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ABSTRACT

Modern neuroimaging techniques offer disctinct views on brain
structure and function. Data acquired using these techniques can
be analyzed in terms of its network structure to identify orga-
nizing principles at the systems level. Graph representations are
flexible frameworks where nodes are related to brain regions and
edges to structural or functional links. Most research to date has
focused on analyzing these graphs reflecting structure or func-
tion. Graph signal processing (GSP) is an emerging area of re-
search where signals at the nodes are studied atop the underlying
graph structure. Here, we review GSP tools for brain imaging
data and discuss their potential to integrate brain structure with
function. We discuss how brain activity can be meaningfully fil-
tered. We also derive surrogate data as a null model to test signifi-
cance for graph signals. We review that individuals with less con-
centration on graph high frequency could switch attention faster.

Index Terms— Brain, neuroimaging, network models, graph
signal processing, functional MRI, structural MRI

1. INTRODUCTION

Advances in neuroimaging techniques such as magnetic reso-
nance imaging (MRI) have provided opportunities to measure
human brain structure and function in a non-invasive matter [2].
Diffusion-weighted MRI enables us to measure major fiber tracts
in white matter and thereby map the structural scaffold that sup-
ports neural communication. Functional MRI (fMRI) takes an
indirect measurement of the brain approximately each second, in
the form of blood-oxygenation-level-dependent (BOLD) signals.
An emerging theme in neuroimaging is to study the brain at the
systems level with such fundamental questions as how it supports
cognition, coordinated learning, and consciousness.

Connectomes, either structural or functional, have been ef-
fectively analyzed using a variety of tools from graph theory and
network science [3]. These analyses have uncovered a variety
of measures that reflect organizational principles of brain net-
works [4, 5]. Network analysis has also been applied to study
behavioral, cognitive, and clinical measures either by statistical
methods or machine learning tools [1, 6, 7].
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As network neuroscience grows from understanding connec-
tomes into understanding how connectomes and functional brain
activity support behavior, the study of dynamics has emerged as
central. To date, common approaches include examining changes
in network structure [8] or investigating time-resolved measures
of the underlying functional signals [9]. Since brain activity is
mediated by physical connections, the network structure should
be taken into account when examining these signals. Tools from
the emerging field of graph signal processing (GSP) are tailored-
made for this purpose.

In simple words, GSP addresses the problem of studying
and extracting information from data defined not in regular do-
mains, but on more irregular domains that can be conveniently
represented by a graph. The fundamental GSP concepts that
we utilize to analyze brain signals are the graph Fourier trans-
form (GFT) and the corresponding notions of graph frequency
components and graph filters. These concepts are generaliza-
tions of the Fourier transform, frequency components, and filters
that have been used in regular domains such as time and spatial
grids [10–12]. As such, they enable the decomposition of a graph
signal into pieces that represent different levels of variability. We
can define low graph frequency components denoting signals that
change slowly with respect to brain networks in a well-defined
sense, and high graph frequency components representing signals
that change swiftly in a similar sense. This is important because
low and high temporal variability have proven to be important
in the analysis of neurological disease and behavior [13]. We
review a recent study [1] that such a decomposition can be used
to explain individual cognitive differences. The theory of GSP
has been growing rapidly [7, 14–23].

2. BRAIN GRAPHS AND BRAIN SIGNALS

Brain networks describe physical connection patterns between
brain regions. These connections are mathematically described
by a weighted graph G := (V,A) where V is a set of N nodes
associated with brain regions and A ∈ RN×N is a weighted ad-
jacency matrix with entries Ai,j , each representing the strength
of the link between brain regions i and j.

The brain regions encoded in the nodes of V are macro-scale
parcels of the brain that our current understanding of neuro-
science deems anatomically or functionally differentiated. There
are various parcellations in use in the literature that differ mostly
in their level of resolution [25]. As an example, the networks we
study here consist of N = 82 regions; a schematic illustration of
a few labeled brain regions is illustrated in Figure 1 (left).

