-
tial of GSP operations to capture cognitively relevant brain 
properties (Section IV). We also provide avenues for utilizing 
GSP tools in the structure-informed study of functional brain 
dynamics (Section V), through the extraction of significant 
excursions in a particular structure/function regime (Section 
V-A), and by more elaborate uses of GSP building blocks that 
can broaden the analysis to the temporal frequency domain 
(Section V-B), or narrow it down to a localized subset of 
selected regions (Section V-C). As certain parts of the paper 
include specific neuroscience terminology, a summarizing 
table (Table 1) is provided for the reader’s reference.

II .   BR A IN GR A PHS A ND BR A IN 
SIGNA LS

Brain networks describe physical connection patterns 
between brain regions. These connections are mathemati-
cally described by a weighted graph ​G :  = (V, A)​ where 
​V = { 1, 2, …, N}​ is a set of ​N​ nodes associated with specific 
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brain regions and ​A ∈ ​ℝ​ +​ N×N​​ is a weighted adjacency matrix 
with entries ​​A​i,j​​​ representing the strength of the physical 
connection between brain regions ​i​ and ​j​. Some readers 
may prefer to consider the graph as a tuple ​G = (V, ℰ)​ where ​
ℰ ⊂ V × V​ describes the existence of physical connections 
between pairs of brain regions; each edge ​(i, j)  ∈ ℰ​ has an 
underlying weight ​​A​i,j​​​ quantifying the strength of the con-
nection. In this paper, we use ​G :  = (V, A)​ because it is more 
concise; notice that we can infer the existence of an edge ​
(i, j)  ∈ ℰ​ from the weight in the adjacency matrix if ​​A​i,j​​ > 0​.

The brain regions encoded in the nodes of ​V​ are macro-
scale parcels of the brain that our current understanding of 
neuroscience deems anatomically or functionally differenti-
ated. There are various parcellations in use in the literature 
that differ mostly in their level of resolution and specific 
location [54], [55]. As an example, the networks that we 
study here consist of ​N = 82​ regions from the Desikan–
Killiany anatomical atlas [56] combined with the Harvard–
Oxford subcortical parcels [57]. A schematic representation 
of a few labeled brain regions is shown in Fig. 1(a).

The entries ​​A​ij​​​ of the adjacency matrix ​A​ measure the 
strength of the axonal connection between region ​i​  and region ​
j​. This strength is a simple count of the number of stream-
lines (estimated individual fibers) that connect the regions, 
and can be estimated with diffusion spectrum imaging (DSI) 
[47]—see Fig. 1 for an illustration of the pipeline and Callout 
1 for details on the specific techniques that are used for this 

purpose. In a situation of healthy development and an absence 
of trauma, nodes in brain graphs are the same across individu-
als. Intersubject variability of structural connectivity has dem-
onstrated clinical value as it has been reliably associated with 
neurological [61], [62] and psychological [63] disorders.

Besides structural connectivity, it is also possible to 
acquire brain activity signals ​x ∈ ​ℝ​​ N​​ such that the value 
of the ​i​th component ​​x​i​​​ quantifies neuronal activity in 
brain region ​i​—see Fig. 2 for an illustration of these 
BOLD signals and Callout 2 for details on the methods. 
BOLD signals for all the ​N​ studied brain regions are 
acquired over ​T​ successive time points, and therefore, 
we define the matrix ​X ∈ ​ℝ​​ N×T​​ such that its ​j​th column 
codifies brain activity at time ​j​. An example of such a 
brain signal matrix is provided in Fig. 2(a), with the cor-
responding distribution of values for each brain region 
illustrated in Fig. 2(b).

Brain activity signals carry dynamic information that is 
not only useful for the study of pathology [62], [64], [65], 
but also enables us to gain insight into human cognitive 
abilities [66]–[68]. Whereas physical connectivity can be 
seen as a long-term property of individuals that changes 
slowly over the course of years, brain activity signals display 
meaningful fluctuations at second or subsecond time scales 
that reflect how different parts of the brain exchange and 
process information in the absence of any external stimu-
lus, and how they are recruited to meet emerging cognitive 

Table 1  Neuroscience Terminology Used in the Paper

Fig. 1. Estimating brain graphs. Knowledge from an anatomical atlas based on anatomical features such as gyri and sulci (a) is combined with MRI 
structural connectivity extracted from diffusion-weighted MRI (b), which can then be used to estimate the brain graph (c). (Adapted from [53].)
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challenges. There is increasing evidence that differences in 
activation patterns across individuals tightly relate to behav-
ioral variability [14], [69]–[71].

To the extent that brain activity signals are generated 
on top of the physical connectivity substrate, brain graphs 
and brain signals carry complementary information and 
should be studied in conjunction. This has been a chal-
lenge in neuroscience due to the unavailability of appro-
priate methods for performing this joint analysis. Here, 

we advocate for the use of GSP tools, as detailed in the 
following section.

III .   GR A PH SIGNA L PROCESSING FOR 
NEU ROIM AGING

The GSP perspective is to interpret the brain signal ​x​ as a graph 
signal that is supported on the brain graph ​G = (V, A)​. Here, 
we introduce the fundamental operations that we will need for 

CALLOUT 2: ESTIMATING BRAIN SIGNALS.

To derive the studied brain activity signals, functional MRI (fMRI) runs were acquired during the same scanning ses-
sions as the DSI data on a 3.0T Siemens Tim Trio whole-body scanner with a whole-head elliptical coil by means of a 
single-shot gradient-echo T2* (TR = 1500 ms; TE = 30 ms; flip angle = 60°; FOV = 19.2 cm, resolution 3 mm x 3 mm 
x 3 mm). Preprocessing was performed using FEAT [58], and included skull-stripping with BET [59] to remove non-
brain material, motion correction with MCFLIRT [58], slice timing correction (interleaved), spatial smoothing with 
a 6-mm 3-D Gaussian kernel, and high-pass temporal filtering to reduce low-frequency artifacts. We also performed 
EPI unwrapping with fieldmaps in order to improve subject registration to standard space. Native image transforma-
tion to a standard template was completed using FSL’s affine registration tool, FLIRT [58]. Subject-specific functional 
images were coregistered to their corresponding high-resolution anatomical images via a boundary-based registration 
technique [60] and were then registered to the standard MNI-152 structural template via a 12-parameter linear trans-
formation. Finally, we extracted region-averaged BOLD signals using the same atlas as for the structural analysis. At 
the end of this pipeline, we are thus left with a signal matrix ​X∈ ​ℝ​​ N×T​​ for each subject, reflecting the activity levels 
of all brain regions over time.

CALLOUT 1: ESTIMATING BRAIN GRAPHS.

