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Electroencephalography (EEG) is a key modality to monitor brain activity with high temporal resolution. 
EEG makes use of an array of electrodes to measure the electrical potential on the scalp. While most tradi-
tional EEG analyses have looked at EEG rhythms in di�erent frequency bands, another important application 
of EEG is source imaging; i.e., map back the measured scalp potential to the underlying source distribution. 
However, source localization is an ill-posed problem. Most approaches consider a grid of neurobiologically 
relevant dipoles with �xed positions and directions of their moments, which makes for many more unknown 
intensities than the number of measures. To make the solution unique, one needs to add regularization
 strategies such as smoothness or sparsity. The alternative, which is the approach that we will follow in this 
work, is to impose a sparse and parametric source model with few unknown parameters, but which include 
both dipole positions and moments thus rendering the problem solution highly non-linear.

The proposed method, for which we coin the term  “analytic sensing”, is based on two main working principles. 
First, based on the divergence theorem, the sensing principle relates the boundary potential to a volumetric
 information about the sources. This principle makes use of a mathematical test function (”analytic sensor”) 
that needs to be a homogeneous solution of the Poisson equation, which is the governing equation of the 
quasi-static electromagnetic setting. The analytic sensor can be de�ned for di�erent geometries and 
conductivity pro�les of the domain of interest. We derive closed-form expressions for 3D multi-layer spherical 
models that are often used as a head model in EEG.

Recent advances in signal processing known as “annihilation �lter” and “�nite rate of innovation” have extended 
Prony's method to recover sparse sources in a robust way, typically a stream of Diracs. We propose to apply the 
annihilation principle by imposing a particular choice of multiple analytic sensors; i.e., the virtual measurements
 obtained with these functions can be annihilated by a �lter  that allows us to recover the dipoles' positions in a 
non-iterative way. The dipoles' moments can subsequently be retrieved by solving a linear system of equations. 

While the application of the sensing principle is intrinsically 2D or 3D, the annihilation principle gives only 
access to the orthographic projection of the source distribution. Two approaches have been developed. First, 
using coordinate transformations, one can obtain multiple projections of the sources and recombine them to
 reconstruct the full 3D information. Second, using a second set of analytic sensors, it is possible to retrieve the
 missing coordinate by solving another linear system of equations.

Successful application of the method requires careful implementation of both principles. For the sensing
principle, we project the boundary measurements on a set of spherical harmonics with proper regularization 
to cover parts of the boundary that are not measured. We also show how the annihilation step can be imple-
mented to be robust to noise and numerically stable. We demonstrate the precision and robustness of the 
method by both experimental results and theoretical Cramèr-Rao bounds. Finally, we show e�ective source 
localization for real-world experimental EEG data; i.e., we identify the underlying sources for several time 
instants of a visual evoked potential.
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Abstract

Electroencephalography (EEG) is a key modality to monitor brain activity with
high temporal resolution. EEG makes use of an array of electrodes to measure
the electrical potential on the scalp. While most traditional EEG analyses have
looked at EEG rhythms in different frequency bands, another important application
of EEG is source imaging; i.e., map back the measured scalp potential to the
underlying source distribution. However, source localization is an ill-posed problem.
Most approaches consider a grid of neurobiologically relevant dipoles with fixed
positions and directions of their moments, which makes for many more unknown
intensities than the number of measures. To make the solution unique, one needs to
add regularization strategies such as smoothness or sparsity. The alternative, which
is the approach that we will follow in this work, is to impose a sparse and parametric
source model with few unknown parameters, but which include both dipole positions
and moments thus rendering the problem solution highly non-linear.

The proposed method, for which we coin the term “analytic sensing”, is based
on two main working principles. First, based on the divergence theorem, the sens-
ing principle relates the boundary potential to a volumetric information about the
sources. This principle makes use of a mathematical test function (“analytic sen-
sor”) that needs to be a homogeneous solution of the Poisson equation, which is the
governing equation of the quasi-static electromagnetic setting. The analytic sensor
can be defined for different geometries and conductivity profiles of the domain of
interest. We derive closed-form expressions for 3D multi-layer spherical models that
are often used as a head model in EEG.

Recent advances in signal processing known as “annihilation filter” or “finite
rate of innovation”, have extended Prony’s method to recover sparse sources in
a robust way, typically a stream of Diracs. We propose to apply the annihilation
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principle by imposing a particular choice of multiple analytic sensors; i.e., the virtual
measurements obtained with these functions can be annihilated by a filter that
allows us to recover the dipoles’ positions in a non-iterative way. The dipoles’
moments can subsequently be retrieved by solving a linear system of equations.

While the application of the sensing principle is intrinsically 2D or 3D, the an-
nihilation principle gives only access to the orthographic projection of the source
distribution. Two approaches have been developed. First, using coordinate trans-
formations, one can obtain multiple projections of the sources and recombine them
to reconstruct the full 3D information. Second, using a second set of analytic
sensors, it is possible to retrieve the missing coordinate by solving another linear
system of equations.

Successful application of the method requires careful implementation of both
principles. For the sensing principle, we project the boundary measurements on a
set of spherical harmonics with proper regularization to cover parts of the boundary
that are not measured. We also show how the annihilation step can be implemented
to be robust to noise and numerically stable. We demonstrate the precision and
robustness of the method by both experimental results and theoretical Cramèr-Rao
bounds. Finally, we show effective source localization for real-world experimental
EEG data; i.e., we identify the underlying sources for several time instants of a
visual evoked potential.

Keywords: inverse problems, EEG source imaging, Poisson equation, non-
iterative reconstruction, analytic functions, spherical head model



Résumé

L’électroencéphalographie (EEG) est une méthode essentielle pour surveiller l’ac-
tivité cérébrale avec une haute résolution temporelle. L’EEG mesure les potentiels
électriques au niveau du cuir chevelu à l’aide d’un réseau d’électrodes. Alors que
les méthodes classiques classifient le signal EEG à partir de l’analyse des bandes
de fréquence en présence, une autre application de l’EEG concerne la localisation
de source ; à savoir, retrouver la distribution de sources qui sont à l’origine des
potentiels mesurés à la surface du crne. Toutefois, la localisation de sources est un
problème notoirement mal conditionné. La plupart des approches considèrent une
grille de dipôles pertinents du point de vue neuro-biologique avec une position et
une orientation fixées, ce qui conduit à un problème ayant bien plus d’inconnues
que de mesures. Pour déterminer une solution unique, il est nécessaire de recou-
rir à des stratégies de régularisation, insistant sur la parcimonie ou l’aspect lisse
de la solution. Une alternative à la régularisation, faisant l’objet de ce travail, est
d’imposer un modèle de source parcimonieux et paramétrique caractérisé par peu
d’inconnues, mais qui inclut à la fois les positions et les orientations des dipôles,
rendant la solution du problème fortement non-linéaire.

La méthode proposée, que nous avons intitulée “analytic sensing”, repose sur
deux fondements. Premièrement, en se basant sur le théorème de Green-Ostrogradski,
le potentiel de surface est lié à une distribution volumique des sources. Cette
méthode fait appel à une fonction test (“un détecteur analytique”) qui doit être une
solution homogène à l’équation de Poisson régissant les champs électromagnétiques
quasi-stationnaires. Le détecteur analytique peut être défini pour diverses géométrie
et distributions de conductivité. Nous dérivons des expressions analytiques pour les
modèles 3D multi-couches qui sont souvent utilisés en EEG. Deuxièmement, de
récentes découvertes en traitement du signal, “annihilation filter” ou ”finite rate of
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innovation”, ont permis d’étendre la méthode de Prony pour retrouver, de manière
robuste, des sources parcimonieuses, typiquement modélisées comme des impul-
sions spatiales. Nous proposons d’appliquer le principe d’annihilation en imposant
un choix particulier de plusieurs détecteurs analytiques. Les mesures obtenues avec
ces fonctions peuvent être annihilées par un filtre qui permet de retrouver la posi-
tion des dipôles de fao̧n non itérative. Les orientations des dipôles peuvent ensuite
être obtenues en résolvant un système d’équations linéaires. Pour la localisation vo-
lumique, le principe d’annihilation ne donne accès qu’à deux des coordonnées de la
distribution des sources. Pour localiser les sources dans la troisième dimension, deux
approches ont été proposées. Par l’intermédiaire de changements de coordonnées,
différentes projections des sources permettent, une fois recombinées, de reconstruire
l’information tridimensionnelle complète. Alternativement, en utilisant un deuxième
jeu de détecteurs analytiques, la coordonnée manquante peut être définie comme
la solution d’un nouveau système d’équations linéaires.

L’application de la méthode, pour être fructueuse, nécessite une implémentation
soignée des deux principes. Pour la représentation continue du potentiel électrique,
nous avons projeté les mesures de surface sur un ensemble d’harmoniques sphériques,
utilisant une régularisation afin d’extrapoler acceptablement les zones non me-
surées. Nous avons également montré comment l’étape d’annihilation peut être
implémentée de manière à être robuste au bruit et numériquement stable. Nous
démontrons la robustesse et la précision de la méthode tant par des résultats
expérimentaux et par le calcul théorique des bornes de Cramér-Rao. Enfin, nous
démontrons une localisation effective de sources avec des données EEG réelles,
cöıncidant avec une méthode de référence.

Mots-clés : problème inverse, image de source EEG, équation de Poisson, recons-
truction non itérative, fonctions analytiques, modèle de tête sphérique
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Chapter 1

Problem Setting

1.1 Introduction

1.2 Background

Wolfgang Gullich, famous for his one arm one finger pull-up and a legend among
rock climbers, stated “The brain is the most important muscle for climbing”. In
saying that, Wolfgang made one mistake, the brain isn’t a muscle but an organ,
the most important organ in the central nervous system of the human body for it
enables reasoning, perception, movement, sight, all crucial for complex tasks such
as climbing.

The brain consists of roughly ten billion interacting nerve cells, called neurons,
structured in what is known as the brain’s anatomy. These neurons are organized in
different regions that can be designated according to their function. For example, a
specific region in the brain is responsible for motor function, while other regions are
involved in high-level cognitive processing. Next to specialized regions there is also
aggregation which requires communication of information between brain regions.

The brain is nested in the skull and scalp, which act as protective layers. More-
over, it floats in the ventricular system which is drained with the cerebrospinal
fluid (CSF). The CSF, together with blood, provides essential substances for the
metabolism of the brain. Concerning tissue types, the actual brain tissues can be
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2 Problem Setting
10 Chapter 2

Figure 2.3: A coronal slice of the human head. Adopted from Mai et al. [93]

.

are specialized in receiving inputs from other nerve cells. The soma or cell body
contains the nucleus of the cell and processes the incoming signals and decides if
a signal has to be transmitted to the axon. In that case the neuron fires and an
action potential is generated which propagates through the axon. Via the axon,
impulses are sent to other neurons or tissue (muscles or organs). The axon’s
end is divided into branches which connect to other neurons or tissues. An axon
can only transmit a signal to another neuron via the dendrites. Therefore, a
physiological connection has to be made. This is called a synapse. The larger
the dendrites, the more connections from other neurons can be made.

The synapse is a specialized interface between two nerve cells. The synapse
consists of a cleft between a presynaptic and postsynaptic neuron. At the end
of the branches originating from the axon, the presynaptic neuron contains
small rounded swellings which contain the neurotransmitter substance. Further
readings on the anatomy of the neuron and the brain can be found in Kiloh
et al. [87] and Gray [51].

2.2.2 Physiology of the neuron

At rest the intracellular environment of a neuron is negatively polarized at ap-
proximately -70 mV compared with the extracellular environment. A neuron
can depolarize or hyperpolarize. A depolarization means that the potential dif-
ference between the intra- and extracellular environment increases. Instead of
−70mV the potential difference becomes −40mV. A hyperpolarization means

Figure 1.1: A coronal slice of the human head with some important struc-
tures indicated (this figure has been adopted from [1]).

divided in three parts: white matter, gray matter and the ventricles (see figure 1.1).

The white matter mainly consists of connections from and to different parts
of the gray matter. For example, an important connection contained in the white
matter is the corpus callosum which connects the right and left hemisphere (see
figure 1.1). The actual brain activity is generated in the gray matter. The gray
matter at the edge of the brain has a folded structure. The outer layer is also called
the cortex or cortical gray matter. In the gray matter many structures can be
identified according to their function in the processing of information. An example
of such a structure is the hippocampus, which is related to the short term memory.
The hippocampus has very complicated folded structure. Specific types of epilepsy
are related to this structure. The nerve cells in the gray matter are generators of
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the electrochemical activity of the brain.

Neurons or nerve cells are the building blocks of the human central nervous
system. The brain consists of about 1010 of such neurons. The neuron’s task is to
process signals coming from other neurons and transmit signals to other neurons
(or tissue such as muscles or organs). The shape and size of the neurons vary but
all neurons possess the same anatomical subdivision. Neurons consist of 3 parts,
the dendrites, the cell body or soma and the axon as depicted in figure 1.2 The

Figure 1.2: A nerve cell, also called a neuron, and its
anatomical structure. This picture has been taken from
http://www.indiatalkies.com/2011/02/nerve-cell-grow-cells-contact.html.

dendrites, which includes all the branches, are specialized in receiving inputs from
other nerve cells. The soma or cell body contains the nucleus of the neuron. It pro-
cesses the incoming electrical signals and decides if a signal has to be transmitted to
the axon. In that case the neuron generates a potential, called an action potential,
which propagates through the axon. Via the axon, impulses are sent to other neu-
rons. These potentials received by the surrounding neurons are called postsynaptic
potentials. For a more in depth overview on the anatomy and physiology of the
neuron we refer to [2, 3, 4].



4 Problem Setting

The amplitude of such an action potential is rather large (70-110mV) but it has
a small time course (0.3ms). Moreover, a synchronous firing of action potentials
is very unlikely, which makes these action potentials unmeasurable by the EEG.
The postsynaptic potentials on the other hand have a rather small amplitude (0.1-
10mV), but a larger time course, 10-20ms. The postsynaptic potentials are the
generators of the extracellular potential field. Since their time course is larger they
allow for the measurements of summed activity of neighbouring neurons [1, 5]. In
such, we need a more or less regular arrangement of neurons that are more or less
synchronously active. The spatial properties of the neurons must be such that they
amplify each others’ extracellular potential fields.

Pyramidal neuron cells are a special type of neurons which consist of a large
dendrite branch that is oriented orthogonally to the surface of the gray matter.
Neighboring pyramidal cells are organized so that the axes of their dendrite trees are
parallel and normal to the cortical surface. The spatial configuration is such that if
they fire synchronously, then they amplify each others’ extracellular potential fields.
The synchronous electrical activity of such neighboring pyramidal cells generates
an electrical signal that is measurable with the electroencephalogram (EEG).

The electroencephalogram is the measure of the electrical activity generated by
the brain on the scalp. The human EEG recording was done by Hans Berger, a
German neurologist, back in 1924. Berger discovered that the measured EEG in
wake and sleeping state differ. More precisely, using the EEG he discovered the
alpha wave also known as Berger’s wave. This wave is an electric waveform (with
characteristic frequency 8-12Hz) which originates from the occipital lobe during
wakeful relaxation with closed eyes [6]. Nowadays, the EEG is mainly used to
measure such brainwaves; e.g., beta (>14Hz) and delta rhythms(<4Hz). While the
analysis of such rhythms will probably never tell us what a person is thinking, it
can help us know if a person is thinking [7].

Another application of the EEG is to determine the sources responsible for the
measured EEG. This is an ill-posed problem in the sense of unicity [8]. However, in
some cases the measured EEG stems from a well-localized electrically active zone,
e.g., partial epileptic seizures stem from such focal zones also called the epileptic
onset zones. Evoked potentials (EPs) are the potential differences generated on
the scalp that are triggered by a physical stimulus. These stimuli can be of visual,
auditory or somatosensory nature. The characteristic waveform of such an EP is
often generated by well-localized zones in the cortex. Such focal zones are ade-
quately modeled by dipoles. If we use this a priori information; i.e., the generating
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source distribution is a superposition of dipoles, then the solution of the inverse
EEG problem is unique [9]. In such cases it is useful to determine the generating
source distribution. Reconstructing the sources responsible for the measured scalp
potential is commonly called source localization or source analysis.

1.3 Formal Problem Description

The quasi-static approximation of Maxwell’s equations combined with the conserva-
tion law ∇·J = 0, with J the current density, relate a source distribution, ρ, to the
generated potential, V , if all fields and currents behave as if they were stationary
at each instance in time. Moreover, it shown in [10] that these quasi-static con-
ditions hold in EEG. Consequently the governing equation that relates the source
distribution to the measured EEG in the conductor model, Ω, is:

−div (σ∇V ) = ρ, within Ω, (1.1)

where σ is the conductivity profile of Ω and Ω is the conductor model that rep-
resents the head (often called head model). In the case of isotropic conductivities
the conductivity is a position dependent scalar. For example, a homogeneous unit
sphere implies that σ (x, y, z) = constant for x2 + y2 + z2 ≤ 1 whereas a 3-sphere
conductor model has a piecewise constant conductivity, as depicted in figures 1.3(b)
and 1.4(b). For anisotropic conductivities the conductivity can be written as a po-
sition dependent second order tensor. On top of equation (1.1) we have a boundary
condition which states that no electric current can flow from Ω in the outside air
(it would be unpleasant getting an electric shock each time you caress someone on
the head). This boundary condition is called the homogeneous Neumann boundary
condition and reads:

∇V · eΩ = 0, on ∂Ω, (1.2)

where eΩ is the outward normal to the conductor model’s surface, ∂Ω.
As mentioned before, neighboring pyramidal cells are generators of a measur-

able EEG. Such a patch of pyramidal cells is adequately modeled by a current
dipole [11, 12]. Therefore, the generating source distribution ρ is usually modeled
by a superposition of M current dipoles:

ρ =

M∑

m=1

pm · ∇δ (x− xm) , (1.3)
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where pm = [pxm pym pzm ]
T

and xm = [xm ym zm]
T

represent the mth dipole’s mo-
ment and location. A dipole’s moment determines its strength, also called intensity,
||pm|| and orientation whereas its location determines where current is injected and
subtracted. Naturally the dipoles’ locations should all lie in the brain because there
are no current sources outside the brain. Figures 1.3(a) and 1.4(a) depict the po-
tential generated by such dipoles on the boundary of a homogeneous sphere and
on the boundary of a 3-sphere model. The inverse EEG problem P at hand is the
following:

P: Knowing V
∣∣
∂Ω

, find ρ in (1.3), such that (1.1) and (1.2) are satisfied.

