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Abstract—Spontaneous activations in resting-state fMRI have

been shown to corroborate recurrent intrinsic functional net-

works. Recent studies have explored integration of brain function

in terms of spatially overlapping networks. We have proposed

a method to recover not only spatially but also temporally

overlapping networks, which we named innovation-driven co-

activation patterns (iCAPs). These networks are driven by the

sparse innovation signals recovered from Total Activation (TA),

a spatiotemporal regularization framework for fMRI deconvolu-

tion. The fMRI data is processed with TA, which uses the inverse

of the hemodynamic response function—as a linear differential

operator—combined with the derivative in the regularization

with `1-norm. As a result, sparse innovation signals are re-

constructed as the deconvolved fMRI time series. Temporal

clustering of innovation signals lead to iCAPs. In this work, we

investigate the reproducible iCAPs in individuals with relapsing-

remitting multiple sclerosis and healthy volunteers.

I. INTRODUCTION

Functional magnetic resonance imaging (fMRI) measures
the blood-oxygen-level-dependent (BOLD) signal that reflects
the (de)oxygen concentration in the brain [1]. The relation
between the measured BOLD signal and the neural activity can
be explained through neurovascular coupling, which accounts
for the changes in blood volume, blood flow, and oxygen
consumption in the vessels. The balloon model introduced
by Buxton et al. explained this link through a non-linear
differential system [2], whose simplified form, hemodynamic
response function (HRF), allows for linear, time-invariant
analysis [3]–[5].

In conventional task-related fMRI analysis, the experimenter
posits a hypothesis and designs an experimental paradigm
during which fMRI data is acquired; e.g., watching a movie.
Then, the measured BOLD signal is fitted to this a priori
model, representing the exact timing of the experimental
paradigm convolved with HRF, followed by statistical test-
ing. The resulting activation patterns then relate solely to
the designed experimental condition. Instead, during resting-
state fMRI (rs-fMRI) acquisition subjects are not asked to
perform a specific task but to relax without falling asleep.
The spontaneous activity acquired during rs-fMRI reveals
functional coordination between different brain regions in the

absence of any extrinsic stimuli, and this coordination is very
well represented in terms of large scale functional networks,
referred to as resting-state networks (RSNs).

Since there is no a priori temporal model in rs-fMRI, data-
driven methods have been adopted including seed correla-
tion analysis [6], clustering analysis [7], [8] principal and
independent component analysis (ICA) [9], [10], canonical
correlation analysis [11]. Recent studies of functional connec-
tivity have presented evidence towards the non-stationary brain
dynamics [12], [13]. Existing rs-fMRI methods have been
revisited; i.e., ICA and seed-based connectivity analysis have
been adapted to allow for spatially overlapping patterns [14]–
[18]. This new avenue led to a new understanding of brain
processing, thereby, has potential to contribute to our current
understanding of underlying brain dynamics in neurological
diseases.

In order to investigate spontaneous brain dynamics in this
emerging point of view, we proposed a new method to decom-
pose the fMRI data into spatially and temporally overlapping
activation patterns, which we named innovation-driven co-
activation patterns (iCAPs) [19]. These activation patterns are
the building blocks of rs-fMRI, where the activation of pattern
at each time instance is represented as specific combination of
iCAPs.

In order to extract the iCAPs, we first employ the Total
Activation (TA) framework to detect intrinsic transient acti-
vations, represented as a sparse signal, for each voxel [20].
TA is cast as an optimization problem using regularization
terms with spatial and temporal priors specifically tuned for
fMRI data analysis. The spatial prior ensures coherence of
activation within a given region of interest, and temporal
prior acts as a deconvolution operator, assuming a block-
like activity-inducing signal, with a generalized derivative
operator representing the inverse of HRF [21]. TA reveals
the 1) denoised, 2) deconvolved activity-inducing signals and
3) derivatives of activity-inducing signals; i.e., the sparse
transients. The temporal clustering of sparse transient signals
allows defining iCAPs.

In our previous work [19], we have found stable iCAPs
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representations of rs-fMRI data in healthy volunteers. In this
work, we elaborate on the stability and reproducibility of the
spatial iCAP patterns in healthy individuals and individuals
with relapsing-remitting multiple sclerosis (RRMS).

