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ABSTRACT

During the monitoring of pharmacoresistant epilepsy patients
prior to surgery, interictal epileptic discharges (IEDs) are analyzed
to locate possible sources of epileptic activity. In order to compen-
sate low spatial resolution of EEG, simultaneous EEG-fMRI record-
ings can be used. Conventional methods typically deploy an EEG-
informed analysis of the fMRI data; i.e., EEG-derived IED onset
timings are used to setup regressors for linear regression. Recently
we have proposed a new fMRI analysis method, total activation
(TA), which is able to deconvolve the underlying activity-inducing
signal without prior information on the onset timing and duration of
events. Here we demonstrate that TA can locate the epileptogenic
regions from fMRI data. We compare and validate our results with
conventional methods performed by experts prior to surgery.

Index Terms— fMRI BOLD, spatiotemporal regularization, de-
convolution, sparsity, epilepsy

1. INTRODUCTION

Electroencephalography (EEG) is the most prominent method to di-
agnose and monitor epilepsy noninvasively [1]. EEG measures the
electric potential induced due to the brain activity by several elec-
trodes connected to the scalp. However, EEG alone lacks the spatial
resolution to localize the sources, especially in deep brain structures;
i.e., EEG source localization is an ill-posed inverse problem that re-
quires additional assumptions on the source model.

Simultaneous recording of EEG and functional magnetic res-
onance imaging (FMRI) is proposed to overcome the localization
problem since the EEG signals can be cleaned from the MR arte-
facts [1]. FMRI blood oxygenated level dependent (BOLD) signal
reflects metabolic and hemodynamic changes following neuronal ac-
tivity. FMRI’s high spatial resolution provide additional information
to be combined with EEG’s monitoring process. However, EEG has
mostly been the primary imaging method; i.e., EEG-derived IED on-
sets are used to set up regressors of a general linear model (GLM)
for fMRI. Recently, some exploratory methods propose fMRI de-
rived EEG methods such as independent component analysis [2].

With the advent of fast solutions for convex sparsity constraints,
variational formulations have been proposed for fMRI deconvolu-
tion. Assuming a linear model for the hemodynamic system, re-
ferred to as hemodynamic response function (HRF), they impose
temporal sparsity in the brain. Contrary to confirmatory methods
such as the GLM, none of these methods need timing information of
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the paradigm, therefore, is able to detect spontaneous brain activity.
For example [3] use the majorization-minimization scheme, [4] re-
lies on ridge-regression, and [5] imposes sparsity on a dictionary of
shifted HRFs whereas [6] imposes sparsity in the activelet-domain,
a wavelet basis that is tailored to HRF. However, these methods only
operate in the temporal domain and do not incorporate any spatial
characteristics of fMRI. Moreover, variational formulations are con-
structed based on a “synthesis prior”, which is an explicit dictionary;
e.g., activelets or shifts of canonical HRF. We recently proposed a
spatiotemporal regularization, namely total activation (TA), to de-
rive the activity-inducing signal in fMRI [7]. Temporal regulariza-
tion in TA employs an “analysis prior” with a general differential
operator; i.e., inverting the HRF such that the operator can be easily
tailored for the desired type of activity (spike-like or block-like) [8].
The spatial regularization imposes structured-sparsity based on an
anatomical prior which accounts for similar patterns in a brain re-
gion. We employ the efficient generalized forward-backward split-
ting algorithm [9, 10], which is a fast iterative shrinkage algorithm
that alternates between temporal and spatial domain solutions.

The detection of epileptogenic regions from fMRI constitutes a
potential application for fMRI deconvolution methods since the on-
set timings of IEDs are not known a priori [11]. Here we show that
TA reveals fMRI-derived IEDs contrary to conventional EEG de-
rived methods. Specifically, we apply TA to an epilepsy patient data
and correlate recovered activity-inducing signals with EEG-derived
IED onsets. Then non-parametric hypothesis testing locate regions
with epileptogenic activity. We compared and validated our results
with the gold standard (GLM model) actually used by the experts
prior to surgery [12].