(a)

σ

r =
�

x2 + y2 + z210

1

(b)

Figure 1.3: 1.3(a) depicts the boundary potential generated by a dipole
located at x1 = [0.2, 0.4, 0.6] with a radial unit moment, p1 = x1

||x1|| .1.3(b)

The conductivity profile corresponding to a homogeneous sphere in which
the generating dipole lies.

1.4 Overview of existing methods

The fundamental problem of reconstructing the sources responsible for a measured
EEG is the ambiguity (also known as ill-posedness) of the inverse EEG problem, i.e.,
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Figure 1.4: 1.4(a) The boundary potential generated by a dipole located
at x1 = [0.2, 0.4, 0.6] with a radial unit moment, p1 = x1

||x1|| .1.4(b) The

conductivity profile corresponding to a 3-sphere conductor model in which
the generating dipole lies.

multiple source distributions can generate the same boundary potential [13]. For
example, if we measure no potential difference at the electrode sites then ρ (x) = 0
is a plausible source distribution, but ρ (x) = −div

(
σ∇(1− ||x||2)2

)
generates

the same boundary potential because for any point on the surface, x∂Ω, we have
||x∂Ω|| = 1. In order to suppress this ambiguity and as a consequence render
the inverse EEG problem well-posed the source distribution is parameterized, as
in (1.3). Only by introducing a priori assumptions (e.g., a limited number of dipoles
M to be localized) can the problem P be solved. These a priori assumptions are
crucial since they have a big impact on the proposed solution. This section is
basically a brief overview of the most used a prioris and is largely based on [14].

Generally speaking, there are underdetermined and overdetermined inverse mod-
els. Underdetermined models do not make a strong a priori assumption on the
number, M , of generating dipoles. They assume that M is much bigger than Q,
where Q is the number of measurements on the boundary. Overdetermined models,
on the contrary, make strong assumptions on the number of generating dipoles and
assume that M is much smaller than Q.
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1.4.1 Underdetermined source models

In many applications the exact number of generating dipoles unknown. In such,
these underdetermined models, also called distributed models, have received in-
creased attention. These distributed models use biological constraints, i.e., M cur-
rent dipoles are placed on a grid in the brain where a possible current dipole might
reside. These locations are called solution points. Note, the positions of the solu-
tion points are fixed, as a consequence the equations describing the inverse solution
are linear, meaning that a matrix, called the lead field matrix, can be constructed
that linearly relates the measured data to the estimated parameters pm. Since each
solution point is considered as a possible location for a current dipole, there is no a
priori assumption on the number of dipoles responsible for the measured EEG (pro-
vided that the ensemble of solution points is sufficiently large). When using such
distributed models, P is reduced to finding the moments pm of the solution points
such that the ensemble of solution points explains the measured boundary poten-
tial. Since the solution points greatly outnumber the boundary measurements, the
corresponding inverse problem is highly underdetermined, i.e., the solution points’
moments are not uniquely determined by the boundary measurements.

The underdetermined nature of these distributed models necessitate more pri-
ori assumptions to identify the optimal or most likely solution. The different dis-
tributed models proposed in the literature differ in their choice of these extra as-
sumptions. Some are purely mathematical, e.g., when looking for the solution with
minimum `1-norm, some incorporate physiological knowledge and others incorpo-
rate findings from other imaging modalities such as magnetic resonance imaging
(MRI). Note that, these assumptions are only valid if source distributions fulfilling
these assumptions are more likely to occur than other source distributions.

Minimum norm

The most widespread a priori used to solve such underdetermined linear systems
is the minimum `2-norm [15], i.e., the solution, p̂, that is assumed to be the most
likely is the one with minimum overall intensity:

p̂ = argmin
p1···pM

M∑

m=1

||pm||2`2 subject to ||V −
M∑

m=1

V (pm) ||`2 = 0
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where V is the measured potential and V (pm) is the potential generated by the
mth solution point with moment pm. The obtained solution is unique, i.e., no
other combination of found parameters pm can fit the data exactly whilst having a
minimal overall intensity. The minimum `2-norm solution favors sources close to the
boundary, ∂Ω, because such superficial sources require a lower intensity to generate
a high potential difference at the surface. As a consequence, deeper sources with
high intensity are incorrectly projected closer to the surface. For completeness, we
mention that lately the solution with minimum `1-norm has been receiving a lot
of attention [16]. The minimum `1-norm solution favors “sparse” solutions, i.e.,
the measured boundary potential is explained with a minimal number of solution
points. In other words, the intensities of the solution points that do not contribute
much to the boundary measurements are set to zero, or close to zero.

Weighted minimum norm

In order to suppress the tendency to favor superficial sources of the minimum `2-
norm solution, different weighting strategies have been proposed. The most likely
solution p̂ is then given by the minimization of regularization term whilst constrain-
ing the solution to reconstruct the measured potential. One such weighting, and
probably the easiest, is based on the norm of the columns of the lead field matrix
L [17]

p̂ = argmin
p1···pM

||Lp||C subject to ||V −
M∑

m=1

V (pm) ||`2 = 0

with ||.||C some viable norm that does not favor superficial sources. Another widely
used technique is the Focal Underdetermined System Solution (FOCUSS) algorithm
which iteratively changes the weighting matrix according to the solution estimated
in a previous step, leading to a non-linear solution [18]. In [19] physical constraints
are imposed such that the radial components disappear when approaching the sur-
face of the brain. The resulting method is called radially weighted minimum norm
(RWMN) solution. Bear in mind that these different weighting strategies are based
on purely mathematical operations without any physiological justification for the
choice of the weighting.
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Laplacian weighted minimum norm

The Laplacian weighted minimum norm solution, which is implemented in the
LORETA-software [20], chooses a solution with a spatially smooth distribution
by minimizing the Laplacian, a measure of spatial roughness, of the intensities of
the solution points. The optimal solution p̂ is then given by

p̂ = argmin
p1···pM

||
M∑

m=1

∆V (pm) ||`2 subject to ||V −
M∑

m=1

V (pm) ||`2 = 0.

The physiological interpretation of these smoothing constraints is that the activ-
ity in neighboring neurons is correlated. This assumption is generally accepted.
However, it has been criticized that the distance between solution points and the
limited spatial resolution of EEG recordings lead to a spatial scale where such cor-
relations are no longer valid [21, 22]. Indeed, functionally very distinct areas can
be anatomically very close. The LORETA algorithm does not explicitly take into
account such anatomical distinctions and hence the spatial smoothing constraint
as physiological justification should be taken with caution. As a consequence, the
LORETA algorithm yields often blurred or rather over-smoother solutions [23, 24].

Local autoregressive average

Local autoregressive average, also called LAURA, incorporates physical constraints
in the minimum norm solution, i.e., according to Maxwell’s equations the strength
of the potential field falls off or regresses as 1

r2 , with r the distance to the current
source. LAURA implements this constraint as a local autoregressive average with
coefficients depending on the distances between the solution points [25, 26]. Thus,
the moment of a solution point depends on two contributions, one fixed by physical
constraints and one to be determined from the measured data. This method could
take into account anatomical details by varying the regression coefficients. Further-
more, dependencies between the dipole moments can be taken into account [26].

EPIFOCUS

EPIFOCUS is an algorithm that has been developed for the analysis of focal epilep-
tic activity (hence the name EPIFOCUS) where a single dominant current source
with a certain spacial extent is a valid a priori [27, 28, 29]. The spatial extent is
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derived from the measured EEG by projecting the measured EEG on each solution
point. The result can be interpreted as the probability of finding a single source at
each solution point. Both simulations and analyses of real data show a remarkable
robustness against noise of EPIFOCUS. However, this method is likely to fail if
several sources are simultaneously active.

Beamformer Approaches

Beamformer approaches adopted from radar and sonar signal processing have been
applied to magneto encephalogram (MEG) and EEG. These approaches estimate
the activity of one brain area by minimizing the interference with other possible
simultaneous active areas (e.g., given by the solution points). A spatial filter is
constructed that blocks the contributions of all sources, which are considered as
background noise, other than the solution point of interest. A well-known method
is synthetic aperture magnetometry (SAM) [30]. Beamformer approaches can be
interpreted as a source scanning procedure that can estimate source changes over
time of any voxel [31, 32]. The main drawback of beamformer approaches is the
potentially erroneous estimation of radial current dipoles (current dipoles with a
radial moment), which unfortunately are often the generating current sources in
EEG, e.g., the focal epileptic onset zone is mostly modeled by a radial current
dipole.

Bayesian Approaches

Bayesian approaches use statistical techniques to incorporate a priori information.
The dipoles’ parameters (pm and xm) are obtained by optimizing a likelihood func-
tion which yields linear or non-linear estimators [33]. The non-linear estimators are
most promising because they allow a more detailed description of a priori infor-
mation, e.g., information on the neural current [34], the sparse activity pattern of
epileptic onset zones [35] and spatial and temporal constraints on the sources [36].

1.4.2 Overdetermined source models

Overdetermined source models assume that the measured EEG can adequately be
explained by a small number of current dipoles (overdetermined models are also
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called dipolar or multiple-dipole models). To guarantee a unique solution the num-
ber of estimated parameters (6×M) must be smaller than the number of boundary
measurements. These dipoles are found by computing the generated boundary po-
tential and comparing the obtained potential map with the measured EEG. The
optimal locations xm and moments pm minimize the squared error between the
generated potential map and the measured EEG:

argmin
x1···xM ,p1···pM

||V −
M∑

m=1

V (xm,pm) ||`2 ,

with V (xm,pm) the potential generated by a dipole located at xm with moment
pm. Note that, the only the grid’s nodes are considered as viable locations for the
dipoles. However, such approaches have two big drawbacks:

(1) An exhaustive scanning through the whole solution space with any possible
location and moment of the estimated dipoles is almost impossible since the
solution space is too big.

(2) Non-linear optimization methods based on directed search algorithms, such
as the steepest descend algorithm, are often used to search through the solu-
tion space [37]. However, such non-linear optimization methods are prone to
local minima, i.e., the algorithm may falsely accept a certain location because
moving in any direction increases the squared error [38]. This problem is even
more pronounced if the measured data is noisy, which is, in practice, always
the case.

In order to increase the number of dipoles that can be fitted, temporal infor-
mation can be incorporated in the dipole fitting procedure [39]. The resulting
spatiotemporal multiple source analysis technique (as implemented in the BESA
software) fixes the dipoles positions over a given time interval and uses the data
over the entire time interval to perform a least squares fit. As a result only the
dipoles’ moment vary over the considered time interval. In such, it is crucial to as-
sume the correct number of dipoles. Generally two approaches are proposed [40]. In
a first approach, the entire time window is analyzed and and new sources are added
as the explained variance increases considerably, e.g., the method called “multiple
signal classification” (MUSIC) uses this approach [41]. In the second approach, the
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time interval is analyzed sequentially and new dipoles are added for each time in-
stant at which unexplained activity remains, such methods are explored and tested
in [42].

Another interesting approach uses a ubiquitous tool in electromagnetism, known
as the reciprocity gap concept [43]. This tool is essentially an application of Green’s
theorem, which provides a way to transform a scalar product between the source
distribution and a function with vanishing Laplacian into a boundary integral. It
has been shown that the application of this tool to powers of x + iy leads to an
algorithm that solves the localization problem [44, 9]. Unfortunately, the practical
efficiency of their approach to multi-pole sources retrieval is severely hindered by
the numerical instability of higher degree monomials.

Recently, an interesting mathematical approach has been proposed in 2D. Based
on the analytical expression of the potential induced by multiple dipoles in a disc
with uniform conductivity, one can fit their trace on the boundary measures by a
so-called best-meromorphic approximation, which contains the information of the
dipoles’ positions [45, 46]. However, the method is only exact in specific cases and
also relies on the circular form of the boundary. Since the method is intrinsically
2D, its extension to 3D is iterative and becomes more difficult with an increasing
number of dipoles [47].

1.4.3 Sparse signal models

Recently, in the signal processing community, a novel approach, called “finite rate
of innovation (FRI)”has been proposed [48, 49]. This method makes ingenuously
use of Prony’s method [50] to reconstruct a stream of Diracs. Prony observed in
1795 that a sum of complex exponentials can be nullified (or annihilated) by a filter
whose coefficients are found as the roots of an “annihilating” polynomial. The FRI
framework relates a stream of Diracs to a sum of complex exponentials via which a
stream of Diracs can be reconstructed. The source of inspiration for our approach
is the FRI approach.

1.5 Main Contributions of this Thesis

In this thesis we attempt to devise a parametric estimation of the underlying dipolar
source model, ρ =

∑M
m=1 pm ·∇δ (x− xm), responsible for the measured boundary



14 Problem Setting

potentials. The main contributions fall under the following three headings:

(1) Theory The developed framework, coined “analytic sensing”, solves the in-
verse problem P using a multi-dipole source model. Starting from the gov-
erning equations (1.1) and (1.2), we identify test functions, ψan , such that the
inner product 〈ψan , ρ〉, called generalized samples, can be computed knowing
only V

∣∣
∂Ω

. If the test functions are harmonic then this concept is known as
the “reciprocity gap concept”. However, we use test functions that are not
analytic outside the domain of interest, i.e., unlike the polynomials considered
in [44, 9]. Next, we adapt a FRI strategy [48, 49] and provide an algorithm
that based on a set of such generalized samples can reconstruct the dipoles’
parameters exactly in the absence of noise.

(2) Computational Efficient Algorithms Most of the existing multi-dipole
models require the optimization of several non-linear parameters, which is
done by scanning through the solution space which is usually very big. Our
approach leads to an analytical solution of the inverse problem P. In such
no iterative process is needed to reconstruct xm and pm. Moreover, the
estimation of the non-linear parameters (xm) and linear parameters (pm) is
decoupled.

(3) Applications First we applied our algorithm in an ideal setup and compared
the obtained localization error with the theoretical minimal error (given by
the Cramér-Rao bounds). Second, we demonstrate the potential of our al-
gorithm on realistic data (we analyzed an averaged visual evoked potential
obtained from a healthy subject). We show that our algorithm may be poten-
tially fruitful in the field of optics where the generating model is often given
by Helmholtz’s equation (the test function ψan can be adapted to accommo-
date this generating model). Other possible but unexplored applications of
our method are crack detection [43, 51], basically any problem governed by
Helmholtz’s equation.

1.6 Outline of thesis

The goal of this work is to solve the inverse EEG problem. In this chapter, chap-
ter 1, we showed that the inverse EEG problem is an ill-posed problem because the
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measured EEG does not uniquely determine the underlying source distribution. To
render the problem well-posed we introduced an a priori on the source distribution;
i.e., we assumed that the source distribution can be written as a sum of dipoles,
which renders the problem well-posed. Then, we gave an overview of the already
existing methods to solve this well-posed inverse problem (e.g., LAURA, MUSIC,
etc).

In chapter 2, we consider a simplified setting; i.e., a 2D homogeneous setting. We
show that we can obtain measures, called “generalized measures”, of the unknown
source distribution knowing the generated boundary potential. This involves apply-
ing Green’s theorem in combination with a well-chosen analytic function, termed
an “analytic sensor”. Next, we adapt Prony’s method and derive an algorithm to
reconstruct the locations of the generating dipoles; i.e., we construct a filter that
relates the generalized measures to a polynomial whose roots are the locations of
the source distributions. On the other hand, the moments depend linearly on the
generalized samples and are hence deduced directly from those once the dipoles’
locations are known.

In chapter 3, we extend the framework shown in chapter 2 to a 3D setting.
We observe that the computation of these measures can readily be adopted to 3D.
Next, we show that applying the reconstruction algorithm described in chapter 2
yields orthographic projections of the dipolar sources. A priori, we do not know
which projections stem from the same dipole. We adapt “Tomasi and Kanade’s
rank principle” to establish the proper correspondence from which we can easily
reconstruct the full 3D information.

In chapter 4 we give a comprehensive overview of what has been developed
in chapters 2 and 3. Moreover, a flowchart is given of the reconstruction process
thus far. Next, we have a look at what loose ends need to be tied together to
obtain a functional reconstruction algorithm; e.g., we should be able to cope with
non-homogeneous conductor models.

In chapter 5 we extend our reconstruction algorithm to cope with non-homoge-
neous conductor models. This requires solving Poisson’s equation, which we show
is possible analytically if we assume that the conductivity varies radially. An often
used head model is the 3-sphere head model. In this case the conductivity not only
varies radially but is a piecewise constant. We explicitly construct analytic sensors
for such 3-sphere head models.

In chapter 6 we tie together the last loose ends. We assumed that we know the
potential in a continuous way on the boundary. In reality, we only have a finite
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number of boundary measurements. In order to compute the generalized measures
we need a continuous representation of the boundary potential. We develop an
approximation of the boundary potential using the boundary measurements. We
use spherical harmonics in combination with some regularization, which ensures a
good approximation. Since the reconstruction algorithm is a non-linear estimation
technique and the generalized samples are forcefully noisy (due to the approxima-
tion error) we have to compensate for the presence of noise. For this we adapt an
iterative denoising scheme known as Cadzow’s iterative denoising algorithm.

In chapter 7 we characterize our reconstruction algorithm in terms of perfor-
mance. First, we construct theoretical lower bounds on the localization error in the
presence of noise. Second, we study its behavior in the presence of noise by com-
paring the obtained localization errors to the theoretical smallest error. We show
to what extent the proposed framework can be spatially selective enabling us to
reconstruct the entire source distribution dipole per dipole. We show the feasibility
of our method in a real EEG setting by treating a visual evoked response potential.

Finally, in chapter 8, we conclude with a small wrap-up (e.g.,“What have we
solved?”, “Why is it worth considering our method?”), a discussion (“Is the inverse
EEG problem truly solved?” or on a more philosophical note“Occam’s razor versus
distributed models”) and an outlook (“Are there other applications out there?”).



Chapter 2

Analytic Sensing:
Homogeneous 2D Case

This chapter is based on the article “Analytic Sensing: Noniterative Retrieval of
Point Sources from Boundary Measurements, SIAM Journal on Scientific Comput-
ing, vol 31:(4) pp. 3179-3194, 2009.

2.1 Summary

Before considering the 3D setting of the EEG problem, we consider a homogeneous
2D setting in this chapter. In chapters 3 and 5 we extend our approach to a 3D
inhomogeneous setup.