II. METHODS

A. Total activation
The TA framework assumes a generative model for the

measured BOLD signal of ith voxel, x(i, t) as

y(i, t) = x(i, t) + ✏(i, t) = u(i, t) ⇤ h(t) + ✏(i, t), (1)

where h(t) is the HRF, ✏ ⇠ N (0,�2
i ) is Gaussian noise,

u(i, t) =
P

k ck(i)b(t/ak � tk), is the block-like activity-
inducing signal with weights c and step function b(t).

TA aims to recover the underlying piecewise-constant
activity-inducing signals, u(i, t), by incorporating the in-
verse of the HRF as a linear differential operator. The final
regularization problem is formulated as

x̃ = argmin
x

1

2
ky � xk2F +RT (x) +RS(x), (2)

where

RT (x) =
VX

i=1

�1(i) ||�L {x(i, ·)}||1 , and (3)

RS(x) =
NX

t=1

�2(t) ||�Lap {x(·, t)}||(2,1) , (4)

�L = ��HRF is the generalized derivative operator repre-
senting the inverse of HRF obtained through Balloon model,
�HRF , combined with a first-order derivative operator �,
�Lap is the Laplacian operator, N is the number of time
points and V is the number of voxels. The temporal regu-
larization inverts the effect of the HRF by promoting sparsity
on the derivative of the activity-inducing signal, u, thereby,
the activity-inducing signal becomes a linear combination of
step functions. This formulation is a generalized form of
the total variation regularization in the presence of a linear
time-invariant system. The spatial regularization implements
the group-sparsity through `(2,1)-norm within the predefined
regions. Specifically, the spatial regularization promotes co-
herent activation within the regions of a predefined structural
atlas while enforcing sparsity on the amount of active regions.
We used the generalized forward-backward splitting algorithm
in order to solve the regularization problem in temporal and
space domains [22]. The algorithm was presented in detail in
our previous work [20].

B. iCAPs
The sparse innovations: i.e., transient signals, provide useful

information about the onsets and offsets of the underlying
activation timeseries. In order to recover the activation pat-
terns that share the concurrent transients, we clustered the
transient signals with k-means algorithm. Specifically, we first
determined the significant transients for each subject through

two-step criteria: 1) we ran the TA algorithm once more
on surrogate data, that is each subject’s phase randomized
timeseries, and computed a subject-specific threshold (1%
confidence interval) from the transients in the surrogate data,
and 2) we used a general threshold of at least 200 voxels that
show the same transient (⇠2.5% of all voxels). The significant
transients constitute 3200 out of 5280 total volumes in healthy
controls (60.6%, 28.8% positive 31.8% negative) and 3250
out of 6160 total volumes in individuals with RRMS (52.8%,
24.6% positive 28.2% negative). Finally, these significant
transients are included in the k-means algorithm.

C. Group-level clustering
We ran the k-means algorithm with number of cluster

varying between [5,30], using cosine distance as the similar-
ity measure. For each number of cluster, we performed 30
replicates with random initialization, and computed the sum
of distance between each sample and the corresponding cluster
centroid. The total cost function was computed as the sum of
average distance within each cluster. Increasing the number
of clusters will lead to overfitting and the cost function will
slowly drop to 0. Therefore, we evaluated the difference of the
total cost function, and look for the local minima, indicated
by arrows in Fig. 1 (a).

Furthermore, we generated bootstrap samples (10 samples,
with replacement), applied k-means on a training dataset
(60%), and computed the cost function in a test dataset
(40%) in Fig. 1 (b). Each bootstrap also used 10 random
initializations where the minimum cost solution was picked
as the most stable solution.

Finally, we ran the k-means algorithm opting for 20 clusters
10 times, each k-means had 30 random initialization where
the best solution was picked as above. We matched the group
centroids between 10 solutions using Hungarian algorithm
[23]. We explored the reproducibility and stability of each
cluster to define common-level iCAPs amongst our samples.

III. RESULTS

A. Data acquisition
The imaging data were acquired from fourteen healthy indi-

viduals (age: 38.4±6, 9F/5M) and twenty-two individuals with
relapsing-remitting multiple sclerosis (RRMS, age: 36.8±8,
14F/8M), the subjects were the same as in [24]. Partici-
pants were scanned with a Siemens 3T TrioTIM (Erlangen,
Germany) using a 32-channel head coil. The rs-fMRI data
acquisition used gradient-echo echo-planar imaging and lasted
around 8 minutes (TE/TR/FA=27ms/1.1s/90o,matrix = 64⇥64,
21 transverse slices, voxel size = 3.75⇥3.75⇥5.625mm3,
450 volumes). T1-weighted anatomical scans were collected
using an MPRAGE sequence (TR/TE/FA=2.98ms/2.4s/9o, 160
slices, voxel size = 1⇥1⇥1.2mm3).

