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Confirmatory approaches to fMRI data analysis look for evidence for the presence of pre-defined regressors
modeling contributions to the voxel time series, including the BOLD response following neuronal activation.
As more complicated questions arise about brain function, such as spontaneous and resting-state activity,
new methodologies are required. We propose total activation (TA) as a novel fMRI data analysis method to
explore the underlying activity-inducing signal of the BOLD signal without any timing information that is
based on sparse spatio-temporal priors and characterization of the hemodynamic system. Within a variation-
al framework, we formulate a convex cost function—including spatial and temporal regularization terms—
that is solved by fast iterative shrinkage algorithms. The temporal regularization expresses that the
activity-inducing signal is block-type without restrictions on the timing nor duration. The spatial regulariza-
tion favors coherent activation patterns in anatomically-defined brain regions.
TA is evaluated using a software phantom and an event-related fMRI experiment with prolonged resting state
periods disturbed by visual stimuli. The results illustrate that both block-type and spike-type activities can be
recovered successfully without prior knowledge of the experimental paradigm. Further processing using
hierarchical clustering shows that the activity-inducing signals revealed by TA contain information about
meaningful task-related and resting-state networks, demonstrating good abilities for the study of non-
stationary dynamics of brain activity.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Conventional analysis of functional magnetic resonance imaging
(fMRI) data heavily relies on approaches based on general linear
models (GLMs) where prior knowledge about the experimental
paradigm; i.e., onsets and durations of stimuli, is used to construct tempo-
ral regressors, which are then fitted to the time course of every voxel. The
subsequent statistical hypothesis testing, for a given contrast of fitted
weights, is a mass univariate approach leading to an “activation map”
that highlights brain regions for which sufficient evidence is present to
be related to the experimental paradigm. The relationship between the
measured blood oxygen level dependent (BOLD) and the experimental
paradigm can be modeled as a linear shift-invariant system with the he-
modynamic response function (HRF) as an impulse response. In standard
GLM approached (Friston et al., 1998), the HRF is predefined using
gamma functions; more flexible techniques estimate HRF components
in a subject- or time-dependent way in order to deal with inter- and
intra-subject variability (Aguirre et al., 1998). More notably, parcel-
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based HRF estimation methods through joint detection estimation (JDE)
framework are studied based on Bayesian approaches (Chaari et al.,
2013;Makni et al., 2008; Vincent et al., 2010). Recently, an adaptive parcel
identification driven by the hemodynamics is proposed using JDE (Chaari
et al., 2012; Thirion et al., 2006). These HRF identification methods are
mainly combined with GLM analysis to explore the parcel/subject/
group/task specific hemodynamic models.

Not all brain activity can be modeled beforehand using stimulus
functions; e.g., interictal epileptic discharges occur spontaneously. In
addition, mere resting-state, which was neglected before as back-
ground noise, is known (Raichle, 2006) to produce characteristic
patterns of brain activity referred to as resting-state networks. Such
unpredictable activity cannot be inferred from traditional GLM analy-
sis approaches (Gusnard and Raichle, 2001). Therefore, there is an
increasing need for methodologies that enable the exploration of
hemodynamic brain activity without predefined responses (Cole et
al., 2010). Data-driven methods have been proposed for that purpose
such as fuzzy clustering (Baumgartner et al., 2000), temporal cluster-
ing analysis (TCA) (Liu et al., 2000; Morgan et al., 2008), seed correla-
tion analysis (Biswal et al., 1995), or subspace decomposition
methods such as independent component analysis (ICA) (Beckmann
and Smith, 2004; Calhoun and Adali, 2006), canonical correlation
analysis (CCA) (Afshin-Pour et al., 2012) and agnostic canonical vari-
ates analysis (agnostic-CVA) (Evans et al., 2010). ICA is probably the
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most commonly used data-drivenmethod. It provides a bilinear decom-
position of the data into components that consist out of a spatial map
with an associated time course. Its application to fMRI typically relies
on (a surrogate for) spatial statistical independence between the com-
ponents. However, such criterion is not directed specifically to identify
“activation like” components since no knowledge is taken into account
about the hemodynamics or about the type of activity-driven signal
(e.g., spikes versus sustained activity).

fMRI deconvolution methods have been proposed to uncover the
underlying activity-inducing signal at the fMRI timescale of seconds.
Initially, Glover (1999) introduced Wiener deconvolution filtering
that is optimal for Gaussian sources and thus results in very smooth
activity-inducing signals. This work was generalized by Gitelman et
al. (2003) to study the psychophysiologic interactions at the neuro-
nal level. Following recent advances in convex optimization theory,
these methods can be made more sophisticated by adding sparse
priors on the underlying signal and solve maximum a posteriori
estimation rather than naive maximum likelihood estimation. They
have been exploited as an extension to standard GLM analysis by
defining spatial priors on spatial activation maps (Flandin and
Penny, 2007; Harrison et al., 2008; Smith and Fahrmeir, 2007;
Vincent et al., 2010). Within a temporal fMRI deconvolution
framework, while the linear system assumption on the hemodynam-
ic model is retained, regularization terms use ‘1-norm to favor sparse
solutions in time; i.e., a limited number of spike-like activations. For
example, Hernandez-Garcia and Ulfarsson (2011) use the
majorization–minimization scheme, Gaudes et al. (2011, 2013) rely
on ridge-regression and sparsity-promoting estimators, and
(Khalidov et al., 2007, 2011) impose sparsity in the activelet-
domain, a wavelet basis that is tailored to the hemodynamic proper-
ties. These methods do not require any knowledge on the timing and
exploit temporal properties of the HRF. Promising results have been
demonstrated for local event detection (Gaudes et al., 2011), espe-
cially in epilepsy (Lopes et al., 2012), but also for resting-state anal-
ysis (Petridou et al., 2012). Recently, non-linear models have also
attracted a lot of attention for blind deconvolution to explore the
network dynamics. These methods solve non-linear state-space
model in continuous time, which bring along high resolution solu-
tions, and access both hidden states and (non)dynamic parameters
related to the neuronal activity via Bayesian filtering, Cubature
Kalman filtering and Local Linearization filters (Friston et al., 2008,
2010; Havlicek et al., 2011; Riera et al., 2004). These methods, how-
ever, have high computational cost compared with linear models
and are mostly applied for uncovering the hemodynamics of a priori
regions of interest.

Here we propose a novel deconvolution method for fMRI data
analysis, for which we coin the term “total activation” (TA). TA in-
cludes some unique features to go beyond the limitations mentioned
above:

1. Express temporal properties of the activity-inducing signal. The
deconvolution identifies the “innovation” signal (which is spike-
type) as the sparse driver of the BOLD signal. However, the
activity-inducing signal can be more flexible such as block-type
signals (Karahanoglu et al., 2011).