We use Green’s divergence theorem to obtain test functions that yield a mea-
sure on the source distribution knowing only the generated boundary potential.
We identify a suitable class of analytic test functions that allow for a non-linear
estimation technique to reconstruct the locations and moments, in a non-iterative
way, from the computed measures. We demonstrate the effectiveness of the ob-
tained estimation technique by comparing the obtained reconstruction errors with
the theoretical smallest reconstruction errors.

17
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Figure 2.1: Figures 2.1(a) and 2.1(b) depict a homogeneous 2D conductor
model, i.e., a homogeneous unit circle and its corresponding conductivity
profile, σ(r). Moreover, we plotted 2 dipoles in the circle, the red dots rep-

resent the dipoles’ locations, xm = [xmym]
T

, and the blue arrows represent

the dipoles’ moments, pm = [pxmpym ]
T

.

2.2 Motivation

Our goal is to develop a method to reconstruct the generating dipole source distri-
bution ρ from the measured boundary potential V

∣∣
∂Ω

. We develop an analytical
technique that is able to reconstruct the location and moment parameters of the
underlying source distribution.

As a first step we construct measures, called generalized samples, of ρ knowing
only V

∣∣
∂Ω

. These measures should be independent of the nature of ρ; i.e., we
should be able to compute these generalized samples for all types of sources, not
just point sources. Second, these generalized samples should encode information on
the conductor profile and sources in such a way that it will allow for a non-iterative
retrieval of xm and pm. We will see that such generalized samples are obtained
by applying Green’s theorem on the boundary potential with a well-chosen test
function, ψ, which is called an analytic sensor.
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The construction of such analytic sensors requires solving Poisson’s differential
equation, divσ∇ψ = 0, which is non-trivial in the case of non-homogeneous con-
ductor models. In this chapter, we assume that σ = Constant and hence we only
consider homogeneous conductor models here (as depicted in figure 2.1). In such,
any Ω-analytic function yields such a generalized measure. We will opt for loga-
rithmic functions of z = x+ iy, in particular ψ = ln (z − a), since these allow for a
direct reconstruction algorithm.

2.3 Sensing Principle

We want to obtain (or rather construct) a measure on ρ knowing only the generated
boundary potential V

∣∣
∂Ω

. This measure should be independent from the nature of
the generating source. Then, we can try to reconstruct the generating source from
the constructed measures taking into account all the prior knowledge available, e.g.,
the parametric form of the ρ. The Sensing Principle shows us how to construct such
measures.

If we consider “test” functions ψ such that

div(σ∇ψ) = 0, within Ω, (2.1)

then we can sense the manifestation of any source distribution ρ in Ω. When σ
is constant in Ω, this reduces to the functions whose Laplacian vanishes in Ω, a
large subset of which are Ω-analytic functions (functions that are analytic in Ω).
The fundamental observation is that if V is known on the boundary ∂Ω, then we
can exactly calculate the scalar products 〈ψ, ρ〉 =

∫
Ω
ψ(x)ρ(x) d2x for such test

functions, as shown by the following theorem.

Theorem 1 (2D Sensing Principle). Let V be the quasi-static potential induced by
some source distribution, ρ, according to (1.1) and (1.2). Moreover, suppose that
we know V on the boundary ∂Ω. Then, if we choose ψ according to (2.1), the scalar
product 〈ψ, ρ〉 can be expressed as a line integral according to:

〈ψ, ρ〉 = −
∫

∂Ω

σV∇ψ · eΩ ds. (2.2)

The scalar products 〈ψ, ρ〉 can be seen as “generalized” samples of the unknown
distribution ρ.
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Proof. We have the following identity:

ψ div(σ∇V )− V div(σ∇ψ) = div
(
σψ∇V − σV∇ψ

)

If we choose ψ to be a test function that satisfies (2.1) then, by applying (1.1), this
identity becomes:

ψρ = div
(
σψ∇V − σV∇ψ

)
.

Integrating both sides over Ω and applying Green’s divergence theorem yields

〈ψ, ρ〉 =

∫

∂Ω

(σψ∇V − σV∇ψ) · eΩ ds.

The boundary condition (1.2) further simplifies the Left-Hand Side (LHS) to (2.2)
which proves the theorem.

Note that, equation (2.2), which we coined “2-D Sensing Principle”, is valid
for any source distribution, not just dipolar source distributions such as (1.3). It
is potentially fruitful to describe ρ through of a large collection of measurements
〈ψ, ρ〉. For instance, if we could compute these scalar products for any ψ ∈ D (Ω)
(the set of infinitely differentiable functions in Ω), then the generalized samples
〈ψ, ρ〉 would represent ρ completely and uniquely in the sense of distributions.

Unfortunately, the test functions are here restricted to those that satisfy
div(σ∇ψ) = 0. These functions form a much more constrained class that is unable
to characterize the full generality of source fields; an issue that is a direct conse-
quence of the ill-posedness of the inverse EEG problem. Note that, a priori, we
can choose any test function that satisfies (2.1). These test functions form the link
between the boundary measurements on ∂Ω and the generalized samples 〈ψ, ρ〉.

2.3.1 Homogeneous medium

In this chapter, we only consider in detail the case where σ is constant in Ω. Nev-
ertheless, it is possible to accommodate for varying σ as explained in chapter 5.
Such a homogenous 2D conductor model is depicted in figure 2.1.

Thanks to the homogeneity hypothesis, the set of test functions satisfying (2.1)
is made of Ω-harmonic functions, a large subset of which are functions that are
analytic in Ω, e.g., polynomials in z = x + iy, which were used [44, 9]. We will
opt for rational functions of z that do not have any poles in Ω and coin the term
“analytic sensor” for such functions and hence call our approach “analytic sensing”.
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Corollary 1. Let ψ be an analytic sensor. If we use the analytic formalism, then
we can compute the associated generalized sample, µ = 〈ψ, ρ〉, as follows:

µ = iσ

∫

∂Ω

V (x, y)ψ′ (z) dz, (2.3)

Proof. If ψ is an analytic function, i.e., a differentiable function of z = x+ iy, then
∇ψ = ψ′(z)[1, i]T. Moreover, eΩ ds = [ dy,− dx]T which implies that ∇ψ · eΩ ds =
−iψ′(z) dz. By application of Theorem 2.2 this proves (2.3).

2.3.2 Choice of the test-functions

Now that the problem is well-formulated and well-posed, i.e., we want to estimate
the sources locations and moments from a set of such generalized measures 〈ψ, ρ〉,
we need to choose the sensors in a way that the corresponding generalized samples
allow us to determine algorithmically the positions and the intensities of the sources.
For that purpose, we choose the following family of analytic test functions:

ψan(z) = ln (z − an), an /∈ Ω. (2.4)

Moreover, we will further restrict our choice of an to the form an = αne
inθ, where

n ∈ {0, · · · , N − 1}.for some N > 2M and θ ∈ ]0, 2π[. The radius |αn| is chosen
such that αn /∈ Ω. Note that, since the radii may vary we can choose an such that
it follows the ∂Ω, this setup is depicted in the figure 2.2. Note that the angle θ is
completely arbitrary; in particular, we do not need Nθ to be equal to 2π. Actually,
Nθ could even be close to 0 meaning that the poles of the analytic sensors would
all be located in the neighborhood of α0.

Another very interesting characteristic of these analytic sensors is that they are
“localized”, and this all the more as their poles are closer to ∂Ω, as depicted in
figure 2.3. This means that it is conceivable to compute a good approximation of
the integral in (2.3) only with values of the potential that are close to the pole, a,
of the sensor, ψa.

2.3.3 A note on missing data

In practice, V is not continuously known on the boundary ∂Ω; i.e., we mea-
sure V (xn), n ∈ {0, · · · , N − 1} where xn ∈ ∂Ω. Hence, we need an interpola-
tion/approximation method to reconstruct the continuous-domain representation
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a0

a1

aN−1

θ
(N − 1)θ

|α0|

|α
N−1 |

Ω

Figure 2.2: The poles, a0 · · · aN−1, and their placement outside of Ω. For
each pole there is a corresponding analytic sensor ψan(z) = ln (z − an).

of V
∣∣
∂Ω

. In order to give an insight of what actually happens, we consider the
simplified case where ∂Ω is a circle with radius 1 and where V is measured at the
N uniform angles θn = 2nπ/N for n = {0, · · · , N − 1}. With limited ambiguity,
we denote by V (θ) the measure of the electric potential at angle θ and by Ṽ (θ)
its interpolated version. More specifically, we assume N = 2K + 1 to be odd and
develop V and Ṽ in Fourier series:

V (θ) =
∑

m∈Z
cme

imθ, and Ṽ (θ) =

K∑

m=−K
c̃me

imθ. (2.5)
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Figure 2.3: The magnitude, ||∇ψan ||, of the gradient of such an analytic
sensor for the singularities a = 1.1 and a = 1.5 on the unit disc S. We see
that ψan is well-localized around an and more so if an is close to S.

The coefficients c̃m are obtained by solving a linear system of equations that ex-
presses the constraints of the measurements Ṽ (θn) = V (θn), n = {0, · · · , N − 1}:

V (θn) =

K∑

m=−K
c̃me

imθn . (2.6)

Thanks to our specific choices, these coefficients can be expressed directly using a
Discrete Fourier Transform (DFT) of the measurements

c̃m =
1

N

K∑

n=−K
V (θn)e−imθn =

∑

n∈Z
cm+Nn, (2.7)
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by replacing V (θn) with its Fourier expansion (2.5). The last identity implies that

K∑

m=−K
|c̃m − cm| ≤

∑

|m|>K
|cm| (2.8)

and in particular |Ṽ (θ)−V (θ)| ≤ 2
∑
|m|>K |cm|: not so surprisingly, the interpola-

tion error is bounded by (twice) the `1 norm of the “truncated” Fourier coefficients.

We now consider the generalized measures µn = 〈ψan , ρ〉 with N analytic sensors
located at an = a0e

iθn . Using the Fourier representation (2.5) of V (θ) in (2.3), we
have that

µn = iσ

∫

∂Ω

V (θ)ψ′an (z) dz

= iσ
∑

m∈Z
cm

∫

Ω

ψ′an (z) eimθdz

= iσ
∑

m∈Z
c−m

∫

Ω

ψ′an (z)

zm
dz.

(2.9)

Knowing that ψan is analytic in Ω and using Cauchy’s theorem we can deduce:

µn = −2πσ

∞∑

m=1

c−m
ψ

(m)
an (0)

(m− 1)!

= 2πσ

∞∑

m=1

mc−m
amn

.

(2.10)

and finally

eiθnµn =

−1∑

m=−∞
−2πσ

mcm

a−m0

eimθn . (2.11)

Similarly, if we replace V (θ) by its interpolation Ṽ (θ) in (2.3) and denote by µ̃n
the approximated generalized measure, we get

eiθn µ̃n =

−1∑

m=−K
−2πσ

mc̃m

a−m0

eimθn . (2.12)
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First, we can bound the error between the actual, computable, generalized measures
µ̃n and the inaccessible ones µn:

|µ̃n − µn| ≤ max
m≥1

2πσm

|a0|m

( −1∑

m=−K
|c̃m − cm|+

∑

m<−K
|cm|

)

︸ ︷︷ ︸
≤2

∑
|m|>K |cm|

. (2.13)

The computation error on the generalized measures is thus directly controlled by
the `1 norm of the out-of-band Fourier coefficients, which is typically small when
the function V (θ) is smooth.

Second, by bringing together (2.12) and (2.6), we conclude that the discrete
sequence eiθn µ̃n is a filtered version of V (θn), because the DFT coefficients of each
sequence are equal, up to a multiplication by

Ha0 (m) =

{
−2πσma−m0 for −K ≤ m < 0,
0 for m ≥ 0 or m < −K. (2.14)

The magnitude response |Han(m)| is shown in Fig. 2.4 for different values of |a0|.
It is maximum for m ≈ −1/ ln |a0|. The filtering appears as a combination of a
(flipped) Hilbert transform and band-pass filtering. The bandwidth of the filter in-
creases as the pole’s position approaches the boundary. This behavior indicates that
|a0| should be chosen with respect to the noise characteristics of the measurements.

2.3.4 A note on non-homogeneous medium

In the case of a non-homogeneous medium, we only need to assume that σ is
constant in the domain, Ω0,where the sources lie. In that case, we may still choose
ψ|Ω0 to be of the form ln (z − a). Then, ψ can be propagated into Ω\Ω0 in such a
way as to satisfy div(σ∇ψ) = 0 using numerical techniques such as finite element
methods or boundary element methods (for domains with piecewise constant σ).
The propagation of the test functions up to the boundary ∂Ω implicitly encodes the
information of the forward model in more complex configurations. Consequently,
the generalized samples also take into account the presence of the non-homogeneous
medium. The localization method as presented in the following section, however,
remains identical. Within the context of EEG, one well-known head model is the
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Figure 2.4: Magnitude of the frequency response of Ha0
(m) that is the

equivalent filter that links the boundary measures to the generalized mea-
sures. Different magnitudes of the pole a0 are shown.

multi-layer sphere [52]. The conductivity is homogeneous in each spherical layer
and the dipolar sources are assumed to be in the “gray matter” compartment. In
chapter 5 we show explicitly (and analytically) how to adapt the analytic sensors
to cope with such a multi-layer spherical conductor model.

2.4 The annihilating principle solution to the re-
construction problem

From now on we shall identify xm with the complex plane, hence xm ⇔ zm =
xm + iym. Now, we define the polynomial, R(X), whose roots are the positions of
the pointwise sources:

R (X) =

M∏

m=1

(X − zm) =

M∑

k=0

rkX
k. (2.15)
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Using (2.4) and the fact that an = αne
inθ, the following relationship exists between

R and the generalized samples µn = 〈ψan , ρ〉:

µn =

M∑

m=1

cmψ
′
an(zm) =

∑M−1
m=0 c

′
me

imnθ

R (an)
, (2.16)

where c′m are complex-valued coefficients that do not depend on n nor θ. We now
see that the generalized samples satisfy an “annihilating” equation.

Lemma 1. Consider the FIR digital filter, h = {hk}k∈Z, which has its zeros at
eikθ for k = 0, 1, . . . ,M − 1. It is characterized by the transfer function

H (z) =
∑

k∈Z
hkz
−k =

M−1∏

k=0

(
1− eikθz−1

)
.

Then, the filter h annihilates the sequence u = {un}n=0,...,N−1 whose coefficients
are defined by un = R (an)µn; i.e.,

(h ∗ u)n = 0, for all n ∈ {M, · · · , N − 1}. (2.17)

Proof. Given an integer m in {0,M − 1}, consider the discrete convolution of the
sequence {eimnθ}n∈{0,N−1} with h. For an output index n ∈ {M,N − 1}, its nth

element is given by the summation:

M∑

k=0

hke
im(n−k)θ = eimnθH

(
eimθ

)
= 0.

On the other hand, by (2.16) we have un =
∑M−1
m=0 c

′
me

imnθ for n ∈ {0, N − 1}. We
can thus write, using the linearity of the discrete convolution, that

M∑

k=0

hkun−k = 0

for any output index n ∈ {M,N − 1}, which proves our claim.
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Theorem 2. The coefficients rk of the polynomial R(X) defined by (2.15) satisfy
the following linear system of equations:

M∑

k=0

An,krk = 0, for n ∈ {M,N − 1}

where An,k =

N−1∑

n′=0

hn−n′ akn′µn′

(2.18)

In matrix form, this system can be expressed as AR = 0, if we define the matrix
A by [A]n,k = An,k for n ∈ {M,N − 1} and k ∈ {0,M}, and the vector R =
[r0, r1, . . . , rM ]T. Note that we have rM = 1.

Proof. By combining Lemma 1 and (2.15), we deduce the following:

0 = {h ∗ u}n =

N−1∑

n′=0

hn−n′R (an′)µn′

=

N−1∑

n′=0

hn−n′

M∑

k=0

rka
k
n′µn′

=

M∑

k=0

rk

N−1∑

n′=0

hn−n′akn′µn′

︸ ︷︷ ︸
An,k

for all n ∈ {M,N − 1}, which proves the theorem.

Thus, combining Corollary 2.3 with Thm. 2 yields a non-iterative algorithm
for localizing the dipolar sources given the generated boundary potential. That
is, we first obtain the generalized measurements µn = 〈ψan , ρ〉 from the observed
boundary measurements, V

∣∣
∂Ω

; then, by computing the polynomial, R(X), accord-
ing to (2.18) we are able to find the positions zm by taking its roots. Once the
positions of the point sources are known, we need to determine their moments,
pm. The generalized samples µn depend linearly on the moments pm as is clear
from (2.16). Hence, determining the moments boils down to solving the following
linear system of equations:

M∑

m=1

pmx + jpmy
zm − an

= µn, n ∈ {0, N − 1}.
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Figure 2.5 schematizes the complete reconstruction algorithm.

Analytic
sensor

V
∣∣
∂Ω

...

〈ψa0 , ρ〉

〈
ψaN−1

, ρ
〉

Annihilating 
filter RootsR (X)

· · ·

Intensities

· · ·

〈ψa0 , ρ〉
...〈

ψaN−1
, ρ

〉

(x1,p1)(xM ,pM )

x1 xM

Figure 2.5: A flow-chart of the proposed algorithm to determine the
positions of the point sources and their corresponding intensities.

The linear system in (2.18) with the additional constraint rM = 1 make up
N −M equations in total. On the other hand, there are M unknown polynomial
coefficients rk, k ∈ {0,M − 1}. Consequently, we do not need more than N = 2M
generalized measures µn to retrieve the coefficients rk. Note that when considering
the complete problem, the amplitudes cm and source positions zm make precisely
2M (complex) unknowns for 2M (complex) nonlinear equations (2.16). For the
noiseless case and for M distinct source positions, it may be argued that rank(A) =
M in general and therefore we find exactly and uniquely the M positions as the
roots of the polynomial R(X).



30 Analytic Sensing: Homogeneous 2D Case

2.4.1 Implementation notes

The structure of A can be simplified by performing the following factorization:

A = Hµa, (2.19)

where, H is an (N −M) ×N Toeplitz matrix representing the discrete filter h, µ
is a diagonal N ×N matrix with µn, for n ∈ {0, N − 1}, on the diagonal and a is a
N × (M + 1) Vandermonde matrix. More explicitly, the matrices H, µ and a read
as follows:

H =




hM · · · h0 0 · · · 0
0 hM · · · h0 · · · 0
...

. . .
. . . · · · . . .

...
0 · · · 0 hM · · · h0


 ,

µ =



µ0 0

. . .

0 µN−1




and

a =



a0

0 · · · aM0
...

. . .
...

a0
N−1 · · · aMN−1


 .