MRI allows the acquisition of detailed structural information about the brain. The brain graph investigated in this 
paper was acquired on a Siemens 3.0T Tim Trio with a T1-weighted anatomical scan. Twenty-eight healthy individu-
als volunteered for the experiment. We followed a parallel strategy for data acquisition and construction of streamline 
adjacency matrices as in [47]. First, DSI scans sampled 257 directions using a Q5 half-shell acquisition scheme with a 
maximum b-value of 5000 and an isotropic voxel size of 2.4 mm. We utilized an axial acquisition with repetition time 
(TR) = 5 s, echo time (TE) = 138 ms, 52 slices, field of view (FoV) (231, 231, 125 mm). We acquired a 3-D SPGR T1 
volume (TE = minimal full; flip angle = 15°; FOV = 24 cm) for anatomical reconstruction. Second, diffusion spec-
trum imaging (DSI) was performed to establish structural connectivity. DSI data were reconstructed in DSI Studio 
using q-space diffeomorphic reconstruction (QSDR) [48]. QSDR computes the quantitative anisotropy in each voxel, 
which is used to warp the brain to a template QA volume in Montreal Neurological Institute (MNI) space. Then, spin 
density functions were again reconstructed with a mean diffusion distance of 1.25 mm using three fiber orientations 
per voxel. Fiber tracking was performed in DSI studio with an angular cutoff of 35, step size of 1.0 mm, minimum 
length of 10 mm, spin density function smoothing of 0.0, maximum length of 400 mm, and a QA threshold deter-
mined by diffusion-weighted imaging (DWI) signal in the colony-stimulating factor. Deterministic fiber tracking 
using a modified FACT algorithm was performed until 1 000 000 streamlines were reconstructed for each individual. 
Third, each anatomical scan was segmented using FreeSurfer [49], and parcellated using the connectome mapping 
toolkit [50]. A parcellation scheme including N = 87 regions was registered to the B0 volume from each subject’s 
DSI data. The B0 to MNI voxel mapping produced via QSDR was used to map region labels from native space to MNI 
coordinates. To extend region labels through the gray-white matter interface, the atlas was dilated by 4 mm [51]. We 
used FSL to nonlinearly register the individual T1 scans to MNI space. By combining parcellation and streamline 
information, we constructed subject-specific structural connectivity matrices, whose elements represent the number 
of streamlines connecting two different regions [52], divided by the sum of their volumes [53]. This process yields the 
weighted adjacency matrix ​A ∈  ​ℝ​​ N×N​​ for each individual considered here. 



Huang et al . : A Graph Signal Processing Perspective on Functional Brain Imaging

872  Proceedings of the IEEE | Vol. 106, No. 5, May 2018

processing neuroimaging data in a meaningful way. Fig. 3 sum-
marizes the GSP framework as applied to brain imaging.

A. Graph Fourier Transform

The focus of GSP is not on analyzing the brain graph  
​G​ per se, but on using that graph to analyze brain 
signals ​x​. For a graph with positive edge weights, we consider 
a graph shift operator that captures the connectivity pattern 
of  ​G​; we can choose the adjacency matrix ​A​ [19], [20] or 
the graph Laplacian ​L = D − A​ [21], [72], where the degree 
matrix  ​D​ contains the degree of each node on its diagonal: ​​
D​i,i​​ = ​∑ j∈V​ 

​  ​ ​A​i,j​​​​. There are also several variants of the graph 
Laplacian [73] such as the symmetric normalized graph 
Laplacian ​​L​sym​​ = ​D​​ −1/2​ L ​D​​ −1/2​​ that factors out differences 
in degree and is thus only reflecting relative connectivity, or 
the random-walk normalized graph Laplacian: ​​L​rw​​ = ​D​​ −1​ L​. 
Generalizations of the graph Laplacian also exist for graphs 
with negative weights [45], [74].

Let us denote the graph shift operator as ​S​ and assume 
henceforth that ​S​ is diagonalizable using singular value 
decomposition or Jordan decomposition, so that ​S = VΛ ​V​​ −1​​ 
where ​Λ​ is a diagonal matrix containing the eigenvalues ​​λ​ k​​ 
∈ ℂ​, ​k = 0, …, N − 1​, and ​V = [ ​v​0​​ , ​v​1​​ , …, ​v​N−1​​ ]​. When ​S​ is 
symmetric, ​V​ is real and unitary, which implies ​​V​​ −1​ = ​V​​ ​​. 
The intuition behind examining ​S​ as an operator is to repre-
sent a transformation that characterizes exchanges between 
neighboring nodes. The eigendecomposition of ​S​ is then 
used to define the graph spectral domain.

Definition 1: Consider a signal ​x ∈ ​ℝ​​ N​​ and a graph shift 

operator ​S = VΛ ​V​​ −1​ ∈ ​ℝ​​ N×N​​. Then, the vectors 

	 ​​ ~ x​ = ​V​​ ​ x  and  x = V​ ~ x​​� (1)

form a graph Fourier transform (GFT) pair [19], [21].
The GFT encodes the notion of variability for graph sig-

nals akin to the one that the Fourier transform encodes for 
temporal signals. When choosing the adjacency matrix ​A​ as a 
shift operator for directed graphs [19], [20], [75], the eigen-
values ​​λ​ k​​​ can be complex; the smaller the distance between ​​
λ​ k​​​ and ​| ​λ​ max​​ (S) |​ in the complex spectrum, the lower the fre-
quency it represents. This idea is based on defining the total 
variation of a graph signal ​x​ as ​‖x − Sx / ​λ​ max​​ (S) ​‖​1​​​, with 
smoothness being associated to small values of total varia-
tion. Then, given a ​( ​λ​ k​​ , ​v​k​​)​ pair, one has total variation with ​
‖1 − ​λ​ k​​ / ​λ​ max​​ (S) ​‖​1​​ ‖ ​v​k​​ ​‖​1​​​, which provides an intuitive way 
to order the different frequencies. Graph frequency order-
ing becomes more obvious for undirected graphs and thus 
symmetric adjacency matrices, as eigenvalues become real 
numbers. Specifically, the quadratic form of ​A​ is given by  
​​λ​ k​​ = ​v​ k​ ​ A ​v​k​​ = ​∑ i≠j​ 

​  ​ ​A​i,j​​​ ​[ ​v​k​​ ]​i​​ ​[ ​v​k​​ ]​j​​​. In this setting, lower fre-
quencies will be associated to larger eigenvalues, to repre-
sent the fact that highly connected nodes in the graph pos-
sess signals with the same sign and similar values.

When using the graph Laplacian ​L​ as a shift operator 
[21] for an undirected graph, the quadratic form of ​L​ is given 
by ​​λ​ k​​ = ​v​ k​ ​ L ​v​k​​ = ​∑ i≠j​ 

​  ​ ​A​i,j​​​ ( ​[ ​v​k​​ ]​i​​ − ​[ ​v​k​​ ​]​j​​)​​ 2​​. If the signal vari-
ations follow the graph structure, the resulting value will 
be low. Thus, in this setup, the eigenvectors associated to 
smaller eigenvalues can be regarded as the graph lower fre-
quencies. Further, the basis ​V​ is then a common solution 
to several well-known signal processing problems, including 
Laplacian embedding, where the aim is to find a mapping 
of the graph nodes on a line so that connected nodes stay 
as close as possible, or in other words, to minimize ​​x​​ ​ Lx​ 
under the constraints ​​x​​ ​ x = 1​ and ​​x​​ ​ 1 = 0​ [76]. Another is 
the classical graph cut problem [77], [78], where the goal is 
to partition a graph into subcommunities of nodes with as 

Fig. 2. Example brain activity signals. (a) For an example subject, the heat map of BOLD magnitude across brain regions (vertically) and 
time points (horizontally). Brain activity signals can be considered as a 2-D matrix, indexed in both the temporal and spatial domains. 
From the temporal perspective, there are certain time instances (e.g., in this case, between 30 and 40 s and between 70 and 80 s) when 
BOLD magnitudes are in general stronger than for others. From the spatial perspective, signals in most brain regions change in the 
same direction, but there are certain brain regions where their changes do not follow the main trend. As we will see, low and high graph 
frequency components, respectively, can be used to extract these two different pieces of information. (b) For the same subject, distribution 
of fMRI BOLD values for each brain region (horizontally) across all time points. Different brain regions exhibit different levels of variability, 
but in general, the wide variance of BOLD signals complicates data analysis. For each brain region, edges of the box denote 25th and 75th 
percentiles, respectively; whiskers extend to the extreme points not considered to be outliers; circles denote outliers, which are values 
beyond 1.5 times the interquartile range away from the edges of the box.
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few cross connections as possible, with a similar obtained 
solution upon relaxation of the ​​x​i​​ = ±1​ constraint.