The entries Ai,j measure the strength of the axonal connec-
tion between region i and region j. This strength is a simple
count of the number of streamlines that connect the regions, and
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Brain atlas Tractography Brain graph

Fig. 1. Example brain graphs. Knowledge from an anatomical atlas according to anatomical features such as gyri and sulci (left) is combined with MRI structural
connectivity extracted from diffusion-weighted MRI (middle), which can then be used to estimate the brain graph (right). [Adapted from [24]].
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Fig. 2. Example brain activity signals. (A) For an example subject, the heat map of fMRI BOLD magnitude across brain regions (vertically) and time points
(horizontally). (B) For the same subject, distribution of fMRI BOLD values for each brain region (horizontally) across all time points.

can be estimated with diffusion spectrum imaging (DSI) [26] —
see Figure 1 for an illustration of the pipeline.

Besides structural connectivity, it is possible to also acquire
brain activity signals x ∈ RN such that the value of the i-th com-
ponent xi expresses an indirect measure of neuronal activity in
brain region i — see Figure 2 for an illustration of these BOLD
signals. BOLD signals for all the N studied brain regions are
measured over T successive time points, and therefore, we de-
fine the matrix X ∈ RN×T such that its j-th column codifies
brain activity at time j. An example of such a brain signal matrix
is provided in Figure 2A, with the corresponding distribution of
values for each brain region illustrated in Figure 2B.

Brain activity signals carry dynamic information that is not
only beneficial for the study of pathology but also enables us
to gain insight into human cognitive abilities. Whereas physical
connectivity can be seen as a relatively stable property of individ-
uals that changes slowly over the course of years, brain activity
signals exhibit meaningful fluctuations at second or sub-second
time scales that reflect how different parts of the brain exchange
and process information in the absence of any external stimulus,
and how they cooperate to meet cognitive challenges. There is
increasing evidence that differences in activation patterns across
individuals closely relate to behavioral variability [7, 27].

To the extent that brain activity signals are generated on top
of the physical connectivity substrate, brain graphs and signals
carry interdependent information and should be studied together.
Here, we review the use of GSP tools for this purpose.

3. GSP FOR NEUROIMAGING

The GSP perspective is to interpret the brain signal x as a graph
signal that is supported on the brain graph G = (V,A). Here we

review the fundamental operations that we will need for process-
ing neuroimaging data in a meaningful way.

The focus of GSP is not on analyzing the brain graph G per
se, but on using that graph to study brain signals x. For a graph
with positive edge weights, we consider a graph shift operator
that captures the connectivity pattern of G; we can choose the
adjacency matrix A [10] or the graph Laplacian L = D − A
[11], where the degree matrix D incorporates the degree of each
node on its diagonal: Di,i =

∑
j∈V Ai,j . Let us denote the

graph shift operator as S and assume henceforth that S is di-
agonalizable using singular value decomposition or Jordan de-
composition, so that S = VΛV−1 where Λ is a diagonal ma-
trix containing the eigenvalues λk ∈ C, k = 0, . . . , N − 1, and
V = [v0,v1, . . . ,vN−1]. When S is symmetric we have that V
is real and unitary, which implies V−1 = V>. The intuition be-
hind examining S as an operator is to represent a transformation
that characterizes exchanges between neighboring nodes. The
eigendecomposition of S is used to define the graph spectrum.

Definition 1 Consider a signal x ∈ RN and a graph shift oper-
ator S = VΛV−1 ∈ RN×N . Then, the vectors

x̃ = V−1x and x = Vx̃ (1)

form a Graph Fourier Transform (GFT) pair [10, 11].

The GFT encodes the notion of variability for graph signals
akin to the one that the Fourier transform encodes for temporal
signals [10]. Graph frequency ordering becomes more obvious
for undirected graphs and thus symmetric adjacency matrices,
as eigenvalues become real numbers. Specifically, the quadratic
form of A is given by λk = v>k Avk =

∑
i6=j Ai,j [vk]i[vk]j . In

this setup, lower frequencies will be associated to larger eigen-
values, to represent the fact that highly connected nodes in the
graph possess signals with the same sign and similar values.
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Fig. 3. Graph signal processing for brain imaging. (A) Structural connectiv-
ity from diffusion-weighted MRI, as seen in the form of a sagittal brain view (top)
or of an adjacency matrix where the weights denote the strength of the connec-
tions (bottom), is used to construct a graph representing the brain’s scaffold. (B)
Through the eigendecomposition of the Laplacian (left plot) or adjacency (right
plot) matrix, this structural graph can be examined in the spectral domain. The
smallest Laplacian eigenvalues/most positive adjacency eigenvalues (labeled in
blue) are associated to low-frequency modes on the graph (C, top brain views),
while the largest Laplacian eigenvalues/most negative adjacency eigenvalues (de-
noted in red) relate to high-frequency modes (C, bottom brain views). These
modes define the graph Fourier transform. Functional MRI data measured at the
nodes of the graph (D) can be decomposed using these modes, and transformed
using graph signal processing tools (E).