Since H is a convolution matrix, it is in general not unitary, even if it usually
has maximal rank, and this may be detrimental to the computation of the poly-
nomial R(X) when the generalized measurements are not known with high enough
accuracy. However, we observe that if we perform a singular value decomposition
of H according to H = USH0, where U is an (N −M)× (N −M) unitary matrix,
S is an (N −M) × (N −M) diagonal matrix and H0 is an (N −M) ×N matrix

satisfying H0H
†
0 = Id then

AR = HµaR = 0 ⇔ A0R = H0µaR = 0 (2.20)

whenever H has maximal rank; i.e., whenever S is non-singular. The Right-Hand
Side (RHS) linear system of equations is actually much better conditioned and this
is the one that we will consider for practical implementations.
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2.4.2 Noise issues

The algorithm of the previous section assumes perfect data, but a practical situation
has to cope with noise that inevitably corrupts measured data. Let us assume, for
now, that the noise is an additive Gaussian noise. To compensate for the influence
of noise, we made some minor adjustments to the method described above.

In the presence of noise, the generalized measures are distorted in such a way
that the decomposition of A0, as stated ideally in (2.20), becomes

A0 = H0 (µ+ b) a,

where b is a diagonal matrix representing the additive noise that we assume to have
zero mean. As a consequence, on the average we have the following:

E{||A0R||2} = ||H0µaR||2 + E{||H0baR||2}. (2.21)

Given that the localization parameters are obtained by finding any non-trivial vec-
tor R of length M + 1, such that H0µaR = 0, we see from the above expression
that, in order to avoid a systematic bias due to the noise, it is advisable to solve
the following minimization problem:

min
R∈CM+1

||A0R||2 subject to E{||H0baR||2} = Constant. (2.22)

This way, we actually minimize an expression that is close to ||H0µaR‖2, which
would be the one that is set to zero in the noiseless annihilation problem. In order to
perform the optimization (2.22), we need to set a hypothesis on the covariance ma-
trix of the noise. If we assume this covariance to be σ2Id (white noise hypothesis),
we have

E{||H0baR||2} = E{R†a†b†H†0H0baR}
= σ2R†a†diag{H†0H0}aR,

(2.23)

The variance σ2 is completely determined by the Signal-to-Noise Ratio (SNR) of
the generalized measures. Of course, in the absence of noise, (2.22) yields the exact
position parameters.

2.4.3 Accuracy of the retrieval

To evaluate the performance of the proposed algorithm in the presence of noise, we
compute the Cramér-Rao lower bounds (CRLBs) for the setting with the additive
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white Gaussian noise hypothesis [53]. Given noisy generalized measures, these
bounds establish the minimal covariance matrix of any unbiased estimate of the
position and intensity parameters.

The signal model describing the noisy generalized samples, g (x; an), is the fol-
lowing:

g (θ; an) = f (θ; an) + vn + iwn, (2.24)

where we have defined

f (θ; an) = µn and θ = [Re(z), Im(z),Re(c), Im(c)]
T

with z = [z1, z2, . . . , zM ] and c = [c1, c2, . . . , cM ] .

Moreover, vn and wn are independent normally distributed random variables with
expected value 0 and variance σ2.

In order to compute these lower bounds, we determine the Fisher information
matrix, J = [Jk,l]k,l∈{1···2M}, corresponding to (2.24), which reads as follows:

J =
1

σ2

N−1∑

n=0

[
∇θRe(f (θ; an))
∇θIm(f (θ; an))

] [
∇θRe(f (θ; an))
∇θIm(f (θ; an))

]T

(2.25)

The Cramér-Rao bounds are the diagonal elements of J−1.

2.5 Results

2.5.1 Simulation

We performed simulations using radial unit dipoles. The localization is the most
important aspect in many applications. Hence, when simulating, we only consider
the estimation of the position parameters.

We compared the obtained localization errors with the theoretical lower
bounds that we computed using (2.25) in function of the signal-to-noise ratio

(SNR=10 log
∑
n µ

2
n∑

n |vn+iwn|2 ). Figures 2.6, 2.7(a), 2.7(b) depict the setting, sam-

ple estimations and corresponding lower bounds.
We see that up to a certain SNR (around 15 dB) the algorithm performs well;i.e.,

it reaches the theoretical Cramér-Rao lower bound. We can thus say that the
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Figure 2.6: The source configuration with 2 point sources located at
(x1, y1) = (0.7,−0.3) and (x2, y2) = (−0.5, 0.6). Moreover, the singularities
of the analytic sensors, located at 1.1ein

π
2 for n ∈ {0 · · · 3}, are indicated

as well.

Cramér-Rao bounds provide a good estimation of the performance of the localiza-
tion. Further increasing the amount of noise increases the bound and the experi-
mental estimation errors.

The number of analytic sensors is another parameter that influences the theoret-
ical and the experimental errors. Figures 2.8(a) and 2.8(b) show the lower bounds
for estimating xi and yi using 50 analytic sensors. Compared to Figs. 2.7(a) and
2.7(b), we note that the bounds are narrower and that the sample estimations are
closer to the true values of the estimated parameters for lower SNRs.

Another factor that influences the theoretical minimal and experimental errors
is the position of the dipole. Figures 2.9(a) and 2.9(b) show the sum of the Cramér-
Rao bounds, plotted as a grey-scale intensity in the resulting image, when shifting
a dipole through a unit-disk using a squared grid.
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Figure 2.7: Figures 2.7(a) and 2.7(b) depict the lower bounds of any
unbiased estimator (solid line) and some sample estimations (grey circles)
obtained through our technique for respectively xi and yi with i ∈ {1, 2}.
Moreover, we used the following 4 analytic sensors: ψan = ln

(
z − 1.1ei

π
2 n
)
,

with n ∈ {0 . . . 3}.

Figure 2.9(a) clearly depicts the local influence of the analytic sensors. That is,
the closer the dipole is located to a pole, an, the smaller the localization errors are.
Thus, the analytic sensors properly sense the dipole’s influence when the source and
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Figure 2.8: Figures 2.8(a) and 2.8(b) depict the lower bounds of any
unbiased estimator (solid line) and some sample estimations (grey circles)
obtained through our technique for respectively xi and yi with i ∈ {1, 2}
using the following 50 analytic sensors: ψan = ln

(
z − 1.1ei

π
25n
)
, with n ∈

{0 · · · 49}.

sink are close to any of the poles. Hence, when the dipole approaches the centre of
the disk, the localization errors increase, as depicted in the Figs. 2.9(a) and 2.9(b).
Moreover, when using more analytic sensors the estimation error decreases. This



36 Analytic Sensing: Homogeneous 2D Case

(a) (b)

Figure 2.9: Figures 2.9(a) and 2.9(b) depict the sum of the minimal
estimation errors, indicated by the grey-scale intensity, when shifting a
eccentric unit dipole through a unit-disk using a squared grid with step
0.01. The noise is Gaussian with expected value 0 and variance 0.06. The
analytic sensors are respectively ψan = ln

(
z − 1.1 · einπ4

)
with n ∈ {0 · · · 7}

and ψ′an = ln
(
z − 1.1 · ein π

16

)
with n ∈ {0 · · · 31}.

is indicated by the fact that figure 2.9(b) is darker than figure 2.9(a).



Chapter 3

Extension to 3D

3.1 Summary

In the previous chapter we showed how to reconstruct the source ρ from the gen-
erated boundary potential in 2D. Here, we extend these techniques to 3D. In such,
we obtain a direct algorithm to recover the generating source distribution from its
induced boundary potential in a 3D setting.

We observe that the reconstruction technique obtained in the chapter 2 yields
orthographic projections of the generating source ρ. We introduce a coordinate
transform to obtain different projections of ρ on pre-defined planes. These pro-
jections are not properly partitioned which hinders the retrieval of the full 3D
information. Hence, we devise a partitioning algorithm which is based on “Tomasi
and Kanade’s rank principle”. Once the projections are properly partitioned we
retrieve the 3D locations and moments of ρ in a classical way.

3.2 Motivation

The algorithm developed in chapter 2 uses an FRI framework which is a priori
2D. In such we cannot reconstruct the full 3D source distribution. However, most
real-life problems that could benefit from analytic sensing are 3D problems, e.g.,
EEG or non-destructive testing applications such as crack detection [43, 51].

37
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In this chapter we propose an extension of the reconstruction process described
in chapter 2 to a 3D setting. We will show that we retrieve the orthographic
projection of ρ. Hence, we introduce coordinate transforms which yield different
projections of ρ from which the full 3D source distribution can be reconstructed.

The 2D projections of the locations xm are the roots of a polynomial as described
in chapter 2. Thus, the projections are not properly ordered. For example, if the
first root of R represents the projection of x1 on the XY-plane then the first root of
that same reconstruction process applied to the XZ-plane may be the projection of
xj for j 6= 1 and M > 1. The reconstruction algorithm described in [47] suffers from
a similar problem. We develop a partitioning strategy based on Tomasi-Kanade’s
rank principle [54] that solves this problem and from which the full 3D source
distribution can be reconstructed.

3.3 Sensing Principle in 3D

Let us start by writing out the generalized samples (2.2):

〈ψ, ρ〉 = −
∫

∂Ω

σV∇ψ · eΩ ds. (3.1)

In a 3D setting, Ω represents a volume and ∂Ω the bounding surface. The com-
putation of the generalized samples remain formally the same in a 3D setting, i.e.,
the RHS of (3.1) is a surface integral and not a line integral as stated in chapter 2.
Figures 3.1(a) and 3.1(b) depict ||∇ ln (z − a) || for a = 1.01 and a = 1.5 on the unit
sphere. We see that ||∇ ln (z − a) || is “well-localized” around an, which suggests
that it is conceivable to compute an approximation of the integral 3.1 with only
potential measures that are close to an.

3.4 Obtaining projections of the source distribu-
tion

Writing out 〈ψan , ρ〉 analytically yields

〈ψan , ρ〉 =

M∑

m=1

pxm + ipym
xm + iym − an

.
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(a) (b)

Figure 3.1: Figure 3.1(a) and 3.1(b) depict ||∇ ln (x+ iy − a) || on the
unit sphere S for a = 1.05 and a = 1.2. Red indicates a high value of
||∇ ln (x+ iy − a) || whereas blue indicates a relative small value.

A set of such generalized samples allows for the retrieval of
{(xm, ym, pym , pym)}m=1···M as described in chapter 2. We observe that,
{(xm, ym, pym , pxm)}m=1···M characterizes the projection of ρ on the XY-plane. If
we could obtain a projection of ρ on a different plane, say the XZ-plane, then we
could fancy recovering the full 3D source distribution.

Consider the following coordinate transform:


x′

y′

z′


 = R



x
y
z


 , (3.2)

with R some rotation matrix. If we apply the Sensing Principle with the proposed
coordinate transform, then we obtain the generalized samples

〈ψan , ρ〉 =

M∑

m=1

p′xm + ip′ym
x′m + iy′m − an

, (3.3)

with [
p′xm
p′ym

]
=

[
1 0 0
0 1 0

]
Rpm,
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and [
x′m
y′m

]
=

[
1 0 0
0 1 0

]
Rxm.

Applying the reconstruction algorithm proposed in chapter 2 on the generalized
samples (3.3) yields {

(
x′m, y

′
m, p

′
xm , p

′
ym

)
}m=1···M which represents a projection of ρ

on a plane specified by the rotation matrix R. Figure 3.2 depicts this schematically.
For example, if

R =




1 0 0
0 0 1
0 −1 0


 ,

then {
(
x′m, y

′
m, p

′
xm , p

′
ym

)
}m=1···M ⇔ {(xm, zm, pxm , pzm)}m=1···M is a projection of

ρ on the XZ-plane. Using multiple rotation matrices Rj , j = 1 · · ·P , in combination
with the Sensing Principle and the proposed 2D reconstruction algorithm yields P
projections of the M generating dipoles on different planes.

3.5 Partitioning problem

Consider a setting with 2 generating dipoles, ρ =
∑2
m=1 pm · ∇δ (x− xm) and 3

rotation matrices, {Rj}j=1···3 that lead to 3 projection planes. Moreover, we are
interested in the reconstruction of the location parameters xm only (so we ignore
the projections of the moments). In order to retrieve the 3D locations, we apply
the reconstruction algorithm, depicted in figure 3.2 for each rotation matrix Rj .
This yields the projections:

Rotation matrix Obtained projections

R(1)
(
x

(1)
1 , y

(1)
1

)
and

(
x

(1)
2 , y

(1)
2

)

R(2)
(
x

(2)
2 , y

(2)
2

)
and

(
x

(2)
1 , y

(2)
1

)

R(3)
(
x

(3)
2 , y

(3)
2

)
and

(
x

(3)
1 , y

(3)
1

)
. (3.4)

We observe that we obtained first the projection of x1 and then the projection x2

for R(1). However, for R(2) and R(3), we obtained first the projection of x2 and
then the projection of x1. Hence, if we want to reconstruct the full 3D source
information from the obtained projections, then we need an algorithm that decides
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R(1)

R
(2)

XY-plane

YZ-pl
an

e

x
(1)
1x

(1)
2

x
(2)
1

x
(2)
2

p
(2)
2

p
(2)
1

p
(1)
1

p
(1)
2

Figure 3.2: The orthographic projections (the projection lines are or-
thogonal to the planes on which the dipoles are projected) of 2 dipoles, x1

and p1 depicted by a blue dot and blue arrow and x2 and p2 indicated
by a red dot and red arrow, on the XY-plane, specified by the rotation
matrix R(1) and the YZ-plane, specified by R(2). The obtained projec-

tions are
[
x

(1)
1 ,p

(1)
1

]
and

[
x

(1)
2 ,p

(1)
2

]
on the XY-plane and

[
x

(2)
1 ,p

(2)
1

]
and

[
x

(2)
2 ,p

(2)
2

]
on the YZ-plane.

which projections belong to which dipole. Note that, if the projections are exact,
then it is easy to decide which projections stem from the same dipole since R(j) is
known. However, in general, the projections can be distorted due to the influence of
noise; e.g., the measurement noise at the electrode sites, which implies the need for
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an algorithm to establish the correspondence between the projections of different
R(j).

Let us start by writing the obtained projections in a matrix L, called the ob-
servation matrix. Ideally L reads as follows:

L =




x
(1)
1 y

(1)
1 · · · x

(P )
1 y

(P )
1

x
(1)
2 y

(1)
2 · · · x

(P )
2 y

(P )
2

...

x
(1)
M y

(1)
M · · · x

(P )
M y

(P )
M




. (3.5)

Theorem 3. The rank of the observation matrix L, as defined in (3.5), is at most
3.

Proof. Consider the rotation matrix R(j). We have that:



x

(j)
m

y
(j)
m

z
(j)
m


 = R(j)xm,

for j = 1 · · ·P and m = 1 · · ·M . Moreover, we define x(l),y(l), z(l) as follows:

x(l) =
[
x

(l)
1 x

(l)
2 · · ·x

(l)
M

]T

y(l) =
[
y

(l)
1 y

(l)
2 · · · y

(l)
M

]T

z(l) =
[
z

(l)
1 z

(l)
2 · · · z

(l)
M

]T
.

Since Rl is a rotation matrix, and hence unitary, we have that

A = x(l)x(l)T + y(l)y(l)T + z(l)z(l)T (3.6)

is invariant for l ∈ {1 · · ·P}.Moreover, for any non-zero vector u, Rank
(
uuT

)
= 1

holds and hence we have that

Rank (A) ≤ 3. (3.7)
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By definition equation (3.7) states that any column of A can be written as a linear
combination of 3 vectors u1,u2 and u3. Equation (3.6) states that the columns of
A are linear combinations of x(l),y(l) and z(l) for l ∈ {1 · · ·P}. Hence, x(l),y(l)

and z(l) can be written as linear combinations of u1,u2 and u3 for any l ∈ {1 · · ·P}
and hence we have that

Rank (L) ≤ 3,

with L =
[
x(1)y(1) · · ·x(P )y(P )

]
, which concludes this proof.

This important property, theorem 3, is also known in computer vision as Tomasi
and Kanade’s rank principle [54]. However, if ρ consists of few dipoles, M < 3,
then we clearly have that Rank (L) < 3. To guarantee that Rank (L) = 3, we add
3 distinct self-chosen points, called reference points, r, s and t:

r = [rx ry rz]
T

s = [sx sy sz]
T

t = [tx ty tz]
T

,

which yields the observation matrix

L =




r
(1)
x r

(1)
y · · · r

(P )
x r

(P )
y

s
(1)
x s

(1)
y · · · s

(P )
x s

(P )
y

t
(1)
x t

(1)
y · · · t

(P )
x t

(P )
y

x
(1)
1 y

(1)
1 · · · x

(P )
1 y

(P )
1

x
(1)
2 y

(1)
2 · · · x

(P )
2 y

(P )
2

...

x
(1)
M y

(1)
M · · · x

(P )
M y

(P )
M




(3.8)

with Rank (L) = 3.
Let us write the observation matrix, L′, that corresponds to projections obtained

in (3.4):

L′ =




r
(1)
x r

(1)
y r

(2)
x r

(2)
y r

(3)
x r

(3)
y

s
(1)
x s

(1)
y s

(2)
x s

(2)
y s

(3)
x s

(3)
y

t
(1)
x t

(1)
y t

(2)
x t

(2)
y t

(3)
x t

(3)
y

x
(1)
1 y

(1)
1 x

(2)
2 y

(2)
2 x

(3))
2 y

(3)
2

x
(1)
2 y

(1)
2 x

(2)
1 y

(2)
1 x

(3))
1 y

(3)
1



.
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This matrix is of full rank, Rank (L′) = 5, since, e.g.,
[
(l′)4,1 (l′)4,2

]
does not

correspond to the projection of x2. Swapping (l′)4,1 and (l′)4,2 with (l′)5,1 and
(l′)5,2 re-establishes the proper correspondence between the obtained projections
and as a consequence the corresponding observation matrix has rank 3.

Generally speaking, if we do not have the proper correspondence between the
obtained projections, then the observation matrix L′ has full rank, Rank (L′) =
min (3 +M, 2P ). A brute force approach to establishing the correspondence be-
tween the projections consists of permuting the elements in a column until the
resulting observation matrix has rank 3. The first 3 lines remain unaltered since
the correspondence between the projections of the reference points is known since
we chose them ourselves. The permutation that yields L such that Rank (L) = 3
yields the correct correspondence between the obtained projections. Note, that the
number of possible observation matrices, O, grows extremely rapidly in M and P ,
i.e., O = (M !)