Besides a decomposition along the spatial domain, we 
can also use the classical discrete Fourier transform (DFT) 
to decompose ​X​ along its temporal dimension as

	​ ​̂  X​ = X ​F​​ H​​� (2)

where ​​⋅​​ H​​ indicates the Hermitian transpose, and ​F​ is the 
Fourier matrix. ​​̂  X​ ∈ ​ℂ​​ N×T​​ contains ​T​ Fourier coefficients for 
each of the ​N​ time courses. Filtering can then be applied 
by multiplying with a diagonal matrix ​H​ defined by the 
windowing function ​​[ H ]​i,i​​ = h( ​λ​ i​​)​, with the filtered output 
given by

	​ ​Y​H​​ = X ​F​​ H​ HF.​� (3)

Notice that the DFT can also be obtained using the 
graph formalism by considering cycle graphs that represent 
discrete periodic signals [20], [21], [24], [79]. Specifically, 
we consider the undirected graph ​G​ with adjacency matrix ​​

A​cycle​​​ such that ​​[ ​A​cycle​​ ]​
i,i+1  mod T

​​ = ​[ ​A​cycle​​ ]​
i,i−1  mod T

​​ = 1​,  

and ​​ ​[A​cycle​​ ]​
i,j

​​ = 0​ otherwise. For this graph, the eigenvec-

tors of its adjacency ​​A​cycle​​​ or its Laplacian matrix ​​L​cycle​​ = 
2I − ​A​cycle​​​ satisfy ​V = F​. Since cycle graphs are representa-
tions of discrete periodic signals, it follows that the GFT of a 

time signal is equivalent to the conventional discrete Fourier 
transform. In other words, a GFT is equivalent to a DFT for 
cyclic graphs. We also note that it is possible to combine DFT 
and GFT to investigate the joint spatial–temporal frequency, 
i.e., ​​̂  ​ ~ X​​ = ​V​​ ​ X ​F​​ H​​. Such analytical efforts have been develop-
ing recently; see [26] and [80]–[82] for more details.

B. Graph Signal Filtering

Given the above relationships, it becomes possible 
to manipulate the graph signals stored in the matrix ​X​ by 
extracting signal components associated to different graph 
frequency ranges. Specifically, we can define the diagonal 
filtering matrix ​G​, where ​​[ G ]​i,i​​ = g( ​λ​ i​​)​ is the frequency 
response for the graph frequency associated with eigenvalue ​​
λ​ i​​​, and retrieve the filtered signals as

	​ ​Y​G​​ = VG ​V​​ ​ X.​� (4)

Generic filtering operations can now be defined for the 
graph setting, such as ideal low-pass filtering, where ​g(​λ​ i​​)​ 
would be 1 for ​​λ​ i​​​ corresponding to low-frequency modes, 
and 0 otherwise.

Using the definition of the GFT pair, the effect of the 
filtering in (4) on the graph spectral coefficients is directly 
visible from ​​​ 

~
 Y​​G​​ = G​ 

~
 X​​. This also allows to generalize the 

Fig. 3. Graph signal processing for brain imaging. (a) Structural connectivity from diffusion-weighted MRI, as seen in the form of a sagittal 
brain view (top) or of an adjacency matrix where the weights represent the strength of the structural connections (bottom), is used to 
build a graph representing the brain's wiring scaffold. (b) Through the eigendecomposition of the Laplacian (left plot) or adjacency (right 
plot) matrix, this structural graph can be analyzed in the spectral domain. The smallest Laplacian eigenvalues (or most positive adjacency 
eigenvalues) (labeled in blue) are associated with low-frequency modes on the graph (c, top brain views), while the largest Laplacian 
eigenvalues (or most negative adjacency eigenvalues) (labeled in red) are associated with high-frequency modes (c, bottom brain views). 
Together, these modes define the graph Fourier transform. Functional MRI data measured at the nodes of the graph (d) can be decomposed 
using these modes, and transformed by means of GSP tools (e).
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convolution operation of a graph signal ​x​ by a filter defined 
through the spectral window ​g​ as [21]

​​[ ​y​G​​ ]​​k ′ ​​​ = ​ ∑ 
k=0

​ 
N−1

​​[ ​v​k​​ ]​​k ′ ​​​ g(​λ​ k​​) ​​x ̃ ​​k​​ .​ ​ 

It is also possible to translate the operation to the vertex 
domain by considering the Taylor approximation of the win-
dow function ​g(λ)  = ​∑ m=0​ M  ​ ​c​m​​​ ​λ​​ m​​

​​Y​G​​ = ​ ∑ 
m=0

​ 
M

  ​​c​m​​​ ​S​​ m​ X​ 

which uses iterated versions of the shift operator ​S​. Other 
operations such as translation, modulation, or dilation can 
be generalized in a similar way [21].

C. Generation of Graph Surrogate Signals

A pivotal aspect in any research field is to assess the 
significance of obtained results through statistical testing. 
More precisely, one aims to invalidate the null hypoth-
esis, which expresses the absence of the effect of interest. 
Standard parametric tests such as the well-known ​t​-test 
assume independent and identically distributed Gaussian 
noise, which makes a weak null hypothesis for most applica-
tions. Nonparametric tests such as the permutation test pro-
vide a powerful alternative by mimicking the distribution of 
the empirical data. For correlated data, the Fourier phase 
randomization procedure [83] has been widely applied as it 
preserves temporal autocorrelation structure under station-
arity assumptions. This standard method can be applied to 
the temporal dimension of our graph signals

​Y = X ​F​​ H​ ​Φ​ time​​ F​

where the diagonal of ​​Φ​ time​​​ contains random phase factors 
according to the windowing function ​Φ(​λ​ l​​) = exp (j2π ​ϕ​ l​​)​,  
with ​​ϕ​ l​​​ realizations1 of a random variable uniformly 
distributed in the interval ​[ 0, 1 ]​. From the surrogate sig-
nals, one can then compute a test statistic and establish its  
distribution under the null hypothesis by repeating the rand-
omization procedure; i.e., the power spectrum density of the 
surrogate data is dictated by the empirical data. Note that in 
this setting, the spatial features of null realizations are identi-
cal to the ones of the actual data, while temporal nonstation-
ary effects are destroyed.