B. Preprocessing
The fMRI data were preprocessed using custom MATLAB

code combined with SPM8 (FIL, UCL, UK) and IBASPM
toolboxes [25]. First, fMRI volumes were realigned to the
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mean scan and spatially smoothed with Gaussian filter (full
width half maximum=5mm). We used motion estimation to
mark the time points with high frame-wise displacement (
� 0.5) [26]. Marked frames were not removed as TA relies on
the full fMRI time courses to deconvolve, but we performed
cubic-spline interpolation instead. Two healthy subjects and
eight individuals with RRMS , who moved more than 3mm,
were excluded from further analysis, therefore our analysis
consisted twelve healthy individuals and fourteen individuals
with RRMS. The anatomical images are coregistered onto
the functional mean image and segmented (NewSegment,
SPM8) for the six different MNI templates. The anatomical
automatic labelling atlas, composed of 90 regions without
the cerebellum, was mapped onto each subject’s coregistered
anatomical image and further downsampled to match the
functional images. The atlasing was only used to guide TA
spatial regularization. After TA analysis, each subjects fMRI
volumes are normalized to MNI space (original fMRI data
resolution) using the deformation matrix in the segmentation
step in order to derive group level iCAPs.

C. Group-level iCAPs

The cost functions in Fig.1 suggest an optimal cluster
number in the range of 15–20. Considering the subject-specific
variability and maximum flexibility we adopted k=20. Fig. 2
shows the consistency and reproducibility of the clusters for
each initialization (for 10 initializations we have

�10
2

�
= 45

metrics for each cluster). The cluster similarity measurements
provide an insight on the spatial reproducibility in Fig. 2
(top), however, they are not sufficient to define the most
representative clusters; i.e., one subject might always drive
one cluster. Therefore, we counted the number of instances
assigned to each cluster per subject, and computed the mean
and variation across subjects in Fig. 2 (bottom). For example,
cluster 3 has relatively high reproducibility (Fig. 2 (top)),
however it has driven only by a few patients and almost
no controls (Fig. 2 (bottom)). Unlike cluster 3, the spatial
similarity of cluster 13 is more variable in patients, but it has
been consistently represented in both groups. We defined the
representative iCAPs as the clusters that have high stability
(�0.5 in Fig. 2 (top)) and similar reproducibility in each group
(Fig. 2 (bottom)). The stable clusters are indicated by (⇤).

The final eleven group-level iCAPs are depicted in Fig. 3.
The iCAP 1 shows coordinated precuneus and thalamus ac-
tivity, iCAP 2 contains primary motor regions. The iCAP 3
includes the anterior salience network with dominant middle-
inferior frontal gyrus and anterior cingulate activations. The
iCAP 4 highlights the regions of attention network as well
as precuneus, anterior and posterior cingulate. iCAP 5 and
6 represents spatiovisual and secondary visual areas, respec-
tively. iCAP 7 is the default-mode network, and iCAP 8 shows
the anterior cingulate. The iCAP 9 contains auditory regions,
iCAP 10 represents the primary visual network. iCAP 11
covers the anterior executive network with superior frontal
gyrus.
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Fig. 1. The cost function for different number of clusters. The cost function,
1 - cosine distance, is computed as the total distance of samples to the
cluster centroid within each cluster. (a) The difference of cost as a function of
cluster number, each algorithm was ran with 30 random initialization using
the full dataset. Local minima indicate stable solutions at k=14 and k=20 (with
minimum variation). (b) The cost function of the bootstrap sample (training
60%, test 40%, 10 bootstraps, each with 10 random initialization). The cost
function starts flattening between k=15–20.