P−1
.

3.5.1 Influence of noise

In reality, the projections x
(i)
m are subject to noise, i.e., instead of x

(i)
m we obtain

x̃
(i)
m = x

(i)
m + ε and hence the ideal realistic observation matrix L̃ is

L̃ =




r
(1)
x r

(1)
y · · · r

(P )
x r

(P )
y

s
(1)
x s

(1)
y · · · s

(P )
x s

(P )
y

t
(1)
x t

(1)
y · · · t

(P )
x t

(P )
y

x̃
(1)
1 ỹ

(1)
1 · · · x̃

(P )
1 ỹ

(P )
1

x̃
(1)
2 ỹ

(1)
2 · · · x̃

(P )
2 ỹ

(P )
2

...

x̃
(1)
M ỹ

(1)
M · · · x̃

(P )
M ỹ

(P )
M




.

Due to the noise, L̃ has full rank. However, for any possible observation matrix
L̃′ we have that σ̃′4 > σ̃4 with σ̃′4 and σ̃4 the 4th singular values of L̃′ and L̃.
As a consequence, establishing the correspondence between the obtained distorted
projections boils down to finding that observation matrix L̃′ which has the smallest
σ̃′4,4.
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3.6 Recovering the full 3D information

Assume that we know the proper correspondence between the obtained projections;
if we do not know the proper correspondence then we apply the algorithm described
above to obtain the observation matrix

L =

[
v

(1)
x v

(1)
y · · · v

(P )
x v

(P )
y

x(1) y(1) · · · x(P ) y(P )

]
, (3.9)

where v
(l)
x =

[
r

(l)
x s

(l)
x t

(l)
x

]T
and v

(l)
y =

[
r

(l)
y s

(l)
y t

(l)
y

]T
. This is the same matrix as

in (3.8) but with a more concise notation. The singular value decomposition of L
can be written as

L = USVT

= [U′ U0]

[
S′

0

]
VT . (3.10)

Since Rank (L) = 3, L has only 3 non-zero singular values which are grouped in the
block S′. So U0 are the left singular vectors corresponding to the singular values
σi = 0 of L. In such we have that

UT
0 L = 0. (3.11)

Let us write down U0 as a block matrix where the first 3 lines are grouped in u0

and the remaining M lines in u′0:

U0 =

[
u0

u′0

]
, (3.12)

If we use the expressions (3.9) for L and (3.12) for u0 in (3.11), then we obtain

[
uT0 v

(1)
x + u′0x

(1) uT0 v
(1)
y + u′0y

(1) · · · uT0 v
(P )
y + u′0y

(P )
]

= 0,

from which

x(l) = − (u′0)
−1
(
uT0 v

(l)
x

)

y(l) = − (u′0)
−1
(
uT0 v

(l)
y

) .
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Furthermore, because of the invariance (3.6), we have that

x = [rx sx tx x1 · · · xM ]
T

y = [ry sy ty y1 · · · yM ]
T

z = [rz sz tz z1 · · · zM ]
T

,

belong to the same space spanned by the columns of L. As a consequence, when
adding x,y and z as columns to L the matrix U in the singular value decomposi-
tion (3.10) remains the same and as a consequence we have that

[x1 · · · xM ]
T

= − (u′0)
−1
(
uT0 [rx sx tx]

T
)

[y1 · · · yM ]
T

= − (u′0)
−1
(
uT0 [ry sy ty]

T
)

[z1 · · · zM ]
T

= − (u′0)
−1
(
uT0 [rz sz tz]

T
)
,

which define the full 3D locations xm. Note that theoretically only 2 projections of
xm suffice to reconstruct the full 3D source distribution. In the presence of noise
more projections of xm allow for a more “proper” estimation of U.

Exactly the same reasoning can be adopted to obtain the dipoles’ moments pm.
However, the generated boundary potential depends linearly on the moments (a
direct consequence of the governing equation 1.1). Hence, if we know the dipoles’
locations then we can infer the dipoles’ moments directly from the measurements
by solving a linear system of equations.

3.6.1 Alternative analytic sensor for 3D reconstruction

In [43] it has been noted that if ψ is a valid test function, in their case a polynomial
of x+ iy, then the test function zψ is a good candidate to reconstruct 3D sources.
In our case ψ is the analytic sensor ln (x+ iy − a) and since ψ′a = z ln (x+ iy − a)
is a valid analytic sensor as well it might be fruitful to attempt a 3D reconstruction.
Indeed, we have

µ′n = < ψ′a, ρ >

=
∑M
m=1

(pxm+ipym )zm+ln(xm+iym−an)pzm
xm+iym−an

. (3.13)
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Since we can obtain xm and ym (and pxm and pym) by the method explained
above, we can reconstruct zm and pzm by solving (3.13), which is a linear system
of equations in the unknown components zm and pzm for m = 1 · · ·M . However,
|∇ψ′a| is not localized around a and hence, the computation of µ′a according to (2.2)
might be imprecise; especially in applications where only a finite set of measures is
taken on the boundary ∂Ω (as is the case in EEG).

3.6.2 Comparison with the state-of-the-art

We describe briefly how the method developed in [47] handles 3D settings. This
method uses meromorphic approximations to deduce the generating sources’ lo-
cations. A meromorphic function is intrinsically 2D (it is defined in the complex
plane). To extend this method to 3D the method is applied iteratively on the inter-
sections of Ω with parallel planes at different z-coordinates. At each iteration only
a 2D boundary is considered, as depicted in figure 3.3, so the full 3D configuration
of the measures is not exploited. The source projections with highest eccentricity
in the plane determine the z-components.

∂S1

∂S2

∂Ω

Figure 3.3: A spherical domain with boundary ∂Ω and three generating
dipoles, depicted by the 3 arrows. The green dots on the surface represent
the measure sites. The reconstruction method described in [47] uses 2D
boundaries such as ∂S1 and ∂S2 to retrieve ρ.
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Chapter 4

Intermediate Recapitulation
and Outlook

4.1 Recapitulation

The inverse EEG problem, P,tries to reconstruct the source distribution, ρ, respon-
sible for the measured potential differences, Vi. A set of electrodes are placed on
the scalp that measure the potential field generated by ρ. Unfortunately, there is
no unique solution to P; which is why P is ill-posed. To render the solution to P
unique we parameterized ρ; i.e., we assumed that ρ is a superposition of M dipoles

ρ =

M∑

m=1

pm · ∇δ (x− xm)

In such, the boundary potential V
∣∣
∂Ω

uniquely defines {xm,pm}m=1···M .

We introduced the sensing principle in chapter 2. This is a method to obtain a
measure on ρ, knowing only the boundary potential V

∣∣
∂Ω

. These measures, called
generalized samples, are obtained by applying the sensing principle with well-chosen
test functions, ψ for which

div (σ∇ψ) = 0

49
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holds. In that case the generalized samples are

〈ψ, ρ〉 =

∮

∂Ω

V∇ψ · eΩds.

In order to select a favourable test function or device a reconstruction algorithm
we need supplementary restrictions on σ. We assumed

σ (x, y, z) = constant for (x, y, z) ∈ Ω
σ (x, y, z) = 0 for (x, y, z) /∈ Ω

.

Because of this assumption, any valid test function is Ω-harmonic

∆ψ
∣∣
Ω

= 0.

A large subset of such Ω-harmonic functions are analytic in Ω. We have called such
viable analytic test function “analytic sensors”.

Among all analytic sensors we have chosen

ψa = ln (x+ iy − a) with a /∈ Ω ,

since it allows for a direct and analytic reconstruction algorithm (this algorithm is
inspired from the FRI setting and is devised in chapter 2). We chose a set of such
analytic sensors {ψan}n=0···N−1 such that the corresponding generalized samples,
{µn}n=0···N−1, have a particular structure common to FRI-problems. That is,
the x- and y-coordinates of the generating sources are obtained as the roots of a
polynomial R which is unknown. However, the special choice of the singularities
an allow for the construction of a filter h such that

h ? (µnR) = 0;

h is called an annihilating filter. We showed that this is in fact a linear system of
equations in the unknown coefficients rk of R.

This reconstruction algorithm is intrinsically 2D. Since real-life applications are
usually 3D, such as EEG, we needed to extend this reconstruction scheme to 3D.
The sensing principle extends readably to 3D, i.e., formally nothing changes, the
2D domain becomes a 3D volume with bounding surface ∂Ω in which ρ lies. Hence,
the sensing principle now requires the computation of a 3D surface integral instead
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of a 2D contour integral. Next, we observed that we reconstruct an orthographic
projection of ρ. By introducing various coordinate transforms we obtained different
2D projections of ρ from which we reconstructed te full 3D source distribution.
Chapter 3 unravels the technical difficulties involved; e.g., since the projections are
roots of a polynomial R they are not ordered and hence we need a way to order the
obtained projection (this is done using Tomasi and Kanade’s rank principle).

Figure 4.1 depicts a flowchart of the reconstruction scheme we have.

4.2 Outlook

Although the bulk of the reconstruction algorithm has been developed we still need
to fill in some blanks.

If we want our reconstruction algorithm to be applicable in real-life applica-
tions, then we need it to be able to cope with non-homogeneous conductor models.
For example, in EEG the human head is often modeled as a 3-sphere conductor
model where the layers represent the brain, skull and scalp. Each layer has its
own characteristic, and often isotropic, conductivity. In that case σ is a piecewise
constant function of r =

√
x2 + y2 + z2. Another example is the earth, which is

often modelled as a 5-sphere conductor model (the layers represent the earth’s inner
core, outer core, mantle, upper mantle and crust). A change of σ only influences
the construction of the analytic sensor ψa. In the next chapter (chapter 5) we
construct such an analytic sensor, ψa, for varying σ, with a particular interest in
piecewise constant conductor profiles.

As depicted in figure 4.1 the reconstruction process needs to compute integrals
of the form µ =

∮
∂Ω
V∇ψa · eΩds, with ψa some viable analytic sensor. In practice

V is not continuously known on the boundary; i.e., V is measured at 32,64,128 or
204 electrode sites on the surface. In order to apply the sensing principle we need
to construct a continuous representation of V

∣∣
∂Ω

from a discrete set of measures. In
this manuscript we work with spherical conductor models (although the proposed
framework is not restricted to spherical models) and hence spherical harmonics are
a viable option to interpolate/approximate the measured data. Moreover, spherical
harmonics facilitate the computation of the generalized samples considerably. This
interpolation/approximation scheme is explained in chapter 6.

Note that, the model for ρ is an approximation of what happens in reality. In
such we need a model matching algorithm that matches the data to our model. That
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is, we need an algorithm that makes minimal changes to the computed generalized
measures such that the constructed filter h annihilates µR. For this, we adapt
Cadzow’s iterative denoising algorithm. This iterative scheme is a sequence of
a subspace decomposition followed by a dimensionality reduction and a subspace
projection iterated until the filter h can annihilate the generalized samples. This
denoising method is elaborated in chapter 6.

In chapter 7, we investigate the precision, resolution and noise robustness of the
proposed reconstruction algorithm by means of simulations. Finally, we treat real
data of a visual evoked potential and compare our results to the results of LAURA.
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Chapter 5

Multi-Layer Spherical
Conductivity Models

This chapter is largely based on the article entitled “Analytic Sensing for Multi-
Layer Spherical Models with Application to Source Imaging, submitted to Inverse
Problems.

5.1 Summary

Until now we assumed that Ω is a homogeneous conductor model. This severely
hinders the practical use of our reconstruction algorithm.

In this chapter we show how to construct analytic sensors that go with inho-
mogeneous conductor models. The derivation assumes that σ is a scalar function
of r =

√
x2 + y2 + z2. Constructing such test functions boils down to solving a set

of 3D differential equations. In particular, we show how to solve these differential
equations in the case of layered spherical conductor models by creating explicitly
an analytic sensor for the 3-sphere conductor model.
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5.2 Motivation

Analytic sensing takes advantage of Green’s (also called the divergence) theorem
to compute the scalar products 〈ψ, ρ〉, knowing only V

∣∣
∂Ω

. These scalar products
µ can be seen as “generalized samples” of the unknown distribution, which serve
to reconstruct ρ, and are computed using the following boundary integral:

〈ψ, ρ〉 = −
∮

∂Ω

σV∇ψ · eΩds. (5.1)

These analytic sensors ψ satisfy the key property:

div(σ∇ψ) = 0, (5.2)

which ensures that the generalized samples can be computed as stated in (5.1).
Previously (in chapter 2), the conductor model was supposed to be homoge-

neous: σ was a constant and (5.2) reverts to the Laplace equation, ∆ψ = 0, which
is satisfied by analytic functions of the variable ζ = x + iy1. In many applica-
tion, including EEG, spherical multi-layer conductor models are often useful [52].
Moreover, the changes in conductivity of the outer layers can highly impact the
localization error [55, 56]. Therefore, the assumption of homogeneity hinders the
practical use of the original approach of analytic sensing. We extend the original
framework such that it can cope with a N-sphere conductor model. Figures 5.1(a)
and 5.1(b) depict a 3-sphere conductor model with isotropic (scalar) conductivities.

There are 2 ways to overcome the limitations imposed by a homogeneous con-
ductor model:

• We propagate the measured boundary potential inward, that is, down to the
boundary of the inner compartment [57]. Although this propagation takes
into account the inhomogeneity of the conductor model, it propagates the
noisy measures. More precisely, propagating the noisy boundary measure-
ments inward amplifies the noise and consequently the propagated boundary
potential is likely to be of low quality.

• We construct new analytic sensors that propagate outward up to the outer
boundary of the conductor model. Since the analytic sensor is known analyti-

1To avoid any confusion in this chapter, we denote the complex unit by ζ, ζ = x+ iy
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∂Ω2

∂Ω1
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Figure 5.1: Figure 5.1(a) depicts a 3-sphere conductor model. Each com-
partment, Ωi, has its own characteristic conductivity, σi for i ∈ {1, · · · , 3}.
Figure 5.1(b) depicts the corresponding conductivity profile as a function of
r (which is in this case a piecewise constant). Each discontinuity represents
a boundary ∂Ω1, ∂Ω2 or ∂Ω3.
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cally, this propagation is exact and not sensitive to noisy boundary measures.
This is the approach that we will pursue here.

Constructing such test functions boils down to solving a set of 3D differential
equations, that express the physical constraints of the conductor model. We show
how these equations can be solved using a particular separation of variables, hence,
creating a new set of analytic sensors that account for layers of different constant
conductivity (e.g., the skull is often modeled as a spherical layer of low conductivity
between two or more spherical layers of high conductivity). We show, explicitly,
how to construct analytic sensors for the 3-sphere model. These analytic sensors
enable the usage of the reconstruction algorithm in combination with the 3-sphere
conductor model as such.

5.3 Extending the sensing principle for spherical
head models

5.3.1 Particular solutions of the continuity equation with ra-
dial conductivity

The desired form of the analytic sensor in the inner compartment Ω1, where the
sources are located, is a desired function of ζ that allows to retrieve the sources
subsequently. We will show that, because σ varies radially, a separation of variables
in ζ and r reduces (5.2) to solving two decoupled differential equations.

Lemma 2. If we assume that σ varies radially and is C1 in some ring, then all
analytic sensors ψ that satisfy

div(σ∇ψ) = 0

in that ring, and that can be put under the separable form

ψ(x, y, z) = ψ0(ζ)ψ1(r),

where ζ = x+ iy and r =
√
x2 + y2 + z2, are solutions of the differential equations:

ζψ′0(ζ)− nψ0(ζ) = 0, (5.3)

rψ′′1 (r) +

(
2(n+ 1) +

rσ′

σ

)
ψ1(r) + n

σ′

σ
ψ1(r) = 0, (5.4)
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where n is some scalar.

Proof. We look for a special solution taking the separable form:

ψ(x, y, z) = ψ0(ζ)ψ1(r),

with ζ = x+ iy and ∆ψ0 = 0.
Then, (5.2) takes the form:

σ′uTr ∇ψ + σ∆ψ = 0, (5.5)

where ur is the vector defined as

ur =
1

r




x
y
z



T

.

The first term of (5.5) can be further rewritten as:

uTr ∇ψ = ψ1u
T
r ∇ψ0u

T
r ∇ψ1

= ψ1(r)ψ′0(ζ)
ζ

r
+ ψ0(ζ)ψ′1(r),

and second term as:

∆ψ = ψ0(ζ)∆ψ1(r) + 2∇ψ0(ζ)T∇ψ1(r) + ψ1∆ψ0(ζ)

= ψ0(ζ)
rψ′′1 (r) + 2ψ′1(r)

r
+ 2ψ′0(ζ)ψ′1(r)

ζ

r
.

Consequently (5.5) becomes

σ′(r)ψ1(r)ψ0(ζ)
ζ

r
+ σ′(r)ψ0(ζ)ψ′1(rs)

︸ ︷︷ ︸
σ′uTr ∇ψ

+σ(r)ψ0(ζ)
rψ′′1 (r) + 2ψ′1(r)

r
+ 2σ(r)ψ′0ψ

′
1(r)

ζ

r︸ ︷︷ ︸
σ∆ψ

= 0,

which can be separated into two parts, one that depends only on ζ, and another
that depends only on r:

ζψ′0(ζ)

ψ0(ζ)
= −rσ

′(r)ψ′1(r) + σ(r) (rψ′′1 (r) + 2ψ′1(r))

σ′(r)ψ1(r) + 2σ(r)ψ′1(r)
. (5.6)
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The left-hand side (lhs) of (5.6) is a function of ζ whereas the right-hand side
(rhs) is a function of r. These variables are independent which implies that lhs =
rhs = Constant. This results into two decoupled differential equations:

ζψ′0(ζ)− nψ0(ζ) = 0,

rψ′′1 (r) +

(
2(n+ 1) +

rσ′

σ

)
ψ′1(r) + n

σ′

σ
ψ1(r) = 0,

which concludes the proof.

The solution of (5.3) is ψ0 = Constant×ζn which is discontinuous or multivalued
if n /∈ N. Hence we require n to be some integer. Thus, if ψ1 is a function for which

rψ′′1 (r) +

(
2(n+ 1) +

rσ′

σ

)
ψ′1(r) + n

σ′

σ
ψ1(r) = 0, (5.7)

holds, then

ψ(x, y, z) = (x+ iy)nψ1(r), n ∈ N

is a valid test function.