The phase randomization procedure can be generalized 
to the graph setting [84] by considering the GFT. In particu-
lar, the graph signal can be decomposed on the GFT basis 
and then, the graph spectral coefficients can be randomized 
by flipping their signs. Assuming that the random sign flips 
are stored on the diagonal of ​​Φ​ graph​​​, we can formally write 
the procedure as

	​ Y  =  V ​Φ​ graph​​ ​V​​ ​ X.​� (5)

This procedure generates surrogate graph signals in 
which the smoothness as measured on the graph is main-
tained, but in which the nonstationary spatial effects are 
destroyed. The temporal properties of null realizations are 
identical to those observed in the actual data.

D. Wavelets and Slepians on the Graph

The wavelet transform is another fundamental tool 
of signal processing [85] providing localized, multiscale 
decompositions. Several designs have been proposed to 
generalize this concept to graphs, such as approaches in 
the vertex domain [86]–[88], based on diffusion processes 
[89], [90], or using the spectral domain [79], [91], [92]. The 
latter design builds upon the GFT and has been applied for 
multiscale community mining [93] or to investigate uncer-
tainty principles [28]–[31].

Here, we detail a more recent design of a localized 
decomposition for graph signals that is based on a gener-
alization of Slepian functions [94] and that can deal with 
additional domain knowledge. Let us consider the problem 
of retrieving a signal ​x ∈ ​ℝ​​ N​​ that is maximally concentrated 
within a subset of nodes from the graph at hand, while at the 
same time setting a maximal bandwidth on the solution. As 
the global concentration of a signal is given by ​​x​​ ​ x​, we end 
up maximizing 

	​ μ = ​ ​​ 
~ x​​​ ​ ​​

_
 V​​​ ​ M​

_
 V​​ ~ x​ ________ 

​​ ~ x​​​ ​​ ~ x​
  ​​� (6)

where ​M​ is the diagonal selectivity matrix with elements ​​
M​i,i​​ = 0​ or 1 to respectively exclude, or include, a node into 
the subgraph of interest, and ​​

_
 V​ ∈ ​ℝ​​ N×M​​ is a trimmed GFT 

matrix where only low-frequency basis vectors are kept. The 
interpretation here is that we aim at finding the linear com-
bination of band-limited graph spectral coefficients ena-
bling the best localization of the signal within the subgraph. 
Note that the subgraph is selected using prior information, 
and not optimized over.

If we define the concentration matrix as ​C = ​​
_

 V​​​ ​ M​
_

 V​​, 
then the problem amounts to solving its eigendecomposi-
tion, and ​{ ​​ ~ s​​k​​ }, k = 0, 1,…, M − 1​, are the weighting coef-
ficients obtained as solutions. We assume that they are 
ordered in decreasing eigenvalue amplitude (​​μ​ 0​​ > ​μ​ 1​​ >⋯ > ​
μ​ M−1​​​), so that ​​​ ~ s​​0​​​ is the optimal (maximally concentrated) 
solution. From the set of coefficients, the Slepian matrix can 
then be retrieved as

	​ S = ​
_

 V ​​ 
~

 S​​� (7)

where ​S ∈ ​ℝ​​ N×M​​ and each column contains one of the 
Slepian vectors ​​s​k​​​. Slepian vectors are not only orthonormal 
within the whole set of nodes (​​s​ k​ ​ ​s​l​​ = ​δ​ k−l​​​), but also orthogo-
nal over the chosen subset (​​s​ k​ ​ M ​s​l​​ = ​μ​ k​​ ​δ​ k−l​​​).

Now, in order to make Slepian vectors more amenable 
to the application of GSP tools, let us consider an alternative 
optimization criterion in which the modified concentration 

1 In practice, some additional constraints are added such as preserva-
tion of Hermitian symmetry.
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matrix is given as ​​C​2​​ = ​​
_

 Λ​​​ 1/2​ C ​​
_

 Λ​​​ 1/2​​, with ​​ 
_

 Λ ​ ∈ ​ℝ​​ M×M​​ the 
trimmed diagonal matrix of eigenvalues. The new quantity 
to optimize then reads

	​ ξ = ​ ​​ 
~ x​​​ ⊤​ ​​

_
 Λ​​​ 1/2​ ​​

_
 V​​​ ⊤​ M​

_
 V​ ​​
_

 Λ​​​ 1/2​​ ~ x​  ______________ 
​​ ~ x​​​ ⊤​​ ~ x​

  ​ .​� (8)

The set of solution Slepian vectors are still orthonor-
mal, but this time, they satisfy ​​s​ k​ ⊤​ M ​s​l​​ = ​ξ​ k​​ ​δ​ k−l​​​. Observe 
that, when using the Laplacian matrix as our graph shift 
operator, if all nodes are selected as the subset of interest 
(​M = I​) while enabling a full bandwidth (​​

_
 Λ​ = Λ​, ​​

_
 V​ = V​),  

then we fall back on the classical Laplacian embedding 
case discussed in Section III-A, and as such, this modi-
fied criterion can be seen as a generalization of Laplacian 
embedding (i.e., a modified embedded distance cri-
terion) under user-defined bandwidth and selectivity 
constraints.

Analogously to the GFT setting, solution Slepian vec-
tors of increasing eigenvalue ​​ξ​ k​​​ can then be regarded as 
building blocks of increasing graph frequency, but within 
the chosen subgraph, i.e., of increasing localized fre-
quency. The conceptual difference between both opti-
mization schemes is illustrated in an example data set of 
leopard mesh in Fig. 4, where the subgraph is the head 
of the leopard as shown in Fig. 4(a). Four of the Slepian 
vectors derived from (8) are shown with their localized 
frequency ​ξ​, their energy concentration ​μ​ computed from 
(6), and their embedded distance ​λ = ​s​​ ⊤​ Ls​. The leftmost 
example denotes a low frequency on the whole graph, with 
very weak signal within the selected subgraph, and thus 
both low localized frequency and energy concentration. 
The second Slepian vector shows fairly uniform negative 

signal within the subgraph, resulting in a quite large 
energy concentration, but a very low localized frequency. 
The last two examples reflect Slepian vectors that are both 
strongly concentrated (high ​μ​) and of high localized fre-
quency (high ​ξ​).

If Laplacian embedding is performed on the full graph 
[Fig. 4(c), left plot], the resulting eigenvectors linearly span 
the graph frequency spectrum (black line). If the energy 
concentration criterion is used for generating Slepian vec-
tors (middle plot), there is a well-defined transition point 
past which Slepian vectors become strongly concentrated 
within the selected subset of nodes. If the modified embed-
ded distance criterion is used (right plot), then, past a point 
where Slepian vectors become concentrated within the sub-
set (around 600 in this example), they also linearly span the 
localized graph frequency space.