2. Structured sparsity for combined temporal and spatial regularization.
Spatial regularization is incorporated using mixed-norms based on
anatomical priors of brain regions (Baritaux et al., 2011); i.e., time
courses of voxels in the same brain regions are favored to be
coherent.

3. Take advantage of efficient optimization schemes. We employ the ef-
ficient generalized forward–backward splitting algorithm (Raguet
et al., 2012), which is a fast iterative shrinkage algorithm that al-
ternates between temporal and spatial domain solutions until con-
vergence to the final estimate of the underlying activity-inducing
signal.
The paper is organized as follows. We first introduce the TA theo-
retical framework. Next, the feasibility of TA is demonstrated on both
synthetic and experimental data. The simulation study allows vali-
dating the performance for block-type activity-inducing signals
with different block durations. The experimental study is based on
fMRI data acquired in three healthy subjects while being at rest but
with several (unexpected) visual stimuli. The TA deconvolved sig-
nals indicate strong and short periods of activity in the primary visu-
al regions that match with the experimental timing. The dynamic
“activationmaps” show coordinated activation (and “de-activation”)
in large-scale networks, mostly with much larger average block
lengths. We also show that resting-state networks can be retrieved
using hierarchical clustering of the region-averaged activity-
inducing signals.

Total activation

fMRI signal model

We represent the BOLD response following neuronal activation as
the convolution of the activity-inducing signal u(t) with the HRF h(t).
In model-based approaches, the activity-inducing signal corresponds
to the stimulus function according to the experimental paradigm.
Hence, for every voxel i it can be modeled by a weighted sum of
shifted and dilated box functions b(t) as

u i; tð Þ ¼ ∑
k
ck ið Þb t=ak−tkð Þ; ð1Þ

where b(t)=1, 0≤ t≤1 and 0 otherwise; ck(i) is the amplitude of
the k-th block; ak is the block length; aktk is the onset timing of ac-
tivity. We then define the innovation signal us(i,t) as the deriva-
tive of the activity-inducing signal. In particular, for block-type
signals, the innovation signal will be sparse and contain many
zeros as

D u i; ⋅ð Þf g tð Þ ¼ ∑
k
c′k ið Þ δ t−aktkð Þ−δ t−ak tk þ 1ð Þð Þð Þ;

¼ ∑
k′

ck′ ið Þδ t−tk′
� � ¼ us i; tð Þ; ð2Þ

where D is the derivative operator and δ(t) is the Dirac-delta
function. We have reparameterized the innovation signal to clear-
ly reflect its sparse nature; i.e., a train of Dirac impulses. Hence,
us(i,t) represents the timing when the activity inducing signal
u(i,t) changes its amplitude. We further assume the following
linear-system relationship between the activity-inducing signal
u(i,t) and the activity-related signal x(i,t):

x i; tð Þ ¼ u i; tð Þ � h tð Þ; ð3Þ

where h(t) is the hemodynamic response function (HRF). The canonical
HRF used in SPM (Friston et al., 1998) is characterized by two gamma
functions. An alternative formulation is the first-order Volterra series
approximation of the Balloon model for fMRI BOLD (Friston et al.,
2000; Khalidov et al., 2011). Herewe use the linear differential operator
Lh defined in Khalidov et al. (2011), which inverts the hemodynamic
system; i.e., we have

Lh hf g tð Þ ¼ δ tð Þ: ð4Þ

Then, we recover the activity-inducing signal as

Lh x i; ⋅ð Þf g tð Þ ¼ u i; tð Þ; ð5Þ

and, given the link between innovation and activity-inducing signal,
we also have L{x(i,⋅)}(t)=D{u(i,⋅)}(t)=us(i,t), where the operator
L=DLh combines Lh with the regular derivative. More specifically,
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the differential operator Lh is defined by its zeros αi (i=1,…,M1) and
poles γj (j=1,…,M2) as follows

Lh ¼ ∏
M1

i¼1
D−αiIð Þ ∏

M2

j¼1
D−γjI
� � !−1

;

where I is the identity operator and M1>M2. In Fig. 1, we illustrate
our fMRI signal model and its underlying sparse structure.

In practice, the activity-related signal x(i,t) is corrupted by differ-
ent noise and artifactual sources, such as non-neurophysiological
contributions (e.g., aliased cardiac and respiratory fluctuations),
movement, scanner drifts and thermal noise (Lund et al., 2006). The
fMRI signal model y(i,t) then becomes

y i; tð Þ ¼ u i; tð Þ � h tð Þ þ∑
k
βk ið Þnk tð Þ þ � i; tð Þ; ð6Þ

where nk(t) represent known nuisance regressors (e.g., movement,
low-frequency drifts), βk are associated weights, and �(i,t) is indepen-
dently distributed Gaussian noise with zero mean and variance σi

2.
We represent the sampled and discretized full dataset as a matrix

y=[y(i,t)]i,t of size N×V, where N is the number of scans and V is the
total number of voxels. Also the operators need to be discretized,
which we denote with Δ; e.g., ΔD indicates the finite-difference for
the derivative D, and ΔLh for the hemodynamic inverse filter
(Karahanoglu et al., 2011).

Variational formulation

TA aims at reconstructing activity-related signals from noisy fMRI
measurements by imposing informative priors on the signal of inter-
est using a variational formulation (Kirsch, 1996; Zibulevsky and Elad,
2010). Within the context of fMRI data processing, we introduce a
novel spatio-temporal formulation based on the minimization of a
cost function that includes a least-squares data-fitting term equal to
the residual sum of squares (RSS), and two regularization terms RT

and RS that act along the temporal and spatial dimensions, respec-
tively. Specifically, our cost function reads

x̃ ¼ argmin
x

1
2
jjy−xjj2F þRT xð Þ þ RS xð Þ; ð7Þ

where y is the fMRI data, and the Frobenius norm is ‖x‖F2=∑ i=1
V

∑ t=1
N |x(i,t)|2. The optimal solution is a compromise between the

data fitness and the regularization penalties.