Taking into account the N -sphere conductivity model, we have that in each
region with constant σ

ψ(x, y, z) = C(x+ iy)n + C ′
(x+ iy)n

r2n+1
,

with C and C ′ arbitrary constants. This means that, due to the linearity of the
operator div (σ∇·), any valid analytic sensor ψ, in a region where σ = Constant,
must be of the form

ψ(x, y, z) = ϕ(x+ iy) +
1

r
Φ

(
x+ iy

r2

)
,

where ϕ and Φ are entire functions. In order to fully characterize the analytic
sensors that go with an N -sphere conductivity model, we need to describe the
behavior (or rather change) of ψ at a boundary ∂Ωi.
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Proposition 1. If we know ϕ and Φ in a ring Ωj =
{
x ∈ R3, s.t. rj−1 ≤ ‖x‖ ≤

rj
}

of an N -sphere (j = 1, 2, . . . N) conductivity model

ϕ = ϕj in Ωj
Φ = Φj in Ωj
σ = σj in Ωj

then we can propagate ϕj and Φj through ∂Ωj = Ωj ∩Ωj+1, by solving the following
two differential equations:

2ζ

r3
j

Φ′j+1

(
ζ

r2
j

)
+

1

rj
Φj+1

(
ζ

r2
j

)
= −gj(ζ) + ζf ′j(ζ), (5.8)

ϕj+1 = fj(ζ)− 1

rj
Φj+1

(
ζ

r2
j

)
, (5.9)

where

fj(ζ) = ϕj(ζ) +
1

rj
Φj

(
ζ

r2
j

)
, (5.10)

gj(ζ) =
σj
σj+1

(
ζϕ′j(ζ)− 1

rj
Φj

(
ζ

r2
j

)
− ζ

r3
j

Φ′j

(
ζ

r2
j

))
. (5.11)

Proof. Using standard arguments frequent in electromagnetic physics, or using dis-
tribution theory, it is possible to show that, if σ and ψ are piecewise C1 satisfying
div(σ∇ψ) = 0 separately in the interiors of Ωj and Ωj+1, then

ψ

σxT∇ψ

}
are continuous across ∂Ωj =⇒ div(σ∇ψ) = 0 in Ωj ∪ Ωj+1

• for the continuity of ψ at ∂Ωj

ϕj(ζ) +
1

rj
Φj

(
ζ

r2
j

)
= ϕj+1(ζ) +

1

rj
Φj+1

(
ζ

r2
j

)
; (5.12)
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• for the continuity of σxT∇ψ at ∂Ωj

σj

(
(ζ)ϕ′j(ζ)− 1

rj
Φj

(
ζ

r2
j

)
− ζ

r3
j

Φ′j

(
ζ

r2
j

))
=

σj+1

(
(ζ)ϕ′j+1(ζ)− 1

rj
Φj+1

(
ζ

r2
j

)
− ζ

r3
j

Φ′j+1

(
ζ

r2
j

))
,

(5.13)

for any ζ such that ||ζ|| ≤ rj . These two differential equations, (5.12) and (5.13),
describe how a test function ψ changes (or rather propagates) over such a boundary
∂Ωj . In what follows we show how to find ϕj+1 and Φj+1 from ϕj and Φj . This
describes explicitly how the test function ψ propagates over a discontinuity of σ.

Let us define fj(ζ) and gj(ζ) to be:

fj(ζ) = ϕj(ζ) +
1

rj
Φj

(
ζ

r2
j

)
,

gj(ζ) =
σj
σj+1

(
ζϕ′j(ζ)− 1

rj
Φj

(
ζ

r2
j

(

)
− ζ

r3
j

Φ′j−1

(
ζ

r2
j

))
,

then the equations (5.12) and (5.13) read:




ϕj+1(ζ) +
1

rj
Φj+1

(
ζ

r2
j

)
= fj(ζ),

ζϕ′j+1 −
1

rj
Φj+1

(
ζ

r2
j

)
− ζ

r3
j

Φ′j+1

(
ζ

r2
j

)
= gj(ζ).

(5.14)

By elimination of ϕj+1 in (5.14), we obtain an ordinary differential equation (ODE)
for Φj+1:

2ζ

r3
j

Φ′j+1

(
ζ

r2
j

)
+

1

rj
Φj+1

(
ζ

r2
j

)
= −gj(ζ) + ζf ′j(ζ).

Once the above ODE is solved, and thus Φj+1 is known, we can find ϕj+1 by solving
the first equation of (5.14) for ϕj+1:

ϕj+1 = fj(ζ)− 1

rj
Φj+1

(
ζ

r2
j

)
,
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which concludes this proof.

So, if we choose ϕ0 and Φ0, we can construct ψ
∣∣
∂Ω

by (repeated) propagation
of ϕj and Φj through the boundaries ∂Ωj until we reach the outer boundary. Note
that the ODE that defines Φj+1 can be integrated exactly.

5.3.2 Example: spherical head model with multiple layers

An important head model in EEG applications is the 3-sphere conductor model
S depicted in figure 5.1. Each compartment Ω1, Ω2 and Ω3, with their respective
conductivities σ1, σ2 and σ3, represents a specific tissue class. In the case of the 2-
layered sphere the compartments represent the brain, skull and scalp, respectively.
It is generally accepted that the brain and scalp tissue have a comparable conduc-
tivity (σ1 = σ3), whereas the skull has a much lower conductivity (e.g., σ1

σ2
= 80).

Such a compartment with low conductivity attenuates and smooths the generated
boundary potential V

∣∣
∂Ω

. Figure 5.2 demonstrates this attenuation and blurring
due to the layer Ω2 with low conductivity.

If ρ is a superposition of dipoles, then reconstructing ρ from the measured EEG,
using the reconstruction algorithm described in the previous chapters, requires new
analytic sensors ψ that behave as log(ζ − a) in Ω1, with a /∈ S, and that take
into account the conductivity profile of S. Hence, we need to propagate ln (ζ − a)
through the outer boundaries ∂Ω1, ∂Ω2 of the compartments Ω1 and Ω2. Appen-
dices A.1 and A.2 show the propagations of ln (ζ − a) through ∂Ω1 and ∂Ω2 which
yield the required analytic sensors ψa.

5.4 Demonstration

We want to show the importance and the feasibility of the analytic sensors that
take into account the conductivity profile of the conductor model.

We computed the potential generated by 100 unit dipoles (with outward mo-
ment), located in the XY-plane, in 204 electrodes on the “spherical model with
anatomic constrains” (SMAC) head model. The SMAC model is a way to combine
the computational ease of spherical conductor models, i.e., a 3-sphere conductor
model (which is currently used in the hospital of Geneva), with the precision of
realistic head models [52].
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(a) (b)

Figure 5.2: Figure 5.2(a) shows V
∣∣
∂Ω

generated by a source distribution

ρ in a homogeneous (σ = 1) sphere whereas figure 5.2(b) shows V
∣∣
∂Ω3

generated by the same source distribution in a 3-sphere conductor model.
The compartments represent the brain (characterized by a radius r1 = 0.86
and a conductivity σ1 = 1), the skull (r2 = 0.92 and σ2 = 0.0125) and the
scalp (r3 = 1 and σ3 = 1). The source distribution is a sum of 2 dipoles

located at x1 = [0.1 0.5 0.6]
T

, x2 = [−0.3 0.4 0.6]
T

and with moments
p1 = x1

||x1|| and p2 = x2

||x2|| .

For the conductor model, a 3-sphere conductor model, we have r1 = 0.86, r2 =
0.92, r3 = 1 and σ1 = 1, σ2 = 0.0125, σ3 = 1, which are common in an EEG setting.
We used 32 analytic sensors {ψan}n=0···31 with singularities an = 1.1 exp(i 2π

32n).
This setting, the SMAC conductor model, the electrode configuration and the sin-
gularities are depicted in figure 5.4. The analytic sensors use the correct boundary
radii, r1 = 0.86, r2 = 0.92 and conductivities σ1 = 1 and σ3 = 1. We varied
the conductivity σ2 taken into account by the analytic sensors. For each variation
of σ2 we computed 〈ψan , ρ〉 and performed a localization using the FRI-approach
described above.

Varying σ2 in the analytic sensors introduces a model mismatch between the
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Figure 5.3: The setting used to perform the simulations. Here we see
the SMAC head model, which is a 3-sphere conductor model fitted to an
averaged head. The red dots represent the electrodes and the green dots
represent the singularities of the analytic sensors.

conductivity profile used to generate the boundary potential and the conductivity
profile taken into account by the analytic sensors which in turn influences the
localization error. Figures 5.4(a) and 5.4(b) depict the effect of a varying σ2, taken
into account by the analytic sensors, on the localization error. We see that the
localization error is minimal if there is no model mismatch between the conductivity
profile used to generate the boundary potential and the conductivity profile taken
into account by the analytic sensors. Hence, in our case, the localization error is
minimal if we construct ψan such that it accounts for σ1 = 1, σ2 = 0.0125 and
σ3 = 1.
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Figure 5.4: Figures 5.4(a) and 5.4(b) show the mean localization error
in function of the model mismatch between the conductivity profile taken
into account by the analytic sensors and the conductivity profile used to
generate the boundary potential. Furthermore, the maximum and mini-
mum localization error is depicted by means of error bars. The boundary
potential is generated by unit dipoles at different eccentricities (indicated
by the colours of the curves) with outward moments and measured in 204
electrodes on ∂Ω3.



Chapter 6

Approximation Error and
Model Mismatch

6.1 Summary

The computation of the generalized samples requires a continuous representation
of V

∣∣
∂Ω

. However, in practice we only have access to a finite number of noisy

measurements on the boundary, Ṽi.

In this chapter we devise an approximation scheme based on spherical har-
monics to obtain such a continuous domain presentation of V on the boundary,
Ṽ
∣∣
∂Ω

. Moreover, this interpolation scheme allows for a fast computation of the
corresponding generalized measures µ̃.

These generalized samples are noisy because of the approximation error and
the noisy potential measurements. To compensate for the erroneous generalized
samples, we adapt Cadzow’s iterative denoising scheme [58, 49]. In such we end up
with a model matching algorithm that adjusts the generalized samples such that
they serve to reconstruct the source distribution ρ according to the reconstruction
procedure described in chapter 2.

67



68 Approximation Error and Model Mismatch

6.2 Motivation

Until now we assumed that V
∣∣
∂Ω

is continuously known on the boundary. However,

in practice the V
∣∣
∂Ω

is sampled in a finite number of points; e.g., in EEG the
generated boundary potential is measured in, typically, 32, 64 up to 204 electrodes.

The sensing principle requires a continuous representation of the boundary po-
tential, V

∣∣
∂Ω

, to obtain a measure µn of the source distribution. In such we need

an approximation of V
∣∣
∂Ω

based on the noisy measured potentials Ṽi. Moreover,
the proposed approximation should allow for an efficient computation of the corre-
sponding generalized samples µ̃n.

Since the generated boundary potential, V
∣∣
∂Ω

, is square integrable we opt for

spherical harmonics to approximate V
∣∣
∂Ω

. Furthermore, we see that this yields
an efficient way to compute the generalized samples. The obtained generalized
samples µ̃n are obviously noisy (since we cannot recover V

∣∣
∂Ω

perfectly) and hence,
we cannot apply the reconstruction algorithm described in chapter 2 as such (since
µ̃n 6= µn). In other words, the computed generalized samples cannot be annihilated
by a filter h. We adapt Cadzow’s iterative denoising algorithm [58, 49] to fit the
computed generalized samples to the annihilation scheme; i.e., µ̃n is altered with
the smallest value possible such that (2.19) has a non-trivial solution. Note that,
this denoising scheme is in fact a model matching technique.

6.3 A continuous representation of the boundary
potential

Let us first consider the noiseless case; i.e., the boundary measurements, Vi with
i = 1 · · ·N , are supposed to be ideal. In practice we often have 32, 64 or 128
boundary measures. Although, in EEG, high-density electrode caps that yield 204
measures exist. As stated in chapter 5, spherical conductor models are often used
to represent the human head, and we will continue to do so as well. We assume a
spherical conductor model with radius R=1.

Since V
∣∣
∂Ω

is square integrable; i.e.,
∫
∂Ω

|V (x) |2dx < ∞, V
∣∣
∂Ω

can be written
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as a sum of spherical harmonics

V
∣∣
∂Ω

(θ, φ) =

+∞∑

l=−∞

+l∑

m=−l
cl,mY

m
l (θ, φ) , (6.1)

with Y ml a spherical harmonic of degree l and order m

{
Y ml (θ, φ) = Pml (cos(θ)) exp (jmφ) for m ≥ 0,

Y ml (θ, φ) = (−1)
m
(
Y
|m|
l (θ, φ)

)?
for m < 0,

where ? indicates the complex conjugation, Pml the normalized associated Legendre
polynomial of degree l and order m and θ and φ are the elevation and azimuth angles
of any point on the surface of the sphere. An approximation of the boundary
potential, Ṽ

∣∣
∂Ω

, is obtained by truncating the expansion (6.1)

Ṽ
∣∣
∂Ω

(θ, φ) =

L∑

l=0

l∑

m=−l
cl,mY

m
l (θ, φ) . (6.2)

Let us first illustrate what can go wrong when fitting N boundary measure-
ments on the upper hemisphere with N spherical harmonics. For example, assume
N=64 and a boundary potential generated by one radial unit dipole located at
x1 = [0 0 0.7] (as depicted in figure 6.3). Intuitively we want to construct an ap-
proximation Ṽ

∣∣
∂Ω

using 64 basis functions, i.e., we choose L=7 in (6.2) and solve
the linear system of equations

7∑

l=0

l∑

m=−l
cl,mY

m
l (θi, φi) = Vi,

for the unknown coefficients cl,m with Vi the ith measurement and i = 1 · · · 64.

Figure 6.2(a) plots Ṽ
∣∣
∂Ω

on the boundary of the conductor model. We see that

Ṽ
∣∣
∂Ω

is not a good approximation of V
∣∣
∂Ω

because Ṽ
∣∣
∂Ω

has a huge energy in
the lower hemisphere where we do not have any potential measures. Figure 6.3
depicts this phenomena. Generally speaking, if potential measures on the entire
boundary are available, then the truncated expansion (6.2) properly represents
V
∣∣
∂Ω

. However, if the measures do not cover the entire boundary ∂Ω, as is often
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Figure 6.1: A unit sphere with the boundary potential generated by a
radial unit dipole located at x1 = [0 0 0.7]

T
. Red depicts a high value of

V
∣∣
∂Ω

whereas blue depicts a relative low value. The boundary potential is
measured in 64 points depicted by black stars.

the case, then a direct fit of (6.2) to the measurements yields a bad approximation.

In order to overcome this shortcoming we “pretend” to have full coverage of the
boundary. The expansion (6.2) is chosen such there is a basis function per measure.
For example, if we have only measures available on the upper hemisphere then we
choose L in (6.2) such that there are roughly twice as much basis functions then
available boundary measures. The coefficients cl,m are then obtained trough the
minimization

min
C
||∆C||2 subject to ||SC−V||2 ≤ σ, (6.3)

with C a vector containing the coefficients cl,m, ∆ a matrix representing some
regularization criterion, S the system matrix relating the spherical harmonics to
the measurements V

S =



Y 0

0 (θ1, φ1) · · · Y LL (θ1, φ1)
...

Y 0
0 (θN , φN ) · · · Y LL (θN , φN )



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(a) (b)

Figure 6.2: 6.2(a) The reconstructed boundary potential, Ṽ
∣∣
∂Ω

, if spher-
ical harmonics are used to directly fit the measured boundary potential
(L=7). 6.2(b) The same reconstructed boundary potential but the area
where no measures are available is clipped (the part colored in brown). We
see that the expansion (6.2) is a reasonable approximating of V

∣∣
∂Ω

where
we have potential measurements.

and σ a value that is determined by the noise level. Often the boundary potential,
as is the case in EEG, varies slowly and hence we want to penalize high frequency
components in the construction of (6.2); i.e., the coefficients cl,m corresponding to
high values of l and m should be penalized. In such we opted for the following
regularization:

∆ =




0
. . .

l2 +m2

. . .

L2 + L2



. (6.4)

Let us revisit the example given above (the setting depicted in figure 6.3) with
the method proposed in 6.3 and regularization criterion 6.4. Since there is no noise
on the potential measures we look for an interpolating solution (σ = 0). As stated
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Figure 6.3: The reconstructed boundary potential using the minimization
stated in (6.3) and the regularization criterion (6.4).

before we need to choose L in 6.2 such that we have, say, roughly twice as much
basis functions as potential measures. We choose L = 10. Figure 6.3 shows the
obtained approximation, which is obviously a better approximation of V

∣∣
∂Ω

than
the approximation depicted in figure 6.3.

Note that, many other interpolation or approximation techniques for data mea-
sured on a sphere exist. For an extensive overview on interpolation or approxima-
tion techniques on the sphere we refer to [59]. Contrary to spherical harmonics,
most other interpolation or approximation techniques; e.g., thin plate smoothing
splines, do not allow for an efficient computation of the corresponding generalized
samples. However, these methods often can handle the presence of noise better
than the technique described in (6.3). In such we could denoise the noisy potential
measures first; e.g., using a variational approach [60] or a state-of-the-art technique
such as “SURE-LET” [61], and subsequently interpolate the denoised measures
using the scheme described above.
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6.3.1 A note on the computation of the generalized samples

One advantage of approximating V
∣∣
∂Ω

with spherical harmonics is the computa-
tional ease of the corresponding generalized samples µ̃

µ̃ = −σ3

∫ π

θ=0

∫ 2π

φ=0

L∑

l=0

l∑

m=−l
cl,mY

m
l (θ, φ)

︸ ︷︷ ︸
Ṽ
∣∣
∂Ω

∂

∂r
ψa sin (θ) dθdφ, (6.5)

with ψa the analytic sensor corresponding to a 3-sphere conductor model with
outer radius R = 1. This analytic sensor can be expressed as a power series in
ζ = r sin θ exp (jφ) (as shown in appendix A.2). Deriving this power series with
respect to r yields

∂

∂r
ψa
∣∣
r=R

=
∑

k≥1

bk (sin (θ) exp (jφ))
k
, (6.6)

If we plug the expression (6.6) in (6.5) and apply Cauchy’s integral theorem, then
we deduce

µ̃ = −σ3

∑

k≥1

bk

L∑

l=0

l∑

m=−l
cl,m

∫ π

0

Pml (cos (θ)) sink+1 (θ) dθ

∫ 2π

0

exp (j(k +m)φ) dφ,

= −σ3

∑

k≥1

bk

L∑

l=0

l∑

m=−l
cl,m

(∫ π

0

Pml (cos (θ)) sink+1 (θ) dθ

)
2πδ [m+ k] ,

which after some simplification yields

µ̃ = −2πσ3

L∑

k=1

bk

L∑

l=1

−1∑

m=−l
cl,m

∫ π

0

Pml (cos (θ)) sink+1 (θ) dθ. (6.7)

The integral in the RHS of (6.7) can be computed off-line and stored in a table.
In such, the computation of the generalized samples (6.7) boils down to a sum of
precomputed coefficients which is extremely fast.
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6.4 Noise issues and model mismatch

A well-known problem in EEG is the low quality of the measured signal, i.e., the
potential measures are corrupted by noise such that the measured signal is of low
SNR. A second problem is that the dipolar model is an oversimplification of the true
underlying source distribution. That is, although there are only M predominant
dipoles; e.g., in special cases of epilepsy, there are a lot of other dipoles, albeit with
low intensities, that contribute to the measured signal. This implies that we need
to compensate for two sources of imprecision, measurement noise and model
mismatch, which both contribute to the total “noise”.