2. METHODS

2.1. FMRI Signal Model

We represent the BOLD signal of ith voxel as convolution of
activity-inducing signal u(i, t) with HRF h(t). In real-world fMRI
data, the BOLD signal is contaminated by different sources, such
as movement, cardiac and respiratory fluctuations, scanner noise,
nonhomogenous magnetic field [13]. Here, we presume that the
data is preprocessed to compensate some of these effects including
movement compensation, regression of low frequency drifts, and
voxel-wise normalization (explained in section 3.1). The fMRI
signal y(i, t) then reduces to

y(i, t) = u(i, t) ∗ h(t) + ε(i, t) = x(i, t) + ε(i, t), (1)

where x(i, t) is the activity-related signal, and ε(i, t) is indepen-
dently distributed gaussian noise with zero mean and variance σ2

i .
We define the sparse innovation signal us(i, t) from which activity-
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inducing signals are derived as D{u(i, ·)}(t) = us(i, t), where D
is derivative operator. The innovation signal reflects onset and off-
set timings of neuronal events and conventional total variation reg-
ularization would favor block-like activity-inducing signals. Figure
1 (box I) illustrates the construction of fMRI signal from activity-
inducing signals.

2.2. Hemodynamic Response Function

Even though only empirical models exist for the HRF approxima-
tion, parametric estimations are widely employed in fMRI studies
[14]. Here, we adopt the formulation in [6] based on the first-order
Volterra series approximation of non-linear Balloon model. The au-
thors derive a linear differential operator Lh, of which HRF h(t) is
the Green’s function; i.e, Lh{h}(t) = δ(t). Specifically, the differ-
ential operator Lh is defined by its zeros αi (i = 1, . . . , 4) and pole
γ as follows

Lh =

4∏
i=1

(D − αiI)(D − γI)−1,

where I is the identity operator. The zeros and pole are set via the
optimum parameter setting in [14]. The differential operator Lh in-
deed inverts the effect of smooth hemodynamic system and uncovers
the activity-inducing signal, u, and sparse innovation signal, us, as

Lh{x(i, ·)}(t) = u(i, t), L{x(i, ·)}(t) = us(i, t), (2)

where L = DLh being the general differential operator of TA.
From now on, we consider the discrete data, that is, noisy fMRI

dataset is a matrix y = [y(i, t)]i,t of size V × N , where i =
[1, ..., V ] is the voxel index and t = [1, ..., N ] is the temporal in-
dex. All the operators are discretized, which we denote with ∆; e.g.,
∆Lh indicates the difference operation for inverse HRF Lh.

2.3. Total Activation

TA aims at recovering underlying activity-inducing signals from
noisy fMRI measurements through a convex problem imposing
(structured)-sparsity priors in the spatiotemporal domain. Mainly,
this variational formulation consists of least-squares data fitting
term, a sparsity-promoting temporal regularization term which in-
corporates the general differential operator L, and a spatial regular-
ization term which constructs structured-sparse patterns in the brain.
Then we solve for

x̃ = arg min
x

1

2
‖y − x‖2F +RT (x) +RS(x), (3)

where

RT (x) =

V∑
i=1

λ1[i] ‖∆L {x[i, ·]} ‖1︸ ︷︷ ︸∑N
t=1|∆L{x[i,t]}|

, (4)

and

RS(x) =
N∑
t=1

λ2[t]‖∆Lap {x[·, t]} ‖(2,1)︸ ︷︷ ︸∑M
k=1

√∑
i∈Rk

∆Lap{x[i,t]}2

, (5)

||x||F is the Frobenius norm and ∆Lap is the Laplacian filter.
Temporal regularization termRT (x) applies on each voxel time

series and exploits the sparsity of innovation signal us = ∆L{x}
imposing `1-norm. On the other hand, the spatial regularization term
RS(x) acts on each fMRI volume and uses `(2,1)-norm on brain
parcels to enforce structured sparsity. Each parcel Rk is based on an

anatomical atlas with M regions. We aim at recovering coherent ac-
tivations inside regions whereas sparse activations across all volume.
Regularization parameters λ1 and λ2 calibrates the influence of tem-
poral and spatial constraints, respectively. TA flowchart is depicted
in Figure 1 (box II).