Temporal regularization
The rationale of the temporal regularization term RT xð Þ is to ex-

ploit the sparsity of the innovation signal that can be derived from
us(i,t)

us(i,t) = D{u(i,.)}(t)

hemody
syst

h(

u(i,t) h(t)

u(i,t) = Lh{x(i,
.
)}(t) Lh{h}(t) 

activity-inducing
signal
u(i,t)

sparse
innovation signal

us(i,t)

Fig. 1. fMRI signal model. Assuming that the activity-inducing signal is block-type, its deriv
obtained by convolving the activity-inducing signal with the impulse response of the hem
signal artifacts, and finally sampled at the fMRI temporal resolution (TR).
the recovered activity-related signal. We further build on previous
work (Karahanoglu et al., 2011) where we introduced a generaliza-
tion of “total variation” (TV). As a brief reminder, the TV-norm of a
1-D signal f(t) is defined as the ‘1-norm of its derivative: ||ΔD

{f}(t)||1. Since minimizing ‘1 favors sparse solutions, TV regularization
leads to signals whose derivatives are sparse, which are
piecewise-constant (Rudin et al., 1992). The generalization in
Karahanoglu et al. (2011) introduced an additional linear differential
operator in ‘1-norm that can compensate for the presence of a linear
system. In particular, we use the differential operator ΔL ¼ ΔDΔLh
within the ‘1-norm:

RT xð Þ ¼
XV
i¼1

λ1 ið ÞΔL x i; ⋅ð Þf g1; ð8Þ

where ‘1-norm is defined as

ΔL x i; ⋅ð Þf g1 ¼
XN
t¼1

ΔL x i; tð Þf gj j; ð9Þ

and λ1(i) is the regularization parameter for voxel i.

Spatial regularization
Since fMRI data has a large amount of spatial correlation, the spa-

tial regularization RS xð Þ promotes coherent activity within the same
region. For the sake of illustration, regions are defined in this work
based on an anatomical atlas; i.e., we assume M different parcels
where Rk, k=1,…,M, are the sets of voxels for each region. We then
use a mixed ‘ 2;1ð Þ-norm to express spatially coherent (smooth) activ-
ity inside a region and possibly crisp changes in activity across regions
(Baritaux et al., 2011; Yuan and Lin, 2006):

RS xð Þ ¼
XN
t¼1

λ2 tð Þ‖ΔLap x ⋅; tð Þf g‖ 2;1ð Þ; ð10Þ

where the ‘ 2;1ð Þ-norm is defined as

‖ΔLap x ⋅; tð Þf g‖ 2;1ð Þ ¼
XM
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
i�Rk

ΔLap x i; tð Þf g2;
r

ð11Þ

and ΔLap is the 3-D second-order difference (Laplacian) operator and
λ2(t) is the regularization parameter for each timepoint. Spatial regu-
larization will favor smooth activity patterns inside regions, but not
across regions.
namic
em
t)

= (t) x(i,t) = h(t)*u(i,t)

x(i,t)

y(i,t) = x(i,t)+n(i,t)

y(i,t)

activity-related
signal
x(i,t)

measured fMRI
signal
y(i,t)

ative is the innovation signal, which will be sparse. The activity-related signal can be
odynamic system. The activity-related signal is then further corrupted with noise and
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Optimization algorithm

We deploy the generalized forward–backward splitting algorithm
(Raguet et al., 2012) to solve the optimization problem at hand. This
iterative algorithm alternates between solving two cost functions:

x̃T ¼ argmin
x

1
2
‖y−x‖22 þRT ; ð12Þ

x̃S ¼ argmin
x

1
2
‖y−x‖22 þRS: ð13Þ

In Fig. 2, we schematically outline the TA framework for fMRI data
analysis. The extracted time courses are fed into this two step
forward–backward splitting algorithm where a joint solution is
achieved. Temporal regularization works with each voxel time course
since the operator acts only in the temporal domain, whereas spatial
regularization term works with each fMRI volume. We refer to
Appendix A for further details about the algorithm.

Finally, we notice that the solution x̃ will be the activity-related
signal, however, we can apply the differential operator ΔLh to it to re-
cover the activity-inducing signal as well.

Methods

Synthetic data

In order to validate the TA approach, we used a software phantom
with 10×10×10 voxels divided into four regions. The activity-
inducing signal was fixed within a region, but different between re-
gions. Two regions had spike-like activity-inducing signals: region 1
Fig. 2. Flowchart of TA. Successive regularization in temporal and spatial domains is applie
hemodynamic system by adopting a differential operator mimicking the inverse HRF and
an anatomical atlas. Finally, we obtain the activity-related signals and activity-inducing sig
has spike trains with gradually increasing inter stimulus interval (ISI)
from 1 to 12 s, region 2 has short events with duration uniformly dis-
tributed between [1,2]s. The other two regions have longer block-like
activity (duration uniformly distributed between [1,…,15]s). The
onset timings of the events have uniform distribution such that 12
and 6 events on average are generated in regions with spikes and
blocks, respectively. A very short event is introduced into region 4 to
test TA's robustness for short events in the middle of sustained events.
All activity-inducing signals were sampled on a grid with temporal res-
olution (TR) of 1 s and had 200 timepoints. The activity-induced signals
were then convolved with the HRF and corrupted with i.i.d. Gaussian
noise such that the signal-to-noise ratio (SNR) was 1 dB. We define
the SNR as the ratio of signal power to noise power in logarithmic
scale as

SNR ¼ 10 log10
‖x‖2

‖y−x‖
2

 !
:

Fig. 3 depicts the phantom and the associated time courses for
each region.

In this example, temporal and spatial regularization operate in
ideal settings. First, the temporal differential operator is perfectly
matched with the HRF (see Supplementary for the parametrization
of the operator ΔLh). Second, the spatial regularization uses the
same regions as the generative model.

Experimental data

We further evaluated TA with experimental data acquired on 3 sub-
jects during a sparse event-related paradigmwhere resting state periods
d to the noisy BOLD time courses. Temporal regularization (blue window) inverts the
spatial regularization (red window) imposes smooth activations within the regions of
nals which reveal the neuronal-related activity.



Fig. 3. The software phantom contains 4 regions in a cube that consists out of 10×10×10 voxels. The first region (cyan, 300 voxels) was simulated as spike train with gradually
increasing ISI from 1 s to 12 s and the second region (blue, 210 voxels) was simulated with random events with uniform duration in (Afshin-Pour et al., 2012; Aguirre et al.,
1998) seconds. The third region (green, 245 voxels) and the fourth region (red, 245 voxels) were simulated with random events with uniform duration in (Afshin-Pour et al.,
2012; Chang and Glover, 2010) seconds. A very short event is inserted into region 4 (around 100 s). The time resolution was chosen as TR=1 s. The activity-inducing signals
(in gray) were convolved with HRF to obtain the BOLD activity for each region. Each voxel time series was then corrupted with i.i.d. Gaussian noise such that voxel time series
had SNR of 1 dB.
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were disrupted by 10 visual stimuli of 8 Hz flickering checkerboard
of duration 1 s with onsets randomly chosen following a uniform
distribution during the duration of the run. When no visual stimuli
were presented, subjects were instructed to maintain visual fixation
on a cross in the center of the screen. The experiment was conducted
in a Siemens TIM Trio 3 T MR scanner with a 32-channel head coil.
The fMRI data comprised N=160 (subjects 1 and 3) and N=190
(subject 2) T2

∗-weighted gradient echo-planar volumes (TR/TE/FA:
2 s/30 ms/85°, voxel size: 3.25×3.25×3.5 mm3, matrix=64×64).
A T1-weighted MPRAGE anatomical image was also acquired during
the MR session (192 slices, TR/TE/FA: 1.9 s/2.32 ms/9°, voxel size:
0.45×0.45×0.9 mm3, matrix=512×512).