As a result, it becomes possible to apply similar GSP tools 
as for the GFT, but for a decomposition that can be tailored 
in terms of localization by utilizing different subgraphs, and 
the choice of the bandwidth. In fact, the Slepian matrix can 
be seen as an alternative set of basis vectors, themselves 
obtained as a linear combination of Laplacian eigenvectors 
under the localized concentration constraint. For example, 
the temporal signal matrix ​X​ at hand can be projected on the 
Slepian building blocks as ​​S​​ ⊤​ X​, and if we define the diago-
nal matrix ​​Γ​ L​​​ as a localized low-pass filter by setting ​​[ ​Γ​ L​​ ]​i,i​​ 
= 1​ if ​​ξ​ i​​ < ​Ξ​L​​​ (low localized frequency) and ​​μ​ i​​ > ϵ​ (concen-
trated solution), or 0 otherwise, the locally filtered output 
signal would be given by

	​ ​Y​​Γ​ L​​​​ = S ​Γ​ L​​ ​S​​ ⊤​ X.​� (9)

I V.   A BR A IN GSP C A SE ST U DY: 
DECIPHER ING THE SIGNAT U R ES OF 
AT TEN TION SW ITCHING

We now discuss how the aforementioned GSP methods 
can be applied in the context of functional brain imaging. 
Fig. 5 is reproduced from [1]; Fig. 6(a) and (b) is adapted 
from [1]. To do so, we focus on the data whose acquisition 
was described in Section II, in Callouts 1 and 2. For each 
volunteer, fMRI recordings were obtained when perform-
ing a Navon switching task, where local–global perception 
is assessed using classical Navon figures [95]. Local–global 
stimuli comprised four shapes—a circle, a cross, a triangle, 
or a square—that were used to build the global and local 
aspects of the cues [see Fig. 5(a) for examples].

A response (button press) to the local shape was expected 
from the participants in the case of white stimuli, and to the 
global shape for green ones. Two different block types were 
considered in the experiment: in the first one [Fig. 5(b)], the  
color of the presented stimuli was always the same, and  
the subjects thus responded consistently to the global or to 

Fig. 4. Illustration of Slepian vectors and their properties.  
(a) Within the considered graph (a leopard mesh), the head 
is selected as the subset of nodes of interest. (b) Example 
Slepian vectors obtained from the modified embedded distance 
optimization criterion (8). In each case, alongside localized 
frequency (​ξ​), embedded distance (​λ​) and energy concentration  
(​μ​) are also shown. (c) For a bandwidth ​M  =  1000​ and Laplacian 
embedding (left), energy concentration (middle) or modified 
embedded distance (right) optimizations, sorting of the obtained 
eigenvalues (respectively, ​λ​, ​μ​, or ​ξ​).
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the local shapes. In the second block type [Fig. 5(c)], random 
color switches were included, so that slower responses were 
expected. The difference in response time between the two 
block types, which we refer to as switch cost, quantifies the 
behavioral ability of the subjects.

To study the association between brain signal and 
attention switching, we decomposed the functional brain 
response into two separate components: one representing 
alignment with structural connectivity (i.e., the regions 
that activate together are also physically wired), and one 

describing liberality (i.e., the areas that exhibit high signal 
variability with respect to the underlying graph structure). 
To do so, we performed graph signal filtering (Section 
III-B) with two different filtering matrices: 1) ​​Ψ​ Al​​​, so that ​​
Y​​Ψ​ Al​​​​  =  V ​Ψ​ Al​​ ​V​​ ⊤​ X​ is the transformed (low-pass filtered) 
functional data in which only the ten lowest frequency 
modes are expressed at each time point; and 2) ​​Ψ​ Lib​​​, for 
which ​​Y​​Ψ​ Lib​​​​​ only represents the temporal expression of the 
ten largest frequency modes (high-pass filtering). At a given 
time point, the filtered functional signal varies in sign across 
brain regions. Thus, to derive a subject-specific scalar quan-
tifying alignment or liberality, we considered the norms 
of those signals as measures of concentration, which were 
eventually averaged across all temporal samples of a given 
subject. We used the ​​ℓ​2​​​-norm because it provides an inter-
pretation of energy for each graph frequency component; 
other reasonable choices of norm, including the ​​ℓ​1​​​-norm, 
yield similar results. Also, presented results are obtained 
using the adjacency matrix as the graph shift operator, but 
similar findings were recovered using the Laplacian matrix 
instead [see Callout 3 and Fig. 10(a)].

To relate signal alignment and liberality to cognitive per-
formance of the participants, we computed partial Pearson’s 
correlation between our concentration measures and switch 
cost (median additional response time during switching task 
blocks compared to non-switching task blocks). Age, gen-
der, and motion were included as covariates to remove their 
impact from the results. Regarding alignment, there was no 
significant association [​p > 0 . 35​; Fig. 6(a)]. In other words, 
the extent with which functional brain activity was in line 
with the underlying brain structural connectivity did not 
relate to cognitive abilities in the assessed task. However, we 
observed a significant positive correlation between liberal 

Fig. 5. Cognitive task requiring perceptual switching. (a) Example 
stimuli based on Navon local�global features. Subjects were trained 
to respond to the larger (or ªglobalº) shapes if the stimulus was 
green and to the smaller (or ªlocalº) shapes if it was white. (b) An 
example of the nonswitching condition for responses. Subjects 
viewed a sequence of images and were instructed to respond 
as quickly and as accurately as possible. (c) An example of the 
switching condition between stimuli requiring global and local 
responses. Here, trials with a red exclamation mark are switches 
from the previous stimulus. (Reproduced with permission from [1].)

Fig. 6. Switch cost correlates with the concentration in liberal signal. (a) Switch cost does not significantly relate to the concentration of 
the low-frequency functional signal component (alignment). (b) A lower concentration of graph high-frequency components is associated 
with a lower switch cost, that is, with faster attention switching. (c) The correlation between switch cost and liberal signal concentration is 
much stronger in the actual data than in null realizations, irrespective of whether the statistical randomization is performed in the graph 
domain (denoted as 'G' in the figure), in the temporal domain (denoted as 'T' in the figure), or jointly performed in both (denoted as 'G-T' 
in the figure). Blue, cyan and purple data points denote the correlation coefficients obtained from surrogate signals under the three null 
models, while the red rectangle indicates the real correlation coefficient (​ρ  =  0 . 59​). ​ρ​, partial Pearson's correlation coefficient; ​p​, p-value. 
(Subfigures (a) and (b) are adapted with permission from [1].)



Huang et al . : A Graph Signal Processing Perspective on Functional Brain Imaging

Vol. 106, No. 5, May 2018 | Proceedings of the IEEE  877

signal concentration and switch cost [​ρ = 0 . 59​, ​p < 0 . 0015​; 
see Fig. 6(b)]. Thus, the subjects exhibiting most liberality 
in their functional signals were also the ones for whom the 
attention switching task was the hardest. We verified that 
the high-frequency modes involved in those computations 
were not solely localized to a restricted set of nodes by 
evaluating the distribution of the average decomposed sig-
nal across all brain regions. When averaged across all time 
points and subjects, 27 brain regions had their decomposed 
signals higher than 1.5 times the mean of the distribution 
(approximately 3), confirming that a wide area of the brain 
was spanned by high-frequency modes. From these results, 
one can see that a GSP framework may provide a way to dis-
entangle brain signals that exhibit different levels of associa-
tion with attention switching.