D. Group-specific iCAPs

Fig. 4 depicts the group-specific iCAPs. We selected the
most stable clustering replica and computed the mean z-
normalized maps in the groups. In general, the spatial content
of all group-specific iCAPs are consistent with the group-
level iCAPs in Fig 3. The differences between the group-
specific maps were focussed in very specific regions (Fig. 4
green arrows). Specifically in iCAP 1 controls have increased
activation in thalamus in conjunction with precuneus with
respect to RRMS patients (t � 3, p  10�4 uncorrected).
Moreover, in the anterior executive control network (iCAP
11), RRMS subjects show increased and decreased activations
in the superior frontal region’s inferior and superior sections,
respectively ( (t � 3, p  10�5 uncorrected)). Although
the group-specific maps suggest spatial differences in middle
frontal gyrus and fontal eye fields in iCAPs 3 and 5, respec-
tively, the t-maps do not suggest significant differences.

IV. CONCLUSION

In this work, we have investigated the reproducible patterns
of iCAPs in individuals with RRMS and healthy controls.
We recovered the transient activity; i.e, the sparse innovation
signals as the deconvolved fMRI time series through TA
framework. The temporal clustering of innovation signals led
to iCAPs, of which we investigated the reproducibility and
consistency in the whole group. Finally, we found specific
differences in thalamus and precuneus network (iCAP 1) as
well as in superior frontal region (iCAP 11) between the
RRMS patients and healthy volunteers.
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Fig. 2. The stability and reproducibility of iCAPs. We computed the average
similarity, cosine distance, and standard deviation between each matching pair
of cluster centroids; i.e., there are 45 pairs for 10 solutions (top). In order
to insure that these clusters are consistently represented in every subject and
group, we computed the number of volumes in each cluster for every subject,
and computed the group mean and standard deviation (bottom). Having high
variations and/or low values in either of these metrics indicate instability (⇤
indicate the most stable configurations).

to their absolute-valued z-score (|z|Z 1). We then obtained the
duration of all the iCAPs (regardless of their sign) relative to total
scanning time. The total on-time of all iCAPs constitute 3.6 times
of the total scan duration; that is, for 12 subjects, 350 min of total
iCAPs activation out of 96 min of total scanning time. The total
on-time was also evenly distributed over the subjects; that is, on
average 29±1.8 min of total iCAP activation out of 8 min of
resting-state scan per subject. We then computed the average
duration of each iCAP individually (Fig. 2a). We found that the
DMN (8) has the longest duration (7.6 s), followed by sensory-
related iCAPs such as motor (7), visual (3), auditory (1) and
attention (2). In terms of occurrence rate of the transients,
auditory (1), attention (2) and primary visual (3) are the most
common iCAPs.

iCAPs co-occur in behaviourally relevant combinations. To
measure the temporal overlap between iCAPs, we counted the
different combinations of iCAPs occurring at each time instance.
The bar plot in Fig. 5a depicts the percentage of total duration for
each number of overlapping iCAPs. On one hand, only 0.7% of
the resting-state scan has no active iCAPs, and 4% has only a

single iCAP, which is expected given the large total on-time of
iCAPs. On the other hand, combinations of iCAPs are most
common; that is, two (16%), three (31%), four (31%) and five
(18%) iCAPs occurring at the same time account for 95% all
together. Despite this significant overlap, not all possible com-
binations can be observed; that is, while 90% of the iCAPs occur
at least once alone, only 58, 29, 15 and 3% of the possible com-
binations between two, three, four, five iCAPs, respectively, have
been registered.

We then applied hierarchical clustering of iCAPs using the
observed combinations as features (in total, 2,098 iCAP
combinations were observed out of 55,250 possible iCAPs). To
show that this clustering is consistent with putative cognitive
processes reflected by iCAPs, we associated each iCAP with its
behavioural profile using the Brainmap database33. The
dendrogram in Fig. 6 reflects the hierarchy of iCAPs together
with their behavioural profiles. At the highest level of the
hierarchy, iCAPs are grouped as sensory, default-mode and
attention networks, respectively. At the same time, the
behavioural profiles are also consistent in the same groupings
as confirmed by their correlations (Fig. 6); that is, sensory
networks show higher scores with their associated role, precuneus
(5) and pDMN (10) have both high scores in reasoning and social
cognition, DMN (10) and ACC (13) share high scores also in
social cognition and explicit memory, whereas ACC (13) alone
involves more in emotional processes, finally, attention network
involve in both execution and cognition.