The preprocessing steps included realignment of the datasets to the
first scan of each subject and then spatial smoothing with a Gaussian
smoother (FWHM=5 mm). The spatial smoothing is not an essential
step since TA also includes spatial regularization. However, the tempo-
ral regularization parameter is tuned for each voxel with respect to the
(estimated) noise level. Therefore, spatial smoothing provides a spatial-
ly smoother estimate (less variations) of the noise level. Both steps
were performed in the functional space of the subjects using SPM8
(FIL, UCL, UK). The anatomical AAL atlas (90 regions without the cere-
bellum) was mapped onto each subject's functional space using the
IBASPM toolbox (Alemán-Gómez et al., 2006; Tzourio-Mazoyer et al.,
2002). The voxels' time courses labeled within the atlas were
detrended using a first-degree polynomial (i.e., linear trend) and
slow oscillations (i.e., DCT basis function up to cut-off frequency of
1/250 Hz), and finally scaled to have unit variance. As before, the
temporal differential operator was chosen from linear inverse of
the Balloon model (Khalidov et al., 2011) (see supplementary
section). The regularization parameters need to provide a compro-
mise between data fitness and regularization cost. We calibrated
the temporal regularization parameter such that the residual noise
level converged to the pre-estimated noise level of the data fit,
where pre-estimated noise level is derived from themedian absolute
deviation of fine-scale wavelet coefficients (Daubechies, order 3).
Then, for each iteration n, we update the temporal regularization pa-
rameter λ1 ið Þn (Algorithm 2, step 10) similar to Chambolle (2004):

λ1 ið Þnþ1 ¼ Nσ̃ ið Þ
1
2‖y i; ·ð Þ − x i; ·ð Þn‖22

λ1 ið Þn:

Spatial regularization parameter was empirically selected to be 5,
which seemed to compensate well between temporal and spatial
priors. The overall computation time for one dataset was around 5 h
using a Linux cluster with Matlab (version 7.9).

After applying TA, we obtain three spatiotemporal datasets per
subject: (1) the innovation signal us(i,t); (2) the activity-inducing sig-
nal u(i,t); (3) the activity-related signal x(i,t). The innovation signal is
the driver of the others, which can be derived through linear convolu-
tions. To summarize the rich amount of information available in these
datasets, we computed the average of the activity-inducing signals
within each anatomical region, and then obtained the Spearman cor-
relationmatrix between the averaged time courses. Correlations were
Fisher z-transformed and fed into a Ward's hierarchical clustering al-
gorithm implemented in Matlab (Mathworks, Natick, MA, version
(7.9) function linkage.m) to reveal the network structure contained
in the activity-inducing signals. We selected two different levels to
cut the dendrogram in order to show the evolution of clusters with



(a) Activity-Related Signal (b) Activity-Inducing Signal (c) All Activity-Related Signals

Fig. 4. Results for the software phantom. The left column (a) shows simulated noisy data (black), underlying BOLD signals (magenta), and recovered activity-related signals of a random voxel in each region (cyan, blue, red, green, respec-
tively). The middle column (b) shows the underlying activity-inducing signal (gray) and the associated recovered activity signals. Finally, the right column (c) shows all recovered activity-related signals from the software phantom indicated
by their mean, maximum, minimum per region. Small deviations within each region are observed.
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respect to the inconsistency criterion that measures the deviation in
each cluster.

Results

Synthetic data

In Figs. 4(a) and (b), we show, for randomly selected voxels in the
four different regions, the activity-related and activity-induced signals,
respectively. The recovered activity-inducing signalsmatch very closely
with the ground-truth underlying activity with no prior information on
the timing or duration of the simulated events. In Fig. 4 (first row), we
observe for region 1 that TA can resolve for events with ISI down to 2
TRs. The signal model is able to successfully recover different types of
activity-inducing signals; i.e., short spike-like and long block-like stim-
uli, especially the short event in region 4 is well detected, but with
lower amplitude. In Fig. 4(c), the variation of activity-related signals
per region is summarized within the shaded area. Despite the relatively
high level of noise in the simulated time courses, the recovered
activity-inducing signals have small deviations across the voxels within
each region. We refer the reader to Supplementary Figs. S.1 and S.2 to
see the results without spatial regularization. Additional simulations
were performed to a) simulate errors in the information provided by
Fig. 5. Correlation matrix and corresponding clusters for TA activity-inducing signal. The de
described with the regions correspond to a different cluster in high level clusters (total 9
(marked with black pins in the dendrogram from (1a) to 9) subdivide the clusters resultin
the spatial template where TA demonstrated robustness against this
model mismatch except that very brief activations may be undetected
with large spatial discrepancies in Supplementary Fig. S.3, and b) variate
the hemodynamicmodel used to generate the synthetic data (canonical
HRF) with respect to the model used for the deconvolution (i.e. balloon
model) which resulted in an expected time shift of the deconvolved sig-
nals due to the differences in the temporal characteristics of both
models, but without altering a successful recovery of the underlying ac-
tivations in Supplementary Fig. S.4.

Experimental data

After applying TA, we averaged the region-averaged correlation ma-
trix of the three subjects and obtained the dendrogram in Fig. 5 as a result
of hierarchical clustering. We extracted functionally distinct clusters at
coarse (high) and detailed (low) levels. In other words, going down
from the highest level in the dendrogram (whole brain) the consistency
in the hierarchy is gradually incremented until a first group of clusters is
defined (high-level), further increasing the consistency splits the clus-
ters into subclusters which are meaningful segregations (low-level).
At the high-level hierarchy, the brain is segregated into 9 global clusters
(represented in different colors in the dendrogram); at the low-level
hierarchy, 17 local networks (subclusters pinned from (1a) to (9) in
ndrogram that reflects the hierarchical organization is shown on the left. Each color is
clusters) which is evaluated via inconsistency measure. Note that low level clusters

g 17 clusters. The anatomical descriptions in the clusters are detailed in Table 1.