When using the graph Laplacian L as ashift operator [11] for
an undirected graph, the quadratic form of L is given by λk =
v>k Lvk =

∑
i 6=j Ai,j([vk]i − [vk]j)

2. If the considered signal
variations follow the graph structure, the resulting value will be
low. Hence, in this setting, the eigenvectors associated to smaller
eigenvalues can be regarded as the graph lowest frequencies.

Notice that the classical discrete Fourier transform (DFT)
can also be obtained using the graph formalism by considering
cycle graphs that represent discrete periodic signals [11]. For
the undirected graph G with adjacency matrix Acycle such that
[Acycle]i,i+1 mod T = [Acycle]i,i−1 mod T = 1, and [Acycle]i,j =
0 otherwise, the eigenvalues λk correspond to the squared DFT
frequencies and the eigenvectors vk of the Laplacian matrix L
are equivalent to the DFT basis vectors.

Given the above relationships, it becomes possible to decom-
pose the graph signals stored in the matrix X by extracting sig-
nal components associated to different graph frequency ranges.
Specifically, we can define the diagonal filtering matrix G, where
[G]i,i = g(λi) is the frequency response for the graph frequency
associated with eigenvalue λi, and recover the filtered signals as:

YG = VGV>X. (2)

Generic filtering operations can now be defined for the graph set-
ting, such as ideal low-pass filtering, where g(λi) would be 1 for
λi corresponding to low-frequency modes, and 0 otherwise.

3.1. Generation of Graph Surrogate Signals

A pivotal aspect in any research field is to assess the significance
of obtained results through statistical testing. More precisely, one

A B

C

Fig. 4. Cognitive task requiring perceptual switching. (A) Example stimuli
based on Navon local-global features. Subjects were trained to respond to the
larger (or “global”) shape if the stimulus was green and to the smaller (or “local”)
shapes if it was white. (B) An example of the non-switching condition. Subjects
viewed a sequence of images and were instructed to respond as quickly and ac-
curately as possible. (C) An example of the switching condition between stimuli
requiring global and local responses. Here, trials with a red exclamation mark are
switches from the previous stimulus.. [Reproduced with permission from [1]].

aims at invalidating the so called null hypothesis. Non-parametric
tests such as the permutation test provide a powerful alternative
by mimicking the distribution of the empirical data. For corre-
lated data, the Fourier phase-randomization procedure [28] has
been widely applied as it preserves autocorrelation structure un-
der stationarity assumptions. This standard method can be ap-
plied to the temporal dimension of our graph signals:

Y = XFHΦtimeF,

where the diagonal of Φtime contains random phase factors ac-
cording to the windowing function Φ(λl) = exp(j2πφl), where
φl are realizations of a random variable uniformly distributed in
the interval [0, 1]. From the surrogate signals, one can then com-
pute a test statistic and establish its distribution under the null
hypothesis by repeating the randomization procedure.

The phase randomization procedure can be generalized to the
graph setting by considering the GFT. In particular, the graph
signal can be decomposed on the GFT basis and then the graph
spectral coefficients can be randomized by flipping their signs.
Assuming the random sign flips are stored on the diagonal of
Φgraph, we can formally write the procedure as

Y = VΦgraphV
>X. (3)

For brain graphs, this procedure generates, for a given graph sig-
nal representing a measured activation pattern, surrogate graph
signals that have the same smoothness measured on the graph.

4. APPLICATIONS OF BRAIN GSP

We now discuss how the aforementioned GSP methods can be
applied in the context of functional brain imaging. Figure 4 is
adapted from [1]; Figures 5A and B are reproduced from [1]. For
each volunteer, fMRI recordings were obtained when perform-
ing a Navon switching task, where local-global perception is as-
sessed using classical Navon figures. Local-global stimuli were
comprised of four shapes – a circle, cross, triangle, or square –
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Fig. 5. Switch cost correlates with the concentration in liberal signal. (A) Switch cost does not significantly relate to the concentration of the graph low frequency
components (alignment). (B) A lower concentration of graph high frequency components (liberality) is associated with a lower switch cost, that is, with faster attention
switching. (C) The correlation between switch cost and liberal signal concentration is much stronger in the actual data than in null realizations for which statistical
randomization has been performed in the graph domain. Blue data points denote the correlation coefficients obtained from surrogate signals under the null, while the red
rectangle indicates the real correlation coefficient (ρ = 0.59). ρ, partial Pearson’s correlation coefficient; p, p-value. [A and B are adapted with permission from [1]].

that were used to build the global and local aspects of the cues
(see Figure 4A for indicative examples).