iCAP combinations bring new insight into brain organization.
We further analysed the most common combinations of iCAPs by
considering the top five for each set of overlapping iCAPs; see
Fig. 5b where combinations with DMN-related iCAPs (according
to Fig. 4) are disconnected from the pie. The iCAPs that appear
most in isolation are DMN (8) in both signs, precuneus (5),
auditory (1) and secondary visual (4). The same iCAPs also appear
in combination with others. In particular, for two overlapping
iCAPs, DMN (8) occurs with anterior salience (11), visual (4),
auditory (1) but with opposite signs, and attention (2) overlaps
with visual (3) with opposite signs (see Supplementary Fig. 8
for the most frequent 20 iCAP combinations for each set of
overlapping iCAPs). With more than two iCAPs, the DMN (8)
and ACC (13) show increased overlap when combined with
motor, and/or visual iCAPs. Attention (2) further combines with
visual (3, 4), and precuneus (5) often occurs in combination with
DMN (8) for a large number of overlapping iCAPs. In terms of
total on-time, DMN (8) is present B38% of the time either alone
or in specific combinations with other iCAPs, followed by sensory
components such as motor (7; 28%) and auditory (1; 26%). In
almost all the combinations, we notice that sensory networks
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Figure 3 | Spatial overlap between iCAPs. (a) Six most significant spatially overlapping iCAPs are illustrated. The intersecting areas (in orange) mostly
accumulate in the posterior regions; that is, PCC, precuneus, cuneus and superior parietal regions. (b) Hub regions are identified by counting the areas that
appear consistently in the iCAPs, pointing to precuneus, dorsal PCC, superior parietal lobe, mid cingulate cortex, middle occipital and angular gyrus.
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maps. Four iCAPs significantly correlate with the positive part of the DMN
map, while three iCAPs correlate with the negative part.
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duration of each iCAP individually (Fig. 2a). We found that the
DMN (8) has the longest duration (7.6 s), followed by sensory-
related iCAPs such as motor (7), visual (3), auditory (1) and
attention (2). In terms of occurrence rate of the transients,
auditory (1), attention (2) and primary visual (3) are the most
common iCAPs.

iCAPs co-occur in behaviourally relevant combinations. To
measure the temporal overlap between iCAPs, we counted the
different combinations of iCAPs occurring at each time instance.
The bar plot in Fig. 5a depicts the percentage of total duration for
each number of overlapping iCAPs. On one hand, only 0.7% of
the resting-state scan has no active iCAPs, and 4% has only a

single iCAP, which is expected given the large total on-time of
iCAPs. On the other hand, combinations of iCAPs are most
common; that is, two (16%), three (31%), four (31%) and five
(18%) iCAPs occurring at the same time account for 95% all
together. Despite this significant overlap, not all possible com-
binations can be observed; that is, while 90% of the iCAPs occur
at least once alone, only 58, 29, 15 and 3% of the possible com-
binations between two, three, four, five iCAPs, respectively, have
been registered.

We then applied hierarchical clustering of iCAPs using the
observed combinations as features (in total, 2,098 iCAP
combinations were observed out of 55,250 possible iCAPs). To
show that this clustering is consistent with putative cognitive
processes reflected by iCAPs, we associated each iCAP with its
behavioural profile using the Brainmap database33. The
dendrogram in Fig. 6 reflects the hierarchy of iCAPs together
with their behavioural profiles. At the highest level of the
hierarchy, iCAPs are grouped as sensory, default-mode and
attention networks, respectively. At the same time, the
behavioural profiles are also consistent in the same groupings
as confirmed by their correlations (Fig. 6); that is, sensory
networks show higher scores with their associated role, precuneus
(5) and pDMN (10) have both high scores in reasoning and social
cognition, DMN (10) and ACC (13) share high scores also in
social cognition and explicit memory, whereas ACC (13) alone
involves more in emotional processes, finally, attention network
involve in both execution and cognition.