To more thoroughly examine the significance of the 
association between liberal signals and switch cost, we per-
formed a null permutation test by generating graph surro-
gate signals as described in Section III-C. Specifically, we 
generated 100 graph surrogate signals by randomly flipping 
the signs stored on the diagonal of ​​Φ​ graph​​​, as in (5). Then, we 
evaluated the association between the null surrogate signals 
and switch cost. As seen in Fig. 6(c) (case “G”), the actual 
correlation coefficient between liberal signal concentration 
and switch cost (denoted by the red rectangle) is signifi-
cantly larger than when computed on any of the null graph 
surrogate signals. We also performed the same process using 
phase randomization in the time domain to generate sur-
rogate signals [see Fig. 6(c), case “T”], which preserves the 
temporal stationarity assumption, and combining phase ran-
domization in the time domain and randomly flipping the 
signs of graph spectral coefficients [Fig. 6(c), case “G-T”]. 
Again, the actual correlation coefficient between liberal sig-
nal concentration and switch cost was significantly larger 
than for any of the null realizations.

To confirm that the graph frequency decomposition 
framework is insensitive to the level of resolution used in 
the considered parcellation, we examined the data recorded 
during the same experiment, on the same subjects, but at a 
higher resolution (​N = 262​ different brain regions). In other 
words, we considered the same experiment, but defined 
the network differently by having each node of ​V​ consist-
ing of a smaller volume of the brain. We followed the same 

graph frequency decomposition, using the adjacency matrix 
as graph shift operator, on this finer graph. We observed 
that the results still held, as switch cost did not significantly 
relate to the concentration of the low-frequency signal com-
ponent (​ρ = 0 . 3408, p = 0 . 0759​), whereas a lower con-
centration of the high-frequency component was associated 
with faster attention switching (​ρ = 0 . 4232, p = 0 . 0249​). 
Here and above, the results were also robust to the num-
ber of largest/smallest frequency components used in the 
decomposition.

In sum, in this section, we reviewed a recent study [1] 
demonstrating that individuals whose most liberal fMRI 
signals were more aligned with white matter architec-
ture could switch attention faster. In other words, rela-
tive alignment with anatomy is associated with greater 
cognitive flexibility. This observation complements prior 
studies of executive function that have focused on node-
level, edge-level, and module-level features of brain 
networks [96], [97]. The importance of this finding illus-
trates the usefulness of GSP tools in extracting relevant 
cognitive features.

Up to this point, we have been dealing with a graph fre-
quency decomposition considered at the level of the whole 
brain. However, GSP tools also allow us to independently 
evaluate separate nodes, or sets of nodes, from the graph at 
hand. In the present case, this flexibility permits a more in-
depth study of which brain regions are specifically respon-
sible for the observed association between liberality and 
switch cost. For this purpose, we considered nine different, 
previously defined functional brain systems [47], each of 
which included a distinct set of regions. Separately for each 
system, we assessed the correlation between switch cost 
and alignment or liberality. In the former case (alignment), 
there was no significant association, whereas in the latter 
(liberality), the relationship seen in Fig. 6(b) could be nar-
rowed down to two significant contributors: the subcorti-
cal and the fronto–parietal systems (Fig. 7). Those results 
highlight the ability of GSP tools to not only decompose sig-
nals in the graph frequency domain, but also in the graph 
spatial domain (examining different nodes in the graph). 
Combining those two analytical axes enables us to gather 
deeper insights into functional brain activity and its relation 
to cognition.

CALLOUT 3: IMPACT OF THE GRAPH SHIFT OPERATOR.

Multiple graph shift operators could be used to decompose graph signals, and the results presented in this work 
remain very similar regardless of the exact choice that is made. More specifically, we reevaluated the association with 
switch cost as illustrated in Fig. 6 using the Laplacian matrix as graph shift operator, and the set of brain regions most 
frequently undergoing alignment or liberality excursions as displayed in Fig. 8(b) using the adjacency matrix as graph 
shift operator. Fig. 10 illustrates the similarity in the obtained results. There exist other types of graph shift operators, 
e.g., the normalized Laplacian, for which results can also be expected to remain relatively similar.
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V.  PER SPECTI V ES FOR BR A IN GSP: 
ST U DY ING F U NCTIONA L DY NA MICS

A. Resolving Excursions in Alignment or Liberality 
Regimes

We now illustrate, on the same data as above, how GSP 
tools can be applied to provide insights into the dynamics 
of functional brain activity. For every subject, we generated 
1000 null signal matrices using the strategy outlined in (5) 
(graph domain randomization). We combined this operator 
(​​Φ​graph​​​) with the alignment/liberality filtering operations, to 
generate null data for the aligned and liberal signal compo-
nents. Formally, we thus computed a null realization as ​Y = V​
Φ​graph​​​Ψ​ Al​​ ​V​​ ⊤​X​ or ​Y = V​Φ​ graph​​ ​Ψ​ Lib​​ ​V​​ ⊤​X​, respectively. At an ​α​
-level of 5%, we then used the generated null data to threshold 
the filtered signals, in order to locate significant signal excur-
sions—particular moments in time when entering a regime 
of strong alignment, or liberality, with the underlying brain 
structure. In doing so, we considered absolute graph signals. 
Presented results are obtained using the Laplacian matrix as 
graph shift operator, but similar findings were recovered using 
the adjacency matrix [see Callout 3 and Fig. 10(b) and (c)].

Fig. 8(a) highlights the percentage of time points show-
ing significant excursions for the aligned (light blue and 
dark blue box plots) and liberal (red and orange box plots) 
signal components across brain regions. An excursion 
percentage value of 5% (horizontal dashed line) denotes 
chance level. Such a case was, for instance, observed for the 
paracentral and posterior cingulate areas (nodes 11 and 14), 
both in terms of aligned and liberal signal contributions. As 
null data realizations were generated in the graph domain, 
this observation means that those nodes did not show sig-
nal fluctuations going beyond what could be accounted for 
by the underlying spatial smoothness of the brain’s struc-
tural graph.

Most brain regions did display very significant excur-
sion percentages: considering alignment, occipital (nodes 
21–25), parietal (nodes 18 and 19) and temporal (nodes 
29–33) regions were the strongest contributors, while 
for liberality, key areas were located in temporal (nodes 
29–33), subcortical (nodes 34 and 36–39) or frontal 
(nodes 1–9) regions. Fig. 8(b) displays the anatomical 
location of the main contributing regions. Qualitatively 
similar findings were also obtained when resorting to a 
finer parcellation of the brain (​N = 262​ regions; see Fig. 1 
in the supplementary material). The observation that the 
majority of brain nodes show frequent moments of strong 
alignment or liberality with respect to brain structure is 
consistent with current knowledge on spontaneous brain 
dynamics, since an alternation between time points with 
and without global similarity to the structural scaffold has 
previously been documented from second-order connec-
tivity analyses [98], [99]. A GSP approach can also reveal 
these subtle relationships, with the added advantage of 
conserving a frame-wise temporal resolution.