CLUSTER 3

CLUSTER 6

CLUSTER 8

CLUSTER 1 CLUSTER 2

CLUSTER 4

CLUSTER 7 CLUSTER 9

CLUSTER 5

Fig. 6. Brain maps for the 9 high-level hierarchy clusters viewed from sagittal left (top left), sagittal cross-section in the middle (top right), top view (bottom left) and bottom
view (bottom right). The regions are generated using anatomical atlas in MNI space corresponding to the anatomical descriptions in Table 1. We recover the activity-related
networks; i.e., primary and late visual networks in clusters 1 and 2, respectively. Additionally, the fronto-parietal network (cluster 3), motor and somatosensory regions (clus-
ter 4) and auditory network (cluster 5) as well as the default mode network (cluster 7), subcorticals (cluster 8) and limbic system (cluster 9) are observed. The clusters are
nicely organized bilaterally.

128 F.I. Karahanoğlu et al. / NeuroImage 73 (2013) 121–134
the dendrogram) are revealed. Fig. 6 illustrates the high-level networks
on the anatomical atlas. The extended anatomical descriptions in each
(sub)cluster are listed in Table 1. We detail these clusters according to
the order of the dendrogram.

The visual network makes up the first and second clusters, which is
expected due to the stimulation and its strong coherence in resting
state. Cluster 1 contains primary visual areas such as calcarine fissure,
lingual gyrus and cuneus. Cluster 2 includes higher level visual areas
extending towards ventral and dorsal visual pathways, inferior tempo-
ral gyrus and superior parietal lobule, which are subclusters 2b and 2c,
respectively. In Fig. 7 (bottom right), the region-averaged activity-
inducing signal in the visual network confirms that the timing of
the visual stimuli (red bars) is well recovered without any prior
knowledge. Cluster 3 reveals a fronto-parietal network extending bi-
lateral middle frontal gyrus, inferior frontal gyrus and inferior parie-
tal lobule, which mimics the dorsal attention network (Fox et al.,
2006) and involves in attentional mechanisms, especially for “salient
and unattended events” (Corbetta and Shulman, 2002). Subclusters
3a and 3b represent the right and left lateralized fronto-parietal re-
gions similar to Beckmann et al. (2005) and Damoiseaux et al.
(2006), respectively.

Cluster 4 reveals sensory-motor areas including primary motor cor-
tex, primary somatosensory cortex as subcluster 4a, and supplementary
motor areas as subcluster 4b. Cluster 5 maps the auditory network
where speech and language processing occur, including the Heschl
gyrus, superior temporal gyrus (Wernicke's area) and inferior frontal
gyrus. Cluster 6 involves bilateral midcingulate cortex, middle temporal
gyrus as well as the right superior temporal gyrus. Cluster 7 consists of
superior and middle frontal gyrus, anterior–posterior cingulate cortex
(PCC) representing the default mode network (DMN) including thala-
mus (Luca et al., 2006). The hierarchical clustering suggests that cluster
7 is segregated into its anterior (7a, 7b) and posterior (7c) components,
which are known to be part of saliency and executive control networks
(Fox et al., 2006; Seeley et al., 2007), respectively. Similar subdivisions
of the DMN have also been reported recently using real-time fMRI
neurofeedback (Van De Ville et al., 2012). Subcortical regions, putamen
and pallidum, are engaged in cluster 8 bilaterally. Cluster 9 involves bi-
lateral limbic regions, parahippocampal gyrus, hippocampus and amyg-
dala, as well as olfactory bulb, gyrus rectus and temporal poles. For the
sake of comparison the results of the same correlation and hierarchical
clustering analysis on the original detrended data, i.e. without process-
ing with our TA method, are shown in Supplementary Figs. S.5, S.6 and
Table S.1.We observe that visual, motor and auditory networks are also
identified, however, they are given different preferences in dendrogram
(auditory network is cluster 8 instead on 5, motor is 7 instead of 4). In
addition, the most prominent right–left lateralized fronto-parietal



Table 1
The list of regions in the clusters. The clustering algorithm delineates 9 and 17 clusters
in the high and low-level hierarchies (also presented in dendrogram in Fig. 5). The first
two clusters correspond to the visual networks. Note that cluster 3 (fronto-parietal
network) is subdivided into its right (3a) and left (3b) compartments in the higher
hierarchy. Likewise, cluster 7 (default mode) is divided into its anterior (7a, 7b) and
posterior (7c) components.

Cluster Lobe Anatomical description

1a Occipital Calcarine Fissure Left
Occipital Calcarine Fissure Right
Occipital Lingual Gyrus Left
Occipital Lingual Gyrus Right
Occipital Cuneus Left
Occipital Cuneus Right

1b Occipital Superior Occipital Gyrus Left
Occipital Superior Occipital Gyrus Right

2a Occipital Middle Occipital Gyrus Left
Occipital Inferior Occipital Gyrus Left
Occipital Middle Occipital Gyrus Right
Occipital Fusiform Gyrus Left
Occipital Fusiform Gyrus Right
Occipital Inferior Occipital Gyrus Right

2b Temporal Inferior Temporal Gyrus Left
Temporal Inferior Temporal Gyrus Right

2c Parietal Superior Parietal Gyrus Left
Parietal Superior Parietal Gyrus Right

3a Frontal Superior Frontal Gyrus (Orbital) Right
Frontal Inferior Frontal Gyrus (Orbital) Right
Frontal Middle Frontal Gyrus (Orbital) Right
Frontal Inferior Frontal Gyrus (Opercular) Right
Frontal Inferior Frontal Gyrus (Triangular) Right
Parietal Inferior Parietal Gyrus Right

3b Frontal Middle Frontal Gyrus (Orbital) Left
Frontal Inferior Frontal Gyrus (Opercular) Left
Frontal Inferior Frontal Gyrus (Triangular) Left
Parietal Inferior Parietal Gyrus Left
Frontal Inferior Frontal Gyrus (Orbital) Left

4a Frontal Precentral Gyrus Left
Frontal Precentral Gyrus Right
Parietal Postcentral Gyrus Left
Parietal Postcentral Gyrus Right

4b Frontal Supplementary Motor Area Left
Frontal Supplementary Motor Area Right
Parietal Paracentral Lobule Left
Parietal Paracentral Lobule Right

5a Central Rolandic Operculum Left
Central Rolandic Operculum Right
Temporal Superior Temporal Gyrus Left
Temporal Heschl Gyrus Right
Temporal Heschl Gyrus Left