2.4. Optimization Algorithm

We employ generalized forward-backward splitting [9], for de-
noising case also known as parallel Dykstra-like proximal algo-
rithm [10], to solve the optimization problem in (3). The joint
solution is obtained by incorporating the proximal maps of both
spatial and temporal regularizations (Algorithm 1). The proximal
map solves

proxRT,S
(y) = arg min

x

1

2
||y − x||2F +RT,S(x). (6)

Since both regularization terms are convex but not quadratic, itera-
tive methods are required. The temporal solution, proxRT

, exploits
generalization of total variation regularization introduced in [8]
where a filter formulation of a discrete operator ∆L = ∆D∆Lh is
constructed. We construct the minimum length filter beginning from
the simple difference filter ∆D = [1,−1]. The analysis formulation
in (4) provides serious advantages on the implementation of the
difference filter; that is, the cascade filtering of a causal filter (length
6) for zeros [0, α1, ..., α4] and either a causal filter (Re(γ) < 0) or
an anti-causal filter (Re(γ) > 0). The spatial solution proxRS

is
obtained via dual-norm formulation for `(2,1)-norm [15] and gradi-
ent projection algorithm [16]. The denoising problem (Algorithm 1)
solves for the activity-related signal x̃, however, we can apply the
differential operator ∆Lh to recover the activity-inducing signal.

Algorithm 1 Spatio-Temporal Regularization
x̃ = arg minx

1
2
‖y − x‖2F +RT (x) +RS(x)

INPUTS: Noisy fmri data y,
1: Initialize:
n← 1, x̂0

T = 0, x̂0
S = 0, x̃0 = 0,

2: repeat
3: Solve for temporal prior:

x̂n+1
T = x̂n

T + proxRT
(x̃n − x̂n

T + y)− x̃n,
4: Solve for spatial prior:

x̂n+1
S = x̂n

S + proxRS
(x̃n − x̂n

S + y)− x̃n,
5: Update:

x̃n+1 = x̂n+1
T /2 + x̂n+1

S /2,
6: n← n+ 1
7: until convergence or number of maximum iterations are

reached.

3. RESULTS

3.1. EEG-FMRI Data

One epilepsy patient was scanned with simultaneous EEG-fMRI.
The fMRI data was acquired by a Siemens 3T Trio MR scanner
with gradient echo EPI while resting (eyes-closed). The acquisi-
tion parameters were TR = 1.5s, TE = 35ms, flip angle=85o, voxel
size= 3.75×3.75×5.5mm3, total 25 slices and 1100 scans. T1 and
T2 weighted (pre & post-operation) images were also acquired. In
order to remove the artifacts prior to analysis, fMRI volumes were
realigned to the first scan, spatially smoothed with Gaussian filter
(FWHM=5mm) using SPM8 (FIL,UCL,UK). The anatomical AAL
atlas [17] (90 regions without the cerebellum) was mapped onto the
subjects functional space using the IBASPM toolbox [18]. The first
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Fig. 1: Schematic of our approach for detecting IEDs from fMRI. Block-like activity-inducing signals are fed into the hemodynamic system
which is formulated as the Green’s function of a general derivative operator Lh; i.e., Lh{h}(t) = δ(t) (Box I). TA recovers neuronal-related
activity-inducing signals by imposing sparsity constraints through spatiotemporal regularization (Box II). Nonparametric hypothesis testing
revealed three significant regions, Left Middle Frontal Gyrus (LMFG) (resected area), Left Medial OrbitoFrontal Gyrus (LOFG), and Left
Insula (LI) with p < 0.05 (corrected). The results are validated with conventional methods prior to surgery (Box III).

10 volumes are discarded and voxels time series labelled within the
atlas were detrended for slow oscialltions using a first-degree poly-
nomial and DCT basis function up to cut-off frequency of 1/125 Hz,
and finally scaled to have unit variance.

EEG signals were recorded with a 64 MR-compatible EEG cap
(EasyCaps, FalkMinnow Services, Herrsching, Germany) according
to the 10-20 system. Electrodes were equipped with an additional
5k resistance and impedances were kept as low as possible. EEG
was acquired at 5kHz using 2 BrainAmp MR compatible amplifiers
(Brain Products, Munich, Germany) and was synchronized with the
MR clock. MR gradient and cardioballistic artefacts were removed
from the EEG using Vision Analyzer (Brain Products, Munich, Ger-
many) using average artifact subtraction methods [19]. EEG data
was subsequently downsampled to 250Hz, and IED were visually
marked by an experienced electroencephalographer.