A response (button press) to the local shape was expected
from the participants in the case of white stimuli, and to the global
shape for green ones. Two different block types were considered
in the experiment: in the first one (Figure 4B), the color of the
presented stimuli was always the same, and the subjects thus re-
sponded consistently to the global or to the local shapes. In the
second block type (Figure 4C), random color switches were in-
cluded, so that slower responses were expected. The difference
in response time between the two block types, which we refer to
as switch cost, quantifies the behavioral ability of the subjects.

To study the brain correlates of attention switching, we de-
composed the functional brain response into two separate com-
ponents: one exhibiting alignment with structural connectivity
(i.e., the regions that activate together are also physically wired),
and one exhibiting liberality (jointly active areas possess high
variability with respect to the underlying graph structure). To do
so, we performed graph signal filtering as in (2) with two dif-
ferent filtering matrices: (i) ΨAl, so that YΨAl = VΨAlV

>X
is the transformed (low-pass filtered) functional data in which
only the 10 lowest frequency modes are expressed at each time
point; and (ii) ΨLib, for which YΨLib only represents the tempo-
ral expression of the 10 largest frequency modes (high-pass filter-
ing). At a given time point, the filtered functional signal varies in
sign across brain regions; thus, to derive a subject-specific scalar
quantifying alignment or liberality, we considered the norms of
those signals as measures of concentration, which were eventu-
ally averaged across all temporal samples of a given subject.

To relate signal alignment and liberality to cognitive perfor-
mance of the participants, we computed partial Pearson’s correla-
tion between our concentration measures and switch cost (median
additional response time during switching task blocks compared
to no-switching task blocks). Age and motion were included as
covariates to remove their impact from the results. We observed
a significant positive correlation between liberal signal concen-
tration and switch cost (ρ = 0.59, p < 0.0015; see Figure 5B).
Thus, the subjects possessing most liberality in their functional
signals were also the ones for whom the attention switching task
was the hardest. Regarding alignment, however, there was no

significant association (p > 0.35; Figure 5A). In other words,
the extent with which functional brain activity was in line with
the underlying brain structural connectivity did not relate to cog-
nitive abilities in the assessed task. From these results, one can
see that a GFT framework enables one to isolate the functional
components that are responsible for faster attention switching.

To more thoroughly examine the significance of the associ-
ation between liberal signals and switch cost, we performed a
null permutation test by generating graph surrogate signals as de-
scribed in Sect. 3.1. Specifically, we generated 200 graph surro-
gate signals by randomly flipping the signs stored on the diagonal
of Φgraph, as in (3). Then, we evaluated the association between
the null surrogate signals and switch cost. As seen in Figure 5C,
the actual correlation coefficient between liberal signal concen-
tration and switch cost (denoted by the red rectangle) is signifi-
cantly larger than when computed on any of the null graph sur-
rogate signals. This result indicates that the correlation between
liberality and switch cost goes beyond what could be explained
solely by structural connectivity.

In sum, we reviewed a recent study [1] that individuals whose
most liberal fMRI signals were more aligned with white matter
architecture could switch attention faster. I.e., relative alignment
with anatomy is associated with greater cognitive flexibility. This
observation complements prior studies of executive function that
have focused on node-level, edge-level, and module-level fea-
tures of brain networks [29]. This discussion illustrates the use-
fulness of GSP tools in extracting relevant cognitive features.

5. CONCLUSION

The GSP framework enables the analysis of brain activity on
top of the structural brain graph. In particular, we have stud-
ied anatomically-aligned or -liberal organization of brain activity,
and in the context of an attention switching task. We reviewed
that concentration of signals liberal with anatomical connectivity
is significantly correlated with higher cost in attention switching.
These results reinforce the usage of GSP in brain signal analytics
that were based on functional graphs [7]. Also, we used surrogate
signal to generate graph null models to discuss that the signifi-
cance of results cannot be explained by random permutation.
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