To better grasp the signal features at the root of align-
ment or liberality excursions, we compared the outcomes 
obtained using the graph surrogate method to the ones gen-
erated with the more classical Fourier phase randomization 
procedure to generate null data, or to the outcomes result-
ing from the combination of those two surrogate approaches 
(see Fig. 2 in the supplementary material). Excursions in 
terms of liberality with respect to brain structure were not 
observed anymore under those two other null models, for 
which null realizations conserve similar stationary temporal 
properties. This implies that the liberal signal component 
can be explained by stationary temporal features. On the 
other hand, alignment excursions remained, in particular 
when including graph domain randomization. Thus, the 

Fig. 7. Pinpointing the brain systems involved in attention switching. (a) Separate partial correlation assessments between switch cost and 
alignment (blue) or liberality (red) signal concentration on the brain areas belonging to different functional systems, using age, gender, and 
motion as covariates. Systems are ordered in decreasing liberality correlation coefficient order. Liberality concentrations of subcortical 
and fronto�parietal systems exhibit the highest and most significant contributions to the association with switch cost. Liberality 
concentrations of other systems and alignment concentrations of any system exhibited no significant association (​p > 0 . 05​). (b) A lower 
concentration of graph high-frequency components in the subcortical system is associated with faster attention switching. (c) A lower 
concentration of graph high-frequency components in the fronto�parietal system is associated with faster attention switching.
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aligned signal component relates to spatial features that can-
not be explained by stationary smoothness alone.

B. Combining Graph Excursions With 
Fourier Analysis

Other ingredients from the GSP pallet can be appended 
to the pipeline that we have introduced, in order to further 
expand our understanding of brain activity. For example, 
to examine whether alignment and liberality would change 
along frequency, referring this time to the temporal frequency 
of the signal, we simply combined our null and alignment/
liberality operators with the classical Fourier decomposition 
highlighted in Section III-A, and computed the percentage 
of significant excursions for all the functional brain systems 
introduced in [47] [Fig. 9(a)]. For alignment (left graph), 

different systems were observed to vary in terms of excur-
sion occurrence, with dorsal attention and auditory areas as 
primary contributors while subcortical and somatosensory 
regions stood at around chance level. Interestingly, in a few 
cases, alignment with the structural brain scaffold appeared 
to be maximized at particular frequencies: for instance, the 
dorsal attention, ventral attention, and auditory systems 
showed more frequent excursions in the 0.15–0.2-Hz range.

Regarding liberality (right graph), almost all systems 
showed similar excursion percentages, with the exception 
of the default mode network (gray line), whose regions 
appeared to more rarely diverge from the activation pat-
terns expected from structural connectivity. In addition, 
excursions further decreased close to chance level in the 
0.15–0.2-Hz range, while at the same time, positive peaks 

Fig. 8. Significant excursions of aligned and liberal functional signals across regions. (a) For all 82 nodes, percentage of significant 
excursions for alignment (top panel, light and dark blue box plots) or liberality (bottom panel, red and orange box plots) across subjects. 
The horizontal dashed line denotes chance level (​α =​ 5%), and light gray vertical dashed lines separate the box plots from different 
regions. Light colors denote regions from the left side of the brain, and dark colors from the right side. (b) For alignment (left box) and 
liberality (right box), horizontal and sagittal brain views depicting excursion occurrence across brain nodes. A larger amount of significant 
excursions is denoted by a bigger and redder sphere. Left on the brain slices stands for the right side of the brain.
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could be seen, among others, for the fronto–parietal and 
cingulo–opercular systems. This antagonistic relation-
ship between those functional brain systems could be 
the reflection of a hallmark feature of brain activity: the 
anticorrelation between the default mode (also known as 
task-negative) and so-called task-positive networks [100]. 
The GSP approach enables a more accurate characteriza-
tion of these networks in terms of both temporal and graph 
frequencies.

C. Probing Excursions Within a Subgraph 
With Slepians

Finally, another way to dig deeper into the functional 
signals is to consider them at a local scale, rather than at the 
whole-brain level. For this purpose, we computed a basis of 
Slepian vectors through the process detailed in Section III-D 
(using the modified embedded distance optimization cri-
terion). We started from the eigendecomposition of the 
Laplacian matrix, and iteratively focused the analysis on a 
subset of nodes being part of only one given functional brain 
system. Every time, we derived ​M = 80​ Slepian vectors, and 
used the ten lowest localized frequency (i.e., with lowest ​​ξ​ i​​​), 

concentrated (i.e., satisfying ​​μ​ i​​  >  ϵ​) elements of this new 
basis to extract the part of the functional signals aligned 
with local structural brain features, generate null data, and 
quantify significant excursions.

As can be seen in Fig. 9(b), some nodes stand out as 
undergoing particularly frequent excursions in terms of local 
alignment to brain structure. This is, for example, seen for 
regions from the visual (nodes 23–25) and auditory (nodes 
31–33) systems, reflecting the presence of moments when 
there is strong alignment of the functional signals with the 
underlying structure at the local scale of the considered sys-
tem, which is encoded in the Slepian basis. We note that the 
same nodes already showed high excursion percentages in 
Fig. 8(a), where alignment was assessed at the global (not 
local) level, and thus, what was captured by this less focused 
analysis may have largely involved local alignment with struc-
ture. Conversely, there are also many cases in which regions 
exhibited frequent global alignment with the structural scaf-
fold, without displaying it at the local scale (for example, 
nodes 18 and 19). In such cases, global alignment to structure 
instead reflects cross-network interactions. Overall, surro-
gate analyses are conducted in three fashions in the preceding 
subsections (vanilla as in Section V-A, combined with Fourier 

Fig. 9. Further disentangling functional brain signals by more elaborate GSP building blocks. (a) Percentage of significant excursions for 
key functional brain systems across temporal frequency sub-bands in the case of the aligned (left graph) or liberal (right graph) signal 
contributions. Two-tailed 95% confidence intervals are displayed for each curve, and the horizontal dashed line represents the excursion 
chance level (​α =​ 5%). (b) As a quantification of local alignment, percentage of significant excursions for all brain nodes when applying the 
graph Slepian design with bandwidth ​M = 80​. Color coding reflects the functional system to which a region belongs, and for a given region, 
the left box plot stands for the left side of the brain.
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analysis as in Section V-B, and combined with a Slepians sub-
graph as in Section V-C). Some consistent observations are 
found across the subsections, while some different results 
reflect the different perspectives and features enabled by the 
respective approaches.

V I.   CONCLUSION A ND PER SPECTI V ES

The GSP framework enables the analysis of brain activity on 
top of the structural brain graph. In particular, we have ana-
lyzed anatomically aligned or liberal organization of brain 
activity, and in the context of an attention switching task, 
we have reviewed a recent study [1] that signals aligned with 
anatomical connectivity are the most variable over time 
in cingulo–opercular and fronto–parietal systems; see [1] 
for a more detailed discussion. In addition, we used surro-
gate signals to generate graph null models to suggest that 
the significance of the results cannot be explained by ran-
dom permutations. These results reinforce similar findings 
that were based on functional graphs [14], where we used 
the same approach to decompose fMRI signals based on 
dynamic functional connectivity and observed that different 
graph frequency components exhibited varying importance 
depending on whether subjects were familiar or unfamiliar 
with the underlying task. Unlike conventional signal pro-
cessing where low frequency is typically considered as infor-
mation and high frequency considered as noise, we notice 
that in applying GSP, both graph low and high frequencies 
may contain highly valuable information.