iCAP combinations bring new insight into brain organization.
We further analysed the most common combinations of iCAPs by
considering the top five for each set of overlapping iCAPs; see
Fig. 5b where combinations with DMN-related iCAPs (according
to Fig. 4) are disconnected from the pie. The iCAPs that appear
most in isolation are DMN (8) in both signs, precuneus (5),
auditory (1) and secondary visual (4). The same iCAPs also appear
in combination with others. In particular, for two overlapping
iCAPs, DMN (8) occurs with anterior salience (11), visual (4),
auditory (1) but with opposite signs, and attention (2) overlaps
with visual (3) with opposite signs (see Supplementary Fig. 8
for the most frequent 20 iCAP combinations for each set of
overlapping iCAPs). With more than two iCAPs, the DMN (8)
and ACC (13) show increased overlap when combined with
motor, and/or visual iCAPs. Attention (2) further combines with
visual (3, 4), and precuneus (5) often occurs in combination with
DMN (8) for a large number of overlapping iCAPs. In terms of
total on-time, DMN (8) is present B38% of the time either alone
or in specific combinations with other iCAPs, followed by sensory
components such as motor (7; 28%) and auditory (1; 26%). In
almost all the combinations, we notice that sensory networks
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average 29±1.8 min of total iCAP activation out of 8 min of
resting-state scan per subject. We then computed the average
duration of each iCAP individually (Fig. 2a). We found that the
DMN (8) has the longest duration (7.6 s), followed by sensory-
related iCAPs such as motor (7), visual (3), auditory (1) and
attention (2). In terms of occurrence rate of the transients,
auditory (1), attention (2) and primary visual (3) are the most
common iCAPs.

iCAPs co-occur in behaviourally relevant combinations. To
measure the temporal overlap between iCAPs, we counted the
different combinations of iCAPs occurring at each time instance.
The bar plot in Fig. 5a depicts the percentage of total duration for
each number of overlapping iCAPs. On one hand, only 0.7% of
the resting-state scan has no active iCAPs, and 4% has only a

single iCAP, which is expected given the large total on-time of
iCAPs. On the other hand, combinations of iCAPs are most
common; that is, two (16%), three (31%), four (31%) and five
(18%) iCAPs occurring at the same time account for 95% all
together. Despite this significant overlap, not all possible com-
binations can be observed; that is, while 90% of the iCAPs occur
at least once alone, only 58, 29, 15 and 3% of the possible com-
binations between two, three, four, five iCAPs, respectively, have
been registered.

We then applied hierarchical clustering of iCAPs using the
observed combinations as features (in total, 2,098 iCAP
combinations were observed out of 55,250 possible iCAPs). To
show that this clustering is consistent with putative cognitive
processes reflected by iCAPs, we associated each iCAP with its
behavioural profile using the Brainmap database33. The
dendrogram in Fig. 6 reflects the hierarchy of iCAPs together
with their behavioural profiles. At the highest level of the
hierarchy, iCAPs are grouped as sensory, default-mode and
attention networks, respectively. At the same time, the
behavioural profiles are also consistent in the same groupings
as confirmed by their correlations (Fig. 6); that is, sensory
networks show higher scores with their associated role, precuneus
(5) and pDMN (10) have both high scores in reasoning and social
cognition, DMN (10) and ACC (13) share high scores also in
social cognition and explicit memory, whereas ACC (13) alone
involves more in emotional processes, finally, attention network
involve in both execution and cognition.

iCAP combinations bring new insight into brain organization.
We further analysed the most common combinations of iCAPs by
considering the top five for each set of overlapping iCAPs; see
Fig. 5b where combinations with DMN-related iCAPs (according
to Fig. 4) are disconnected from the pie. The iCAPs that appear
most in isolation are DMN (8) in both signs, precuneus (5),
auditory (1) and secondary visual (4). The same iCAPs also appear
in combination with others. In particular, for two overlapping
iCAPs, DMN (8) occurs with anterior salience (11), visual (4),
auditory (1) but with opposite signs, and attention (2) overlaps
with visual (3) with opposite signs (see Supplementary Fig. 8
for the most frequent 20 iCAP combinations for each set of
overlapping iCAPs). With more than two iCAPs, the DMN (8)
and ACC (13) show increased overlap when combined with
motor, and/or visual iCAPs. Attention (2) further combines with
visual (3, 4), and precuneus (5) often occurs in combination with
DMN (8) for a large number of overlapping iCAPs. In terms of
total on-time, DMN (8) is present B38% of the time either alone
or in specific combinations with other iCAPs, followed by sensory
components such as motor (7; 28%) and auditory (1; 26%). In
almost all the combinations, we notice that sensory networks
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duration of all the iCAPs (regardless of their sign) relative to total
scanning time. The total on-time of all iCAPs constitute 3.6 times
of the total scan duration; that is, for 12 subjects, 350 min of total
iCAPs activation out of 96 min of total scanning time. The total
on-time was also evenly distributed over the subjects; that is, on
average 29±1.8 min of total iCAP activation out of 8 min of
resting-state scan per subject. We then computed the average
duration of each iCAP individually (Fig. 2a). We found that the
DMN (8) has the longest duration (7.6 s), followed by sensory-
related iCAPs such as motor (7), visual (3), auditory (1) and
attention (2). In terms of occurrence rate of the transients,
auditory (1), attention (2) and primary visual (3) are the most
common iCAPs.