As we have seen in chapters 2 and 3, the 2D projections of the 3D locations
xm are the roots of some polynomial R. Since the roots of a polynomial depend
in a non-linear way on its coefficients, obtaining the 2D projections of xm may
become unreliable in the presence of noise and hence, it is advisable to apply a
robust denoising scheme. As shown in chapter 2, the coefficients of R are found by
solving the linear system of equations

H0µ̃a︸ ︷︷ ︸
Ã

R = 0, (6.8)

where H0 is a known (N−M)×N convolution matrix, µ̃ is a N×N diagonal matrix
containing the computed generalized samples, a is a N × (M + 1) Vandermonde
matrix depending on the singularities an of the analytic sensors ψan and R is a
vector representing the coefficients of the polynomial R(x) whose roots are 2D
projections of xm. Note that, the matrix Ã might be ill-conditioned if the angular
distance θ between the singularities an = αne

inθ is small. Manipulating Ã as such
might cause problems. In such, we replace a by a unitary matrix a0 obtained
through the SVD of a, a = a0SV?. The resulting system matrix Ã that we will
use for denoising is

Ã = H0µ̃a0.

A fundamental observation is that in an ideal setting for any L > M the resulting
matrix A remains of rank M , which implies that the last L−M singular values of
A should be zero. However, if µ is distorted, due to noise and model mismatch,
then the corresponding matrix Ã is of full-rank. In such, R = 0 is the only viable
solution, which is not satisfactory.



6.4 Noise issues and model mismatch 75

We adapt an iterative scheme, studied in [49], to denoise the generalized mea-
sures in a consistent way.The idea consists in performing a Singular Value Decom-
position (SVD) of Ã, Ã = USV?, and forcing to zero the L−M smallest diagonal
elements of S to yield S′. Such an operation is also called dimensionality reduction.
Next, we perform a subspace projection by reconstructing a matrix A′ = US′V?.
However, this matrix cannot be factorized as A′ = H0µ̃a0 but

µ̃ = argmin
µ
||H0µa0 −A′||F, (6.9)

yields the new measurement matrix µ̃ such that H0µ̃a0 is close to A′ (with respect
to the Frobenius norm, || · ||F). The minimization (6.9) is solved using a least
squares fit. We iterate the scheme described above until we obtain a µ̃ such that
the last L − M singular values of H0µ̃a0 are smaller than a given threshold τ ;
e.g., τ = 10−5. Finally, the coefficients R are obtained by solving (6.8) using
the denoised measurement matrix µ̃. Figure 6.4 depicts this iterative denoising
algorithm schematically.

To illustrate the effectiveness of the denoising scheme we consider a 2D setting
with a unit radial dipole located at x1 = [−0.5 0.7]T and a set of analytic sensors
with singularities an = 1.01 exp

(
in π

64

)
and n = 32 · · · 64. Next, we added Gaussian

noise to the generalized samples and performed a localization with analytic sensing.
Figure 6.4 plots the localization error in function of the noise level using Cadzow’s
denoising scheme (solid red line) and without denoising (solid green line). We
observe a smaller localization error when using the denoising scheme described
above.
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Figure 6.4: Cadzow’s denoising algorithm adapted to our dipole localiza-
tion problem. The threshold τ determines to what extent the generalized
measures, µ̃, are denoised.
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Figure 6.5: 6.5(a) The setting used to test the denoising scheme. 6.5(b)
The localization error in function of the noise level using Cadzow’s denois-
ing (solid red line) and without any denoising (solid green line).
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Chapter 7

Experimental Data

7.1 Summary

In this chapter we perform tests to evaluate the performance of the proposed frame-
work; i.e., we compare the obtained localizations with theoretical lower bounds for
the localization errors. We show to what extent analytic sensing can be spatially
selective; i.e., we show if we can reconstruct the generating dipoles locally, one by
one. Finally we treat a visual evoked potential (VEP) measured from a healthy
subject to demonstrate the feasibility of our approach in a real EEG setting.

7.2 Motivation

We want to investigate how well the proposed algorithm behaves, theoretically and
for real data. We want to evaluate the resolution, i.e., to quantify the influence of
the distance between 2 generating dipoles on the localization error. In some sense
we built a car without knowing how good it will drive. In this chapter we shall do
a test-drive and look at the performance.

Analytic sensing is a non-linear source imaging technique in such we might ex-
pect a non-graceful degradation of the reconstruction quality as a function of the
noise. Therefore we first compare the retrieval accuracy against the theoretical
lower error bounds. We show the influence of a second, parasitic, source on the lo-

79



80 Experimental Data

calization of the generating source. This reveals the spatial selectiveness of analytic
sensing.

Finally, we treat an averaged 0.9s duration EEG recording stemming from a
visual evoked potential and compare the obtained inverse solution to the result ob-
tained by another state-of-the-art reconstruction algorithm, LAURA. In metaphor-
ical terms, we shall take our new car for a spin and compare its performances with
the Ferrari Testarossa of the field.

7.3 Accuracy of the retrieval

To evaluate the performance of the proposed algorithm in the presence of noise,
we compute the CRLBs for the setting with the additive white Gaussian noise
hypothesis [53]. Given noisy potential measures, these bounds establish the minimal
covariance matrix of any unbiased estimate of the position and moment parameters.
In other words, given the source configuration ρ (characterized by its positions and
moments) and a noise model (e.g., additive white Gaussian noise) we can establish
lower bounds on the mean error made by any unbiased estimator when estimating
the underlying source model’s parameters.

The signal model describing the noisy potential measures, ṽ (x; en), is the fol-
lowing:

ṽ (θ; en) = v (θ; en) + εn, (7.1)

where v (θ; en) is the ideally generated potential [62], measured at electrode en,θ =
[x1,p1, · · · ,xM ,pM ] the source model’s parameters and εn a normally distributed
random variable with expected value 0 and variance σ2 (the SNR of the measured
signal is in direct relation to σ).

In order to compute these lower bounds, we determine the Fisher information
matrix, J = [Jk,l]k,l∈{1,··· ,6M}, corresponding to (7.1), which reads as follows:

Jk,l =
1

σ2

P∑

n=1

∂

∂θk
v (θ; en)

∂

∂θl
v (θ; en) , (7.2)

with P the number of electrodes. The Cramér-Rao bounds are the diagonal ele-
ments of J−1.
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The most important aspect when performing source localization is the recon-
struction of the location parameters xm. Hence, when simulating we only consider
the estimation of the location parameters.

7.3.1 Localizing one radial dipole

Figure 7.1(a) depicts the setup, i.e., the SMAC head model, the locations of the
electrodes and the generating dipole whereas figure 7.1(b) depicts the corresponding
ideal boundary potential and the positions of the singularities an of the analytic
sensors. Using the setup of figures 7.1(a) and 7.1(b) we added noise to the potential
measures and plotted the CRLBs and obtained localization errors, in X, Y and Z
against the corresponding noise level in figures 7.2(a), 7.2(b) and 7.2(c). We see
that up to a certain level of noise (±13dB) the CRLBs yield a good estimation of
the performance of the localization. Further increasing the noise increases

(a) (b)

Figure 7.1: Figures 7.1(a) and 7.1(b) depict the SMAC head model, which
is a 3-sphere conductor model (the compartments represent the brain, skull
and scalp), the generating radial unit dipole located at x1 = [−0.4 0.2 0.6]
(the red dot represents its location and the red line its moment, p1 = x1

||x1|| )

and singularities of the analytic sensors indicated by the black dots (|an| =
1.01). The green dots represent the electrodes’ locations (this is a high
density electrode configuration used at the University Hospital of Geneva).
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Figure 7.2: Figures 7.2(a), 7.2(b) and 7.2(c) depict the theoretical lower
bounds on the localization errors of x1, y1 and z1 (represented by the
blue, red and green line) against the noise level (assuming additive white
Gaussian noise). Moreover, we plotted the estimations of our method at
different noise levels for different noise realizations (indicated by the gray
dots).

7.3.2 A note on locally sensing a source

Note the placements of the poles an of the analytic sensors in figure 7.1(b); i.e., they
are located above a zone that has a big activation. If we look at the amplitude of
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the potential measures, then we clearly see an area with high amplitude. Since the
noise is additive Gaussian noise and hence not signal dependent, the measured signal
quality in that area on the boundary is higher than elsewhere on the boundary. The
generalized samples are computed via the boundary integral (3.1)

〈ψ, ρ〉 = −
∫

∂Ω

σV∇ψ · eΩ ds.

Since the analytic sensors are localized around an; i.e., |ψan | is large close to an and
relatively small elsewhere, they are spatially selective. It is advantageous to place
the analytic sensors over an area with high signal quality to obtain high quality
generalized measures. The areas that are highly corrupted by noise are “ignored” in
such. Since mainly the potential measures close to an contribute to the generalized
samples, we could try to reconstruct the generating sources locally, one by one.
This concept is called local analytic sensing and is depicted in figure 7.3.

Figure 7.3: A setup with 2 generating dipoles and 2 sets of analytic sen-
sors. Their respective singularities, an, are characterized by the black and
brown dots. One set of analytic sensors (characterized by the black dots)
will be used to reconstruct the upper dipole whereas the other set of ana-
lytic sensors (characterized by the brown dots) will be used to reconstruct
the lower dipole. This way of reconstructing the dipoles locally, one by one
is called “local analytic sensing”.

The governing equation (1.1) is linear; i.e., if a source distribution ρ1 induces a
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potential V1 and ρ2 induces V2, then ρ = ρ1 + ρ2 induces V = V1 + V2 and hence,
when reconstructing a generating dipole locally the generalized samples will contain
a contribution due to any other generating dipole in the conductor volume. This
parasitic contribution depends on the strength and location of any other generating
dipole. This bias introduces an error in the localization, as depicted in figures 7.4(a)
and 7.4(b).

We see that the localization error grows if the distance between the 2 generating
dipoles, r = ||x1−x2||, increases. Moreover, we see that the impact of second dipole
on the localization error is small if it has low intensity (because its manifestation
on the boundary is dominated by the manifestation of the first dipole, with big
intensity). An interesting observation is that the localization error decreases if the
distance between the 2 dipoles is smaller than ±0.4. By increasing the intensity
of the first dipole it can compensate for the potential variation induced by the
second dipole. In the extreme case where x1 = x2, the boundary potential can be
explained by a dipole located at the position of the first dipole but with higher the
intensity.

7.3.3 Localizing two radial dipoles

Figure 7.5(a) depicts the setup, i.e., the SMAC head model, the locations of the elec-
trodes and the 2 generating dipoles whereas figure 7.5(b) depicts the corresponding
ideal boundary potential and the positions of the singularities an of the analytic sen-
sors. Using the setting of figures 7.5(a) and 7.5(b) we added noise to the potential
measures and plotted the CRLBs on the localization errors and obtained localiza-
tion errors against the corresponding noise level in figures 7.6(a) and 7.6(b). We
see that up to a certain level of noise (±13dB) the CRLBs yield a good estimation
of the performance of the localization. Further increasing the noise increases dras-
tically the localization errors. This clearly demonstrates the non-linear behavior of
the localization error; i.e, we do not observe a graceful performance degradation for
smaller SNRs but rather a sudden performance degradation.
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Figure 7.4: Figure 7.4(a) shows the setting; i.e, we see 2 generating radial
dipoles, located at x1 and x2, but the analytic sensors are set to detect only
1 dipole locally. Figure 7.4(b) shows the influence of the second dipole’s
proximity on the localization error of the first dipole. The black dots repre-
sent the localization error on the first dipole when the second dipole has an
intensity ||p2|| = 0.1 whereas the gray dots represent the localization error
on the first dipole when the second dipole has a unit intensity ||p2|| = 1.
Note that, the second “parasitic” dipole always had the same distance from
the origin as the first dipole, x1 = x2.

7.4 Experimental data: an averaged visual evoked
potential

7.4.1 General description

An evoked potential (EP) is the characteristic electrical potential recorded over a
typically 0.9−1s time window by the EEG following the presentation of a stimulus.
For example, if the stimulus is a flash, then the induced characteristic potential is
a visual evoked potential.

The regions of the brain responsible for the processing of such stimuli are often
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(a) (b)

Figure 7.5: Figures 7.5(a) and 7.5(b) depict the SMAC head model, which
is a 3-sphere conductor model (the compartments represent the brain, skull
and scalp), the generating radial unit dipoles located at x1 = [0.4 0.4 0.6]
and x1 = [−0.4 − 0.4 0.6] (the red dots represent the locations and the red
lines their moments) and singularities of the analytic sensors indicated by
the black dots (|an| = 1.01). The green dots represent the electrodes’ loca-
tions (this is a high density electrode configuration used at the University
Hospital of Geneva).

well-localized. For example, when a flash to the right eye is processed by the
brain, the visual cortex will be stimulated first. It is reasonable to assume that the
dipole model is valid at certain time points during the EP [63], especially in the
early stages of the EP. However, the amplitudes of EPs tend to be low, ranging
from less than a microvolt to several microvolts, compared to tens of microvolts
for spontaneous EEG recordings. To resolve these low-amplitude potentials against
the background of ongoing electrical brain activity and measurement noise, signal
averaging is required [64]; i.e., the signal is time-locked to the stimulus and averaged
over repeated EPs.

The EP that we analyze is acquired by Michael A. Pitts and used in a binocular
rivalry experiment. In what follows we describe which subjects were used, what
stimuli were presented, the EEG system used to acquire the data and how the raw
data was processed. These specifications are taken from [65, 66]. The authorization
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Figure 7.6: Figures 7.6(a) and 7.6(b) depict the obtained localization
errors (gray dots) in function of the noise level. Moreover, we plotted the
statistical lower bound on the localization error for the first dipole (solid
red line) and for the second dipole (solid green line).

to use this data in this dissertation has explicitly been requested and granted.

7.4.2 Participants

Fourteen healthy adults, 8 females and 6 males aged between 18 and 23 years,
participated in the experiment. One subject was excluded from the analyses due to
substantial contamination by artifacts. The data of the remaining 13 subjects was
submitted to subsequent analyses. All had normal or corrected-to normal visual
acuity and no history of psychiatric or neurological impairments. All participants
were recruited as volunteers and gave informed consent.
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7.4.3 Stimuli and procedure

The stimuli were square-shaped sinusoidal gratings that subtend 6◦ visual angle
in diameter and differed in color (green versus red), orientation (45◦ versus 135◦)
and spatial frequency (1 cycle per degree versus 5 cycles per degree). The stimuli
were presented during 600ms on a black background and were centered horizontally
within the left and right halves of a CRT computer screen with a 60Hz refresh rate.
Following the stimulus was a 500-700ms blank screen during which the subject had
to indicate the stimulus he or she saw. Figure 7.4.3 shows a sequence where first a
green high frequency is presented to the right eye followed by a red low frequency
to the left eye.

Figure 7.7: The stimuli presented to the subject. This figure is taken from [66].

Here, we only consider the EPs elicited in the high spatial frequency condition,
collapsed across color and orientation. The reason for this is that the primary
visual cortex is highly sensitive to the processing of spatial frequencies, and high
spatial frequency stimuli elicit relatively large components in early visual areas.
Each condition comprised 1200 trials and roughly 10% of the trials were omitted
because the measured signal contained artifacts or to much measurement noise.
The averaged EP that we analyzed is the average of all the retained EPs over all 13
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subjects corresponding to the high frequency stimuli. Note that, this is an average
over a huge number of trials which ensures that the treated EP is of high quality;
i.e., the SNR of such an averaged signal is considerably higher then the SNR of a
single trial measurement. Note that, it makes sense to assume that the remaining
noise is normally (or Gaussian) distributed due to the “central limit theorem”.

7.4.4 EEG acquisition and data processing

The generated scalp potential was measured in 64 tin electrodes mounted in an
elastic cap, band-pass filtered between 0.1 and 80Hz and sampled at 250Hz. Hor-
izontal and vertical eye movements, which corrupt the EP, were monitored. The
measured EEG was recomputed offline to the common average reference. Before
selecting the relevant time windows (called epochs in EEG terminology), the DC
component was removed and then band-pass filtered between 1 and 30Hz. The
resulting averaged EP is depicted in figure 7.8.

7.4.5 Source analysis

During the time span of the averaged EP there are those characteristic components
at which time the generating source distribution is “well-understood” (read “well-
localized”). For example, the boundary potential that pops up at ±100ms after
the stimulus is called the C1 component and stems from the primary visual cortex.
The N1 component, seen at ±180ms after the stimulus, stems from 2 focal brain
areas. These components appear during the early stages of the averaged EP and
are linked to the physical stimulus. On the other hand, the P2 component stems
from a distributed source distribution. Figure 7.9 shows the number of dipoles that
explain well the measured EEG through the VEP. Figure 7.10 depicts the C1,N1
and P2 components in time and the corresponding potential maps1.

We compare the inverse solution of from LAURA with the inverse solution
yielded by analytic sensing. We are well-aware that we compare the solution of a
distributed model with the solution of a dipole model. However, if we plot an ellip-
soid corresponding to the uncertainty (computed using the CRLBs) of the recon-
structed location(s), then we hope to see some overlap between the inverse solution
from LAURA and our inverse solution. This only makes sense if the unexplained

1We used the interpolation scheme described in the chapter 6 with L = 11 and σ = 0 to
generate these potential maps.
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Figure 7.8: The averaged visual EP corresponding to the high frquency
sinusoid (measured in µV over 0.9s). Each line represents the potential
measured by the corresponding electrode over a 0.9s time frame. The red
line represents the moment that the stimulus was presented.

data is distributed normally, since the CRLBs assume additive noise that is nor-
mally distributed. We performed a statistical test that indicates to what extent the
unexplained data is normally distributed. This is quantified by the p-value, which
is the probability of erroneously rejecting the hypothesis that the unexplained data
is normally distributed. If the p-value is smaller then 10% then we do not sup-
pose that the unexplained data is normally distributed. In that case, we fit more
dipoles to the measured data (until the remaining unexplained data is normally
distributed). However, if we see that the proportion of explained data does not in-
crease, or it cannot be assumed that the unexplained data is normally distributed,
then the underlying source distribution is likely not dipolar.