In addition to our review of attention switching, we have 
also introduced possible avenues for the use of GSP tools in 
uncovering functional brain dynamics. In particular, we pro-
posed to extract the time points showing significant align-
ment or liberality with the structural brain scaffold through 
comparison with surrogate data. Compared to the majority of 
dynamic functional connectivity works, which rely on the suc-
cessive computation of second-order statistics (e.g., Pearson’s 
correlation coefficient) to quantify the evolution of relation-
ships between brain regions [13], the GSP framework per-
mits to remain at a frame-wise temporal resolution. Further, 

as we have also shown above, it harmoniously generalizes to 
extended settings, such as a joint spatial/temporal decomposi-
tion or a localized decomposition of functional signals.

We would like to emphasize that the GSP approach offers 
a highly flexible framework to analyze functional imaging data 
sets, where analysis can be conducted on either functional or 
structural connectivity, and either on a graph that describes 
the average connectivity across all subjects, or on one graph 
per subject. The bimodal component of the approach, where 
the constructed graph is used to study functional brain sig-
nals, can actually be seen as a double-edged sword: on the 
one hand, additional information (e.g., structural connectiv-
ity) can inform the understanding of functional brain signals, 
but on the other hand, the obtained results are then strongly 
dependent on the accuracy of the graph representation itself, 
and necessitate an underlying relationship between the 
graph used and the brain signals on top of it.

A number of intriguing connections of GSP with other 
approaches could be explored. For instance, the GSP meth-
odology allows one to incorporate models of linear diffusion 
by selecting the spectral window function ​g(λ)​ as the so-called 
diffusion kernel [6]. Therefore, graph filtering can correspond 
to diffusion operations of graph signals on the structural graph. 
A diffusion kernel puts large weights to low-frequency modes 
(i.e., structurally aligned in our terminology) and decreasing 
weights as the frequencies increase (i.e., anatomically liberal). 
Such a network diffusion model on a structural graph has 
already been used to model disease progression in dementia 
[101] or to relate structural graphs to functional ones [102]. 
The link with computational and simulation-based neurosci-
ence is another topic for future interest [103]; e.g., how eigen-
modes capture neural field theory predictions [104].

There is also a clear tendency to refine the granularity 
of the brain graphs, either by considering finer parcellation 
schemes [105], or by using voxel-wise approaches through 
explicit [106] or implicit [107] representations of the adja-
cency matrix. The availability of large data from neuroimag-
ing initiatives such as the Human Connectome Project [108] 
has contributed significantly to establishing these refined 
representations.� 

Fig. 10. Results carry over to an alternative graph shift operator choice. (a) Switch cost does not correlate with the concentration in 
aligned signal (left plot), but correlates with the concentration in liberal signal (right plot), using the Laplacian matrix as graph shift 
operator; results are similar as in Fig. 6(a) and (b). Horizontal brain views depicting excursion occurrence across brain nodes for alignment 
(b) and liberality (c), using the adjacency matrix as graph shift operator; results are similar as in Fig. 8(b).



Huang et al . : A Graph Signal Processing Perspective on Functional Brain Imaging

882  Proceedings of the IEEE | Vol. 106, No. 5, May 2018

REFERENCES
	 [1]	 J. D. Medaglia et al., “Functional alignment 

with anatomical networks is associated with 
cognitive flexibility,” Nature Human 
Behaviour, to be published. [Online]. 
Available: https://arxiv.org/abs/1611.08751

	 [2]	 M. Mather, J. T. Cacioppo, and N. Kanwisher, 
“Introduction to the special section: 20 years 
of fMRI—What has it done for understanding 
cognition?” Perspect. Psychol. Sci., vol. 8, no. 1, 
pp. 41–43, Jan. 2013.

	 [3]	 E. Bullmore and O. Sporns, “Complex brain 
networks: Graph theoretical analysis of 
structural and functional systems,” Nature 
Rev. Neurosci., vol. 10, no. 3, pp. 186–198, 
Mar. 2009.

	 [4]	 V. D. Calhoun, J. Liu, and T. Adali, “A review 
of group ICA for fMRI data and ICA for joint 
inference of imaging, genetic, and ERP data,” 
NeuroImage, vol. 45, no. 1, pp. S163–S172, 
Mar. 2009.

	 [5]	 D. S. Bassett and O. Sporns, “Network 
neuroscience,” Nature Neurosci., vol. 20, 
no. 3, pp. 353–364, Feb. 2017.

	 [6]	 M. Newman, Networks: An Introduction. New 
York, NY, USA: Oxford Univ. Press, 2010.

	 [7]	 O. Sporns and R. F. Betzel, “Modular brain 
networks,” Annu. Rev. Psychol., vol. 67, 
pp. 613–640, Jan. 2016.

	 [8]	 M. P. van den Heuvel and O. Sporns, 
“Rich-club organization of the human 
connectome,” J. Neurosci., vol. 31, no. 44, 
pp. 15775–15786, Nov. 2011.

	 [9]	 J. Richiardi, S. Achard, H. Bunke, and D. Van 
De Ville, “Machine learning with brain graphs: 
Predictive modeling approaches for functional 
imaging in systems neuroscience,” IEEE Signal 
Process. Mag., vol. 30, no. 3, pp. 58–70, May 
2013. [Online]. Available: http://software/wFC

	[10]	 T. Adali, M. Anderson, and G.-S. Fu, “Diversity 
in independent component and vector analyses: 
Identifiability, algorithms, and applications in 
medical imaging,” IEEE Signal Process. Mag., 
vol. 31, no. 3, pp. 18–33, May 2014.

	[11]	 D. S. Bassett and M. G. Mattar, “A network 
neuroscience of human learning: Potential 
to inform quantitative theories of brain and 
behavior,” Trends Cogn. Sci., vol. 21, no. 4, 
pp. 250–264, Apr. 2017.

	[12]	 N. U. F. Dosenbach et al., “Prediction of 
individual brain maturity using fMRI,” 
Science, vol. 329, no. 5997, pp. 1358–1361, 
Sep. 2010.

	[13]	 M. G. Preti, T. A. W. Bolton, and D. Van De 
Ville, “The dynamic functional connectome: 
State-of-the-art and perspectives,” 
NeuroImage, vol. 160, pp. 41–54, Oct. 2017.

	[14]	 W. Huang, L. Goldsberry, N. F. Wymbs, 
S. T. Grafton, D. S. Bassett, and A. Ribeiro, 
“Graph frequency analysis of brain signals,” 
IEEE J. Sel. Top. Signal Process., vol. 10, no. 7, 
pp. 1189–1203, Oct. 2016.

	[15]	 A. E. Sizemore and D. S. Bassett, “Dynamic 
graph metrics: Tutorial, toolbox, and tale,” 
NeuroImage, to be published.

	[16]	 V. D. Calhoun, R. Miller, G. Pearlson, and  
T. Adali, “The chronnectome: Time-varying 
connectivity networks as the next frontier in 
fMRI data discovery,” Neuron, vol. 84, no. 2, 
pp. 262–274, Oct. 2014.

	[17]	 S. D. Keilholz, C. Caballero-Gaudes, 
P. Bandettini, G. Deco, and V. D. Calhoun, 
“Time-resolved resting state fMRI analysis: 
Current status, challenges, and new 
directions,” Brain Connect., vol. 7, no. 8, 
pp. 465–481, Oct. 2017.
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