3.2. Localization of Interictal Epileptic Discharges with TA

The algorithm is implemented in Matlab 7.14 (Mathworks, Natick,
MA) on a 64-bit, 4-core computer with 16 GB RAM, operating
Linux. The total allocated time was around 6 hours for data of size
(8598 × 1090). Each loop in spatiotemporal regularization (Algo-
rithm 1) includes two iterative proximal map computations defined

in (6). The temporal regularization parameter λ1[i] is calibrated au-
tomatically in proxRT

such that the noise level converges to a pre-
estimated noise level [20], derived from the median absolute devi-
ation of fine-scale wavelet coefficients (Daubechies, order 3). We
pick an empirical spatial regularization parameter λ2 = 5 which
seems to provide good compromise for data fitting. Increasing λ2

forces the smoothness leaving no room for local differences, espe-
cially for big regions. On the other hand small λ2 results in high
variance in the regions. We refer to [7] for synthetic data results and
more details. The recovered activity-inducing signals reflect not only
IEDs but also spontaneous brain activity. Therefore, a robust mea-
sure to reflect the brain regions where epileptic activity is dominant
is needed.

3.3. Nonparametric Hypothesis Testing

We further segregate the large regions in the atlas to find localized
epileptic regions (largest region and smallest region contain 345 and
10 voxels respectively). K-means clustering is performed on the
activity-inducing signals (K clusters for regions with number of vox-
els more than K× 100 voxels). The EEG IED events are convolved
with a Gaussian filter (FWHM= 3s) and downsampled to fMRI tem-
poral resolution TR= 1.5s.
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Fig. 2: The ranked average activity-inducing signals (Spearman’s
correlation) in the selected regions and EEG driven IEDs (blue).

We perform a non-parametric hypothesis testing using correla-
tion (Spearman) of region averaged time courses and original IED.
Correlations with 999 surrogates are computed for null hypothesis
and fifth highest value of maximum statistics is selected as a thresh-
old (p < 0.05 (corrected)). Left Middle Frontal Gyrus (LMFG),
Left Medial OrbitoFrontal Gyrus (LOFG), Left Insula (LI) are found
to be the significant areas. Among these regions LMFG is already
known to be resected in the brain by the experts due to high epileptic
activity. Figure 2 shows the ranked average activity-inducing signals
in these regions compared with the EEG driven IED onsets.

3.4. Comparison to Conventional Methods

The patient was investigated by conventional methods; i.e., feed-
ing EEG information as regressors in GLM analysis (SPM) where
the onset of IEDs are defined by an expert during EEG-fMRI [12].
Our method is concordant with the conventional method by locat-
ing LMFG as one of the highest possible cortical source of epilepsy.
Figure 1 (box III) shows the epileptic regions determined by TA and
GLM analysis.

Guided by these non-invasive estimations intracerebral elec-
trodes are placed to the most probable sources of IEDs where
recordings determine the areas to be resected during the surgery.
The patient had been operated for LMFG, also detected by TA and
conventional methods, and left inferior frontal gyrus, not detected
by both methods. The patient is reported to be seizure-free after the
surgery.

4. DISCUSSION AND CONCLUSION

Recently, we have proposed a spatiotemporal regularization method
for detecting unpredicted neuronal activity in fMRI. Total activation
recovers activity-inducing signals by incorporating a generalized
total variation constraint temporally, and by imposing structured-
sparsity through an anatomical atlas spatially. The flexibility of the
method brings along the adaptation of different type of driving sig-
nals by altering the general derivative operator; i.e., L = Lh solves
for spike-like activity (state-of-the art methods), and the adaptation
of a different atlas. TA proved to reconstruct back the paradigm in-
formation along with relevant resting state networks in our previous
study [7]. Here, we showed that TA is able to locate the cerebral
sources of IED taking into account fMRI as its primer modality.
The located regions are also confirmed by the conventional methods
performed prior to the surgery and intracranial measurements.
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