5b Limbic Insula Left
Limbic Insula Right
Parietal SupraMarginal Gyrus Left
Parietal SupraMarginal Gyrus Right

6 Limbic Medial Cingulate Cortex Left
Limbic Medial Cingulate Cortex Right
Temporal Superior Temporal Gyrus Right
Temporal Middle Temporal Gyrus Left
Temporal Middle Temporal Gyrus Right
Temporal Temporal Pole (Superior) Right

7a Frontal Superior Frontal Gyrus (Orbital) Left
Frontal Middle Frontal Gyrus Left
Frontal Superior Frontal Gyrus (Dorsolateral) Left
Frontal Superior Frontal Gyrus (Dorsolateral) Right
Frontal Middle Frontal Gyrus Right
Subcortical Caudate Nucleus Left
Subcortical Caudate Nucleus Right
Subcortical Thalamus Left
Subcortical Thalamus Right

7b Frontal Superior Frontal Gyrus (Medial) Left
Frontal Superior Frontal Gyrus (Medial) Right
Limbic Anterior Cingulate Cortex Left
Limbic Anterior Cingulate Cortex Right
Frontal Superior Frontal Gyrus (Medial–Orbital) Left
Frontal Superior Frontal Gyrus (Medial–Orbital) Right

7c Limbic Posterior Cingulate Cortex Left
Limbic Posterior Cingulate Cortex Right
Parietal Precuneus Left

(continued on next page)

Table 1 (continued)

Cluster Lobe Anatomical description

Parietal Precuneus Right
Parietal Angular Gyrus Left
Parietal Angular Gyrus Right

8 Subcortical Putamen Left
Subcortical Pallidum Left
Subcortical Putamen Right
Subcortical Pallidum Right

9 Frontal Olfactory Cortex Left
Frontal Olfactory Cortex Right
Frontal Gyrus Rectus Left
Frontal Gyrus Rectus Right
Temporal Temporal Pole (Superior) Left
Temporal Temporal Pole (Middle) Left
Temporal Temporal Pole (Middle) Right
Limbic Hippocampus Left
Limbic ParaHippocampal Gyrus Left
Limbic Hippocampus Right
Limbic ParaHippocampal Gyrus Right
Limbic Amygdala Left
Limbic Amygdala Right
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network and anterior–posterior segregation of the default mode net-
work is lost in the hierarchy.

Having identified coherent networks through clustering of the
activity-inducing signals, we can try to represent the dynamics for
brain regions revealed by TA. Fig. 7 depicts the average activity-
inducing signals rearranged according to the clusters. While the stimu-
lus timings are well discovered mainly in the clusters corresponding to
visual areas, we observe spontaneous activity in the visual network
which does not correspond to visual stimuli (e.g., subject 2, cluster 1,
around 300 s).

Fig. 8 shows the dynamic activity-inducing maps of subject 2. Two
time courses are picked randomly from cuneus and PCC in order to
track the temporal evolution of the task-related and spontaneous
events. The positive and negative activations in PCC lagging the stim-
ulus reflect the alternating structure of functional reorganization in
the brain.

Finally, since the temporal prior of TA favors block-like activity-
inducing signals, we evaluate the average block-length per region as
the 4th quartile of the activity duration, see Fig. 9. It can be seen
that regions in the visual clusters have relatively shorter average ac-
tivity than other regions.
Discussion

Methodological implications

We have proposed TA to deconvolve fMRI data based on hemody-
namic and anatomical properties of the brain. The objective is formulat-
ed as a minimization problem where the convex cost function contains
sparsity-inducing regularization terms in both the temporal and spatial
dimensions. The optimization is performed using a state-of-the-art gen-
eralized forward–backward scheme. The variational cost function is for-
mulated assuming uncorrelated noise structure, nevertheless, an
autoregressive noisemodel can be easily integrated into the framework.
The colored noise should be whitened based on the estimated covari-
ance of the residuals, which then leads to a weighted ‘2-norm for the
data-term of the cost function.

While TA does not require any timing information, it is not
completely model-free neither—the three main underlying assump-
tions are: (1) the operator to invert the hemodynamic system; (2) the
sparse innovation signal that leads to block-type activity; (3) the ana-
tomical atlas for spatial regularization. In the following discussion, we
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Fig. 7. Activity-inducing signals per region and subject. Clearly, the activity-inducing signal in the visual regions (clusters 1 and 2) follows the visual paradigm closely. Moreover, we
observe the intrinsic brain activity, for example, a spontaneous event (in black contour) occurs around 300 s in subject 2 which is followed by negative activation in clusters 4–7
(posterior default mode network). The average activity in the occipital lobe (bottom right) matches with the visual stimulation.
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first highlight each of these assumptions and then the related work in
the field.

Hemodynamics
We use the first-order Volterra kernel of the non-linear balloon

model to characterize the differential operator that relates activity-
inducing signal with fMRI BOLD. It is well known that this model is lim-
ited since high variability of HRFwithin and across subjects has been ob-
served (Handwerker et al., 2004). Additionally, the HRF might be
different for task-related versus spontaneous activity. Nevertheless, the
current approach seems to be a reasonable starting point. It can be re-
placed by other more sophisticated models, such as the one by Sotero
and Trujillo-Barreto (2007), which accounts for the difference in excit-
atory and inhibitory neuronal activity. Another possible extension is to
fine-tune the HRF operator (e.g., per region or even voxel) by alternating
between the optimization of the activity-inducing signal and theHRF pa-
rameters (4 zeros and 1 pole) to obtain the region/voxel specific HRF
similar to parcel based HRF estimation methods in Chaari et al. (2013)
and Vincent et al. (2010).

Sparse innovation signal
The core principle of TA consists of defining an innovation signal that

should be sparse if the experimentally-evoked or spontaneous brain ac-
tivity has an underlying activity-inducing signal that is block-type. We
have demonstrated that this is a strong prior, which allows us to recover
paradigm-related activity without any timing information, yet also
without constraints on the block length of the activity-inducing signal.
Besides, this signal model goes beyond the traditional Fourier view-
point; i.e., for signals with the same regularization cost, the Fourier
spectrum can vary from “simple” (e.g., periodic timing) to “complex”
depending on the relative timing of the events.