The first component, depicted in figure 7.10(b), stems from the primary visual
cortex (also known as striate cortex or V1) which is located in both hemispheres.
Figure 7.11 shows the inverse solutions obtained by LAURA and our method when
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Figure 7.9: The visual evoked potential with the number of dipoles that
properly explain the measurements as colored rectangles (red indicates 1
dipole, green 3 dipoles and blue 2 dipoles). The gray area is known to be
generated by a distributed source model.

fitting 1 dipole to the measured boundary potential. We see that the solution points
with maximum intensity coincide with the dipole’s location found through analytic
sensing and those happen to be located in V1. If we look at the uncertainty of the
reconstructed location then we see that the reconstructed dipole resides in either
left or right hemisphere, which makes sense since the visual primary cortex resides
in both hemispheres. Moreover, the p-value is rather high (p-value≈ 0.206) which
indicates that the unexplained signal is likely normally distributed. If we fit 2
dipoles to the C1 component then we obtain a dipole in the center of the brain in
addition to the dipole localized in V1, as depicted in figure 7.12. The corresponding
p-value is a bit smaller (p-value≈ 0.15) but still high enough to assume that the
unexplained signal is normally distributed. On the other hand, 82% of the signal is
explained by these two dipoles against the previously 62%. Anatomically speaking,
the second dipole covers part of the human visual system (HVS) so reconstructing
a dipole over there might be plausible. Moreover, if we look at the solution given
by LAURA, then we see that the solution points in that area have a rather high
intensity.

It is generally accepted that the second component, depicted in figure 7.10(c), is
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Figure 7.10: 7.10(a) The averaged EP and the C1, N1 and P2 components
in time (seen from the back of the head). 7.10(b) The potential map of the
C1 component. 7.10(c) The potential map of the N1 component. 7.10(d)
The potential map of the P2 component. The unit corresponding to the
colorbars is µV
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best explained by 2 dipoles. In our case, assuming 2 generating dipoles explains the
measured signal up to ≈ 98% and the non-explained signal is distributed normally
with a high probability (p-value≈ 0.64%). We observe that our algorithm obtains 2
dipoles that are less lateral than the solution proposed by LAURA. Unfortunately
these dipoles are located in the white matter. It is known that no EEG generators
are located in the white matter. On the other hand it has to be noted that the
measured data can be explained extremely well with the 2 obtained dipoles.

Finally, we took a look at the P2 component. It is generally accepted that this
component already stems from a distributed source distribution. Nonetheless, we
tried to fit a dipolar model to the measured data with analytic sensing. If we fit
2 dipoles then we explain ≈78% of the measured data. However, the probability
that the non-explained portion of the data is normally distributed is rather small
(p-value ≈ 0.05), which means that the unexplained data is probably not just noise.
If we fit 3 dipoles to the measured signal, then we explain ≈ 90% of the measured
data and we have a p-value of ≈ 0.34 which indicates that the unexplained data is
probably normally distributed. In such we might say that these 3 dipoles explain
sufficiently the measured data. However, we should be cautious when interpreting
the result since the sparse a priori, on which our model is based, might not be valid.
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(a)

(b)

Figure 7.11: The inverse solution obtained by LAURA versus the inverse
solution obtained by analytic sensing for the C1 component. For LAURA
we only show the solution points with high intensity (10% of the total num-
ber of solution points). Note that, the nose of the subject points towards
the positive X-axis. 7.11(b) The same inverse solution but seen from above.
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Figure 7.12: The inverse solution obtained by LAURA versus the inverse
solution obtained by analytic sensing, when fitting 2 dipoles to the C1 com-
ponent. For LAURA we only show the solution points with high intensity
(40% of the total number of solution points). Note that, the nose of the
subject points towards the positive X-axis.
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(a)

(b)

Figure 7.13: The inverse solution obtained by LAURA versus the inverse
solution obtained by analytic sensing for the N1 component. For LAURA
we only show the solution points with high intensity (10% of the total num-
ber of solution points). Note that, the nose of the subject points towards
the positive X-axis. 7.13(b) The same inverse solution but seen from the
left.



Chapter 8

Conclusion

In this thesis we have developed a new framework called “analytic sensing” to
reconstruct dipoles from boundary measurements that stem from Poisson’s equation
with a particular focus on the inverse problem that occurs in EEG source imaging.
More specifically, we have devised a direct, non-iterative estimation technique to
reconstruct the dipoles responsible for the measured EEG. Moreover, validation
shows that results from analytic sensing reach the Cramér-Rao bounds up to certain
level of noise. The main findings and results are summarized in the next section.

8.1 Summary of findings and results

• Ill-posed versus well-posed inverse EEG problem
We have shown that the inverse EEG problem is ill-posed; e.g., multiple
source distributions can generate the same boundary potential. To render the
problem well-posed we imposed a sparsity constraint. More specifically, we
assumed that the generating source distribution is a sum of M dipoles. The
corresponding, well-posed, inverse problem consists of finding the locations
and moments of the generating source distribution.

• Sampling a 2D source distribution with analytic test functions
We have applied Green’s theorem in combination with a well-chosen test
functions to obtain measures of the generating source distribution knowing
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only the induced boundary potential. These measures, called generalized
samples, are in fact the scalar products between the source distribution and
those test functions. We have identified a class of such analytic test functions,
called “analytic sensors”, that allow for an efficient reconstruction algorithm.

• An FRI approach to reconstruct the generating 2D dipoles
We have shown that these generalized samples are conform with a FRI setup.
That is, we can construct a filter that annihilates these generalized samples
multiplied with some unknown polynomial whose roots are the generating
dipoles’ locations. This convolution can be rewritten as a linear system of
equations in the unknown coefficients of that polynomial. However, localiza-
tion through root finding is prone to noise; we adapted Cadzow’s iterative
denoising scheme for added robustness. Once the locations of the dipoles are
known, it is easy to obtain the dipoles’ moments since the generalized sam-
ples depend linearly on the moments. Note, the non-linear estimation of the
locations is decoupled from the linear estimation of the moments.

• Extension to 3D
First, we have extended the computation of the generalized samples to a 3D
setting. Formally nothing changes; i.e., the line integral involved becomes
a surface integral in 3D. Second, we noted that the FRI-like reconstruction
technique yields orthographic projections of the dipoles’ locations and mo-
ments. We introduced a coordinate transform to obtain different 2D projec-
tions of the 3D locations and moments. Eventually we adapted “Tomasi and
Kanade’s rank principle” to reconstruct the full 3D source distribution from
the unordered 2D projections.

• Non-homogeneous conductor models
The knowledge on the conductor model is contained in the analytic sensors.
We have explicitly constructed analytic sensors that go with spherical models.
In particular, we show how to analytically construct the analytic sensors that
go with N-sphere head models. Such head models play an important role in
EEG source imaging; e.g., the SMAC head model is essentially a 3-sphere head
model. Moreover, we have shown the effect of incorporating the conductivity
profile on the localization error.
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8.2 Outlook

Although the framework seems to perform rather well with real EEG data, there
are a couple of features that might make this algorithm even more attractive to use
in EEG applications:

• Realistic head models
We have used spherical models, more specifically layered spheres, to model
the human head. Unfortunately the human head is anything but a sphere.
However, if we use realistic head models, then we do not have an analytic ex-
pression for the analytic sensors nor for the generated boundary potential [67].
As a consequence we would need numerical techniques, such as boundary el-
ement or finite element methods, to propagate the analytic sensor through
the conductor model to the outer surface. Note that, in such realistic head
models, the conductivity can no longer be assumed to be isotropic but rather
a direction-dependent tensor [68].

• Denoising
Although we have incorporated Cadzow’s iterative denoising scheme we could
still do a bit more. We could try and denoise the matrix, L, that contains the
2D projections of the dipoles because we have quite some unused information;
i.e., rank(L) = 3 and the x- and y-components of the 2D projections lie,
ideally, on a sinusoidal curve.

• Spatial extent of the sources
It is rare that the source distribution is really well-modeled by a point source
(read a dipole). Often the generating sources have a spatial extent. In such,
it would make sense to use different parameterizations for the source distri-
bution; e.g., a 3D Gaussian or a 3D box spline. In that case we could try to
adapt the FRI-like localization to estimate the characterizing parameters of
the source distribution.

• Non-localized analytic sensors for 3D
We could introduce a second set of analytic sensors, z ln (x+ iy − a), to re-
construct the z-components of the generating dipoles’ locations and moments.
The corresponding generalized samples depend linearly on zm and pzm and
hence, since xm + iym and pxm + ipym are known using the “classic” analytic
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sensor, the zm and pzm could be obtained by solving a linear system of equa-
tions. However, these analytic sensors are less (not to say not) localized which
is a severe hindrance in the case of EEG since the signal quality is extremely
low in the areas where there’s no activation (not to mention the part where
we do not have any measures). This approach might be useful in applications
with better signal quality (and coverage).

• Governing equation
In this manuscript we have considered only Poisson’s equation as the gov-
erning equation. However, analytic sensing can be extended to cope with
Helmholtz’s equation as a governing equation. This partial differential equa-
tion often arises in the field of physics. It might hence be fruitful to extend
analytic sensing for Helmholtz’s equation. For this we need to construct a
test function, ψ, that allows for an FRI-lime reconstruction whilst satisfying

∆ψ + k2ψ = 0.

For example, if the activation can be modeled through a superposition of
diracs, then

ψan(x, y, z) =
eikz

x+ iy − an
is a valid analytic sensor.

• Brain computer interfaces
Brain computer interfaces (BCIs) try to operate a machine (e.g., a wheelchair
or a prosthetic arm) by mere “thought”. Basically, some electrodes are stuck
the subjects head and the measured EEG holds information to automatically
decipher the subjects intention. The, say, wheelchair then acts accordingly;
e.g., if the subject wants to go left, then the wheelchair should decide to go left
(solely by processing the measured EEG). The configuration of the generating
dipoles might have enough discriminating power to be used as a feature for
classifiers in the decision taking. In other words, the reconstructed dipoles
can help to decipher the subject’s intention. It would be interesting to see to
what extent analytic sensing is capable to perform in such settings.
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8.3 Concluding remarks

Finally, we would like to give some concluding remarks with respect to analytic
sensing in an EEG setting.

• Validity of the model
Analytic sensing uses a strong sparsity constraint; i.e., we assume that the
potential is generated by a superposition of M dipoles. In such, before trying
to give any biological or neurophysiological interpretation to the obtained
results we should verify that the potential measures indeed stem from a multi-
dipole source distribution. If not, we should be cautious when interpreting the
obtained result. We could, for example, simulate a Gaussian distribution and
try to fit dipoles to the measured boundary potential. It would be interesting
to see if analytic sensing yields dipoles located at the center of the Gaussian.
In that case the multi-dipole fit would be a good competitor against the
distributed source model.

• Occam’s razor
Occam’s razor, also known as law of sparsity or law of succinctness, recom-
mends selecting the competing hypothesis that makes the fewest new assump-
tions, when the hypotheses are equal in other respects. This belief, or rather
philosophy, is widespread among engineers. If we interpret the law of spar-
sity with respect to the work done in this manuscript, then it states that the
model that explains the measured data up to the level of noise with the fewest
dipoles is accepted as the best one.

• Quality of EEG measurements
First we would like to point out that the generally accepted boundary con-
dition is not entirely correct; i.e., the head is not a closed volume and hence
some current does leave the conductor model. Second, the quality of the
measured signal is rather bad (especially in non-averaged EEG). However,
the signal-to-noise ratio may be acceptable in those areas where there is fo-
cused activation; e.g., the part of the scalp just above the primary visual
cortex when presented with a visual stimulus. This is a good opportunity to
apply local analytic sensing. Another potential application is partial epilepsy
where the early onset might be focused an appropriate to be fitted with our
model.
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Appendix A

Appendices

A.1 Propagation of ln (ζ − a) through ∂Ω1

Consider the functions ϕ1 and Φ1 which are defined from the center up to the
boundary ∂Ω1 of the 3-sphere conductor model S (depicted in figure 5.1):

ϕ1(ζ) = ln(ζ − a),

Φ1(
ζ

r2
) = 0,

with a /∈ S. Next, we define the functions f1 and g1 as stated in equations (5.10)
and (5.11):

f1(ζ) = ln(ζ − a),

g1(ζ) =
σ1

σ2

ζ

ζ − a.

In order to propagate Φ1 trough the boundary Ω1, which yield Φ2, we need to solve
the ODE (5.8) for j = 1:

2ζ

r3
1

Φ′2

(
ζ

r2
1

)
+

1

r1
Φ2

(
ζ

r2
1

)
= −g1(ζ) + ζf ′1(ζ). (A.1)
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Since Φ2 is an entire function, we can write:

Φ2

(
ζ

r2
1

)
=
∑

k≥0

ck

(
ζ

r2
1

)k
. (A.2)

For the RHS of the ODE (A.1), we have:

−g1(ζ) + ζf ′1(ζ) =

(
1− σ1

σ2

)
ζ

ζ − a,

=

(
σ1

σ2
− 1

)∑

k≥0

(
ζ

a

)k+1

.
(A.3)

If we substitute the expressions (A.2) and (A.3) in the ODE (A.1), then we obtain:

∑

k≥0

ck
2k + 1

r2k+1
1

ζk =

(
σ1

σ2
− 1

)∑

k≥0

(
ζ

a

)k+1

,

from which we infer the coefficients ck:

c0 = 0,

ck =

(
σ1

σ2
− 1

)
r2k+1
1

(2k + 1)ak
, for k ≥ 1.

This yields the following expression for Φ2:

Φ2

(
ζ

r2

)
=
(σ1

σ2
− 1
)∑

k≥1

r2k+1
1

(2k + 1)ak

(
ζ

r2

)k
.

If we set j = 1 in equation (5.9), then we obtain an expression for ϕ2:

ϕ2(ζ) = f1(ζ)− 1

r1
Φ2

(
ζ

r2
1

)
,

= ln(ζ − a)−
(
σ1

σ2 − 1
)∑

k≥1

ζk

(2k + 1)ak
.
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A.2 Propagation of ϕ2 through ∂Ω2

Consider the functions ϕ2 and Φ2 (as constructed in the previous appendix) which
are defined from the center up to the boundary ∂Ω2 of the 3-sphere conductor
modelS (depicted in figure 5.1):

ϕ2(ζ) = log(ζ − a)−
(
σ1

σ2 − 1
)∑

k≥1

ζk

(2k + 1)ak

Φ2

(
ζ
r2

)
=

(
σ1

σ2 − 1
)∑

k≥1

r2k+1
1

(2k + 1)ak

(
ζ

r2

)k
,

with a /∈ S. Next, we define the functions f2 and g2 as stated in equations (5.10)
and (5.11):

f2(ζ) = log(ζ − a)−
(
σ0

σ1
− 1

)∑
k≥1

(
1− r2k+1

1

r2k+1
2

)
1

(2k + 1)ak
ζk

g2(ζ) = −σ2

σ3

∑

k≥1

(
1

ak
+

(
σ1

σ2
− 1

)
k

(2k + 1)ak
+

(
σ1

σ2
− 1

)
(k + 1)r2k+1

1

(2k + 1)akr2k+1
2

)
ζk

In order to propagate Φ2 trough the boundary Ω2, which yield Φ3, we need to solve
the ODE (5.8) for j = 2:

2ζ

r3
2

Φ′3

(
ζ

r2
2

)
+

1

r2
Φ3

(
ζ

r2
2

)
= −g2(ζ) + ζf ′2(ζ). (A.4)

Since Φ3 is an entire function, we can write:

Φ3

(
ζ

r2
2

)
=
∑

k≥0

ck

(
ζ

r2
2

)k
. (A.5)

For the RHS of the ODE (A.4), we have:

−g2(ζ) + ζf ′2(ζ) =
(
σ2

σ3
− 1
)∑

k≥1

ζk

ak
+

(
σ1

σ2
− 1
)(

σ2

σ3
− 1
)∑

k≥1

k

2k + 1

(
ζ

a

)k
+

(
σ1

σ2
− 1
)∑

k≥1

(
σ2

σ3
(k + 1) + k

)
r2k+1
1

(2k + 1)r2k+1
2

(
ζ

a

)k
.

(A.6)
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If we substitute the expressions (A.5) and (A.6) in the ODE (A.4), then we obtain:

∑
k≥0 ck

2k + 1

r2k+1
2

ζk =
(
σ2

σ3
− 1
)∑

k≥1
ζk

ak
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)(
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− 1
)∑
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k
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ζ
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)k
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(
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(k + 1) + k

)
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1
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2

(
ζ

a

)k
,

from which we infer the coefficients ck:

c0 = 0,

ck =

(
σ2

σ3
− 1

)
r2k+1
2

(2k + 1)ak
+

(
σ1

σ2
− 1

)(
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)
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2
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(
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)
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1
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, for k ≥ 0.

This yields the following expression for Φ3:
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ζ
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)∑

k≥1

r2k+1
2

(2k + 1)ak

(
ζ
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If we set j = 2 in equation (5.9), then we obtain an expression for ϕ3:

ϕ3(ζ) = f2(ζ)− 1

r2
Φ3

(
ζ

r2
2

)
,

= log(ζ − a)−
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− 1
)∑
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2

ζk,

which yields an expression for ψa(ζ, r) = ϕ3(ζ) +
1

r
Φ3

(
ζ

r2

)
.

Figure A.2 depicts a vector-field representation of ψa(ζ, r) = ϕ3(ζ)+
1

r
Φ3

(
ζ

r2

)

with r1 = 0.86, r2 = 0.92 and r3=1. The conductivities are σ1 = 1, σ2 = 0.0125
and σ3 = 1. The singularity was chosen on the x-axis, a = 1.5.
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Figure A.1: Vector-field representation of the analytic sensor, ψa(ζ, r) =

ϕ3(ζ) +
1

r
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)
. The color indicates the magnitude of the analytic

sensor in the considered point.
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