iCAPs co-occur in behaviourally relevant combinations. To
measure the temporal overlap between iCAPs, we counted the
different combinations of iCAPs occurring at each time instance.
The bar plot in Fig. 5a depicts the percentage of total duration for
each number of overlapping iCAPs. On one hand, only 0.7% of
the resting-state scan has no active iCAPs, and 4% has only a

single iCAP, which is expected given the large total on-time of
iCAPs. On the other hand, combinations of iCAPs are most
common; that is, two (16%), three (31%), four (31%) and five
(18%) iCAPs occurring at the same time account for 95% all
together. Despite this significant overlap, not all possible com-
binations can be observed; that is, while 90% of the iCAPs occur
at least once alone, only 58, 29, 15 and 3% of the possible com-
binations between two, three, four, five iCAPs, respectively, have
been registered.

We then applied hierarchical clustering of iCAPs using the
observed combinations as features (in total, 2,098 iCAP
combinations were observed out of 55,250 possible iCAPs). To
show that this clustering is consistent with putative cognitive
processes reflected by iCAPs, we associated each iCAP with its
behavioural profile using the Brainmap database33. The
dendrogram in Fig. 6 reflects the hierarchy of iCAPs together
with their behavioural profiles. At the highest level of the
hierarchy, iCAPs are grouped as sensory, default-mode and
attention networks, respectively. At the same time, the
behavioural profiles are also consistent in the same groupings
as confirmed by their correlations (Fig. 6); that is, sensory
networks show higher scores with their associated role, precuneus
(5) and pDMN (10) have both high scores in reasoning and social
cognition, DMN (10) and ACC (13) share high scores also in
social cognition and explicit memory, whereas ACC (13) alone
involves more in emotional processes, finally, attention network
involve in both execution and cognition.

iCAP combinations bring new insight into brain organization.
We further analysed the most common combinations of iCAPs by
considering the top five for each set of overlapping iCAPs; see
Fig. 5b where combinations with DMN-related iCAPs (according
to Fig. 4) are disconnected from the pie. The iCAPs that appear
most in isolation are DMN (8) in both signs, precuneus (5),
auditory (1) and secondary visual (4). The same iCAPs also appear
in combination with others. In particular, for two overlapping
iCAPs, DMN (8) occurs with anterior salience (11), visual (4),
auditory (1) but with opposite signs, and attention (2) overlaps
with visual (3) with opposite signs (see Supplementary Fig. 8
for the most frequent 20 iCAP combinations for each set of
overlapping iCAPs). With more than two iCAPs, the DMN (8)
and ACC (13) show increased overlap when combined with
motor, and/or visual iCAPs. Attention (2) further combines with
visual (3, 4), and precuneus (5) often occurs in combination with
DMN (8) for a large number of overlapping iCAPs. In terms of
total on-time, DMN (8) is present B38% of the time either alone
or in specific combinations with other iCAPs, followed by sensory
components such as motor (7; 28%) and auditory (1; 26%). In
almost all the combinations, we notice that sensory networks
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Fig. 4. The group-specific iCAPs (z-normalized). The group-specific maps
of healthy volunteers and individuals with RRMS reveal slight differences
between the groups (indicated by green arrows). The controls show higher
coordination between thalamus and precuneus (iCAP 1) than patients (t � 3,
p  10�4 uncorrected). In iCAP 3, the controls have lower right middle
frontal gyrus, however the t-maps do not suggest significance. The activation
in areas surrounding the frontal eye fields in iCAP5 has lower but not
significant intensity in patients with respect to controls (t  3). Patients have
increased activity in the inferior sections of superior frontal gyrus whereas
controls have increased activation in the superior sections of superior frontal
gyrus.
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