Here we have imposed the ‘1-norm for the temporal prior, which
is the most common sparsity-pursuing norm. Although the Bayesian
interpretation of the variational framework is beyond the scope of
this paper, we would like to mention that stochastic processes gener-
ating sparse (innovation) signals are an active research in signal pro-
cessing and applied statistics. In particular, the continuous-domain
definition of this type of “noise” requires proper analytical tools
(Unser et al., 2011). An intriguing research avenue for generative
models of activity-inducing signals, is the choice of the stochastic pro-
cess to generate the innovation signal.
Anatomical atlas
Manymethods for fMRI data analysis rely upon Gaussian smoothing

to improve the SNR. The spatial regularization of TA adds a structured-
sparsity constraint by favoring smoothing within anatomical regions,
but sparsity across. This is obtained by a mixed norm expressed on
the Laplacian of the volume. For our settings of the spatial regularization
parameter, we obtain more consistent activity-inducing signals within
the regions, but at the same time the signals are not necessarily the
same (e.g., see Fig. 8).
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Fig. 8. Reconstructed dynamic activity-inducing maps for subject 2 (see supplementary for the movie). Time courses from cuneus and PCC are plotted in white and yellow, respectively. The stimulus time course is shown in magenta. In the
first frame, the activity maps are illustrated for two instances (top row around 90 s and bottom row around 250 s). The left and right columns show the activation maps before and after the stimulus, respectively. PCC lags the stimuli with
positive (top row) or negative response (bottom row).
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Fig. 9. Average block length for the region-averaged activity-inducing signals. Regions in the visual network have relatively shorter average activity than other regions.
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The anatomical atlas is still a limitation of TA since it is not specific to
the subject. An interesting option would be to make the atlas
data-adaptive. For example, the regions could be re-estimated after a
couple of iterations of the algorithm (Bellec et al., 2010) or joint estima-
tion of HRF and HRF-defined region identification could be adapted into
TA (Chaari et al., 2012). Another optionwould be to apply TA to the time
courses recovered from a mode-decomposition (e.g., ICA).

Related methods
We mention in more detail three other deconvolution methods

that have deployed similar ideas to recover activity-inducing signals
(Gaudes et al., 2011, 2013; Hernandez-Garcia and Ulfarsson, 2011;
Khalidov et al., 2011). All these methods operate solely in the tempo-
ral domain, and do not add spatial information into their framework.
Also, the temporal prior of these methods is a “synthesis prior”,
which means that an explicit dictionary of atoms is built. In
Khalidov et al. (2011), wavelets (“activelets”) tailored to the hemo-
dynamic system are designed and used to decompose BOLD fMRI sig-
nals that should ideally lead to sparse activelet coefficients if the
activity is spike-like. In Gaudes et al. (2011) and Gaudes et al.
(2013), a dictionary with all possible shifts of the canonical HRF is
constructed to recover spike-like activity. In Hernandez-Garcia and
Ulfarsson (2011), the dictionary combines spike-like and block-like
atoms with two different regularization terms, which raises the
issue how to choose the regularization parameters to adapt to the
ratio of spikes and blocks for each voxel. Alternatively, the temporal
regularization of TA uses an “analysis prior”, which is much more
flexible (e.g., blocks of different lengths do not need to be specified
explicitly, which would be prohibitive).

Dynamics of activity-inducing maps

When visualizing the activity-inducing signals obtained by TA on dy-
namic brainmaps,we can easily recognize the presence andonsets of the
visual stimuli. However, the data is much richer and many spontaneous
events are captured as well; e.g., strong activity in the visual network of
subject 2 during the final resting period (Fig. 7). Interestingly, activity-
inducing signals reveal some non-stationary relationships between the
different brain regions; e.g., as can be seen from Fig. 8, the signals from
PCC and visual cortex are sometimes negatively correlated, and some-
times positively. This non-stationary behavior is also suggested in a
time-frequency coherence analysis of fMRI (Chang and Glover, 2010).
Moreover, a recent work by Smith et al. (2012) exploits temporal
and spatial ICA on high resolution data to reveal the temporally-
independent and spatially overlapping activity maps called “tempo-
ral functional modes”. The authors show that different networks
share common subcomponents of each other, that is, one brain
region does not necessarily belong to a distinct functional network.

Hierarchical clustering

As a post-processing step, clustering the activity-inducing signals
obtained by TA allows us to get a better understanding of the data.
We obtain functionally plausible networks (many bilateral) reflecting
both task-related and spontaneous activity. It is somewhat intriguing
that activity of both task-related and resting-state networks is so well
captured. While it is known that spontaneous activity continues dur-
ing task and configurations similar to resting-state networks are
formed (Fox and Raichle, 2007), it also means that our model for
block-like activity-inducing signals is well suited for both types of ac-
tivity. This raises the interesting hypothesis for future studies wheth-
er resting-state activity is rather block-like (with long durations on
average) versus sinusoidal fluctuations (with low frequency).

The block model for the activity-inducing signal is also very flexible
as it does not impose any duration. From the duration map, we clearly
observe that the regions in the visual cortex have shorter duration
whereas fronto-parietal regions have relatively the longest duration.

The quality of the clustering (i.e., high correlationwithin and low cor-
relation between clusters) is higher for the results obtained on
TA-regularized activity-inducing signals; see Figs. 5 and 6 and compare
with Supplementary Figs. S.5 and S.6. For non-TA processed signals, we
obtain higher variation in the large clusters (especially clusters 3 and 4).
Visual, motor and auditory networks match most with the results of TA,
however, their rank in dendrogram is different (auditory network is clus-
ter 8 instead on 5,motor is 7 instead of 4).Moreover, themost prominent
right–left lateralized fronto-parietal network and anterior–posterior seg-
regation of the default mode networks is lost in the hierarchy.

Conclusion

We have introduced TA, a new analysis tool that essentially aims
at revealing the activity-inducing driver of BOLD fMRI. Using syn-
thetic and experimental data, we evaluated TA's ability to recover
the underlying activity without timing information of cognitive



∑i¼1 λ1 ið Þ‖ΔL xf g‖1

INPUTS: Noisy fmri data y, Differential operator ΔL, Noise estimate σ̃ that is, median
absolute deviation of the second order wavelet coefficients of y and spectral norm c
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tasks or stimuli, as well as the intrinsic brain activity. The method is
formulatedwithin the variational framework and solved using a con-
vex optimization scheme where temporal and spatial priors are han-
dled iteratively. This study allows for exploring brain dynamics
while retaining both hemodynamics and spatial coherence in the
brain and hence constitute a good candidate to reveal the both
task-related and spontaneous activity. The application of TA to un-
cover dynamic activity-inducing maps could also be a powerful tool
prior to more advanced clustering techniques.
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Appendix A. Algorithm

The generalized forward–backward splitting (Raguet et al., 2012)
aims to minimize a convex cost function that consists of a quadratic
data fitting term and multiple regularization terms. The solution is
obtained by incorporating the solutions of each convex regularization
problem separately which are defined as

x̃T ¼ argmin
x

1
2
‖y−x‖2F þ

XV
i¼1

λ1 ið Þ‖ΔL x i; ·ð Þf g‖1 ¼ proxRT
yð Þ; ðA:1Þ

x̃S ¼ argmin
x

1
2
‖y−x‖F

2 þ
XN
t¼1

λ2 tð Þ‖Δ x ·; tð Þf g‖ 2;1ð Þ ¼ proxRS
yð Þ: ðA:2Þ

The solutions of the above problems correspond to proximal maps
to the temporal and spatial regularization terms in Eqs. (8) and (10)
(Combettes and Wajs, 2005). These variational formulations are
nonquadratic; i.e., direct solutions do not exist, and hence iterative al-
gorithms should be employed. Forward–backward splitting method
(Combettes andWajs, 2005) applies on functionals when the regular-
ization term is a non-smooth convex function and the data-term is a
smooth differentiable function with a finite Lipschitz constant. In the
forward step, a gradient descent is applied for data-term and in the
backward step, proximal map is computed for the regularization
function. We exploit the dual definitions of ‘1-norm and ‘2-norm
(Baritaux et al., 2011; Chambolle, 2004) to find the solution of each
proximal map, and employ “fast gradient projection” (FGP) (Beck
and Teboulle, 2009) to achieve faster convergence. Here, we formu-
late the generalized algorithm (detailed in Raguet et al., 2012).

Algorithm 1. Spatio-temporal regularization x̃ ¼ arg minx
1
2‖y−x‖2F þ

RT xð Þþ RS xð Þ
INPUTS: Noisy fmri data y,
1: Initialize: n←1; x̂0T ¼ 0; x̂0

S ¼ 0; x̃0 ¼ 0;,
2: Repeat
3: Solve for temporal prior:x̂nþ1

T ¼ x̂n
T þ proxRT

x̃n−x̂n
T þ y

� �
−x̃n

4: Solve for spatial prior: x̂nþ1
S ¼ x̂n

S þ proxRS
x̃n−x̂n

S þ y
� �

−x̃n

5: Update x̃nþ1 ¼ x̂nþ1
T =2þ x̂nþ1

S =2
6: n←n+1
7: until convergence or number of maximum iterations are reached.

c > sup
ω

Δ̂L ejω
� ���� ���2 ¼ sup

ω

∏4
m¼1 j1−eαm e−jω j2
j1−eγ1 e−jω 2 :j

1: for each voxel i=1 to V do
2: n←1
3: Initialize: k1=1, p0=0,x(i,⋅)1=0,v1=0 and λ1 ið Þ1 ¼ σ̃ ið Þ
4: repeat
5: Update pn=ΔL {y(i,⋅)}/(λ1(i)n c)+(I−ΔLΔL

T/c){vn}
6: Update pn=clip(pn) where clip(⋅) denotes the element-wise clipping
function,

clip(⋅)=sign(⋅) min(|⋅ |,1),

7: Update knþ1 ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4 knð Þ2

q
2

8: Update vnþ1 ¼ pn þ kn−1
knþ1 pn−pn−1
� �

9: Set x i; ⋅ð Þn ¼ y i; ⋅ð Þ−λ1 ið Þn ΔT
L pf g;

10: Update λ1 ið Þnþ1 ¼ Nσ̃ ið Þ
1
2‖y i;⋅ð Þ−x i;⋅ð Þn‖22

λ1 ið Þn ,
11: n←n+1
12: until convergence or number of maximum iterations are reached.
13: end for
Let's consider the temporal term where the cost function is

CT x i; ⋅ð Þð Þ ¼ F xð Þ þ
XV
i¼1

λ1 ið Þ‖ΔL x i; ⋅ð Þf g‖1; ðA:3Þ
where the smooth data-term is F xð Þ ¼ 1
2‖y−x‖2F . The regularization

term is ‘1-norm; i.e., a non-smooth function. Let's call that the mini-
mizer of CT is x*, then

∂CT x�ð Þ∈∇F x�ð Þ þ ∂RT x�ð Þ ¼ 0; x�−μ∇F x�ð Þ∈ Iþ μ∂RTð Þ x�ð Þ;
x� ¼ Iþ μ∂RTð Þ−1 x�−μ∇F x�ð Þð Þ ¼ proxμRT

x�−μ∇F x�ð Þð Þ:

The iterative solution consists of solving for forward term, i.e.,
xforward ¼ xn−μ∇F x�ð Þ and backward term, i.e., xnþ1 ¼ proxμRT

xforward
� �

. Specifically, forward solution in Eq. (A.3) is straightforward
and minimizer depends only on the proximal map with xforward=y
and x� ¼ proxRT

yð Þ.
There is no direct analytical solution for minimizing the primal

problem in Eq. (A.3). Instead the dual formulation provides an easier
interpretation. The dual-norm is defined as

‖ΔL x i; ⋅ð Þf g‖1 ¼ max
‖p‖b1

ΔL x i; ⋅ð Þf g;p i; ⋅ð Þh i:

Then,

min
x

CT ¼ min
x

max
‖p‖≤1

1
2
‖y−x‖2F þ

XV
i¼1

λ1 ið Þ x i; ⋅ð Þ;ΔT
L p i; ⋅ð Þf g

D E
;

since function is convex in x concave in p we interchange min–max
and at the saddle point the primal and dual formulations lead to the
same solution

¼ max
‖p‖≤1

min
x

1
2
‖y−x‖2F þ

XV
i¼1

λ1 ið Þ x i; ⋅ð Þ;ΔT
L p i; ⋅ð Þf g

D E
;

where ΔL
T corresponds to the adjoint of ΔL, i.e., ΔL

T[t]=ΔL[−t].
This algorithm has a fast convergence due to steps 7 and 8 (Beck

and Teboulle, 2009; Combettes and Wajs, 2005; Raguet et al., 2012)
and a robust update of the regularization parameter λ (Chambolle,
2004). The algorithm for spatial regularization can be achieved simi-
larly for each volume t exploiting the dual-norm of ‘ 2;1ð Þ-norm into
the formulation instead of ‘1-norm (Baritaux et al., 2011). Discrete
implementation of operator ΔL can be efficiently done by constructing
stable (causal and anti-causal) filters. We refer to Karahanoglu et al.
(2011) for implementation details and filter coefficients.

Algorithm 2. Temporal regularization proxRT
yð Þ ¼ arg minx

1
2 ‖y−x‖2Fþ

V
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Appendix B. Supplementary data

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2013.01.067.
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