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Abstract

Magnetic resonance imaging (MRI) has opened unprecedented avenues to
observe the human brain non-invasively. In particular, for about two
decades, functional MRI (fMRI) has enabled to monitor brain function using
the blood-oxygen-level-dependent (BOLD) contrast as a proxy for neuronal
activity. The impact of fMRI on neurosciences, medicine, and psychology is
ever increasing and has been mainly focussing on (1) understanding brain
organization in terms of segregation (i.e., localized processing) and integra-
tion (i.e., distributed processing), specifically, related to sensory processing
and cognition; (2) exploring temporal characteristics of brain processes.

FMRI provides large spatiotemporal datasets, typically one whole-brain vol-
ume with spatial resolution of 1–3 mm in each dimension, every 1–4 seconds
during several minutes. The structure of neurophysiological contributions in
these data is complex and therefore requires advanced data processing. Con-
ventional fMRI analysis is exploiting timing properties of a stimulation or
task paradigm designed by the experimenter; i.e., evidence is sought for the
presence of a hypothetical BOLD response. More recently, the community
has shown increasing interest in spontaneous brain activity acquired dur-
ing resting-state fMRI (RS-fMRI). In the absence of any task, data-driven
or exploratory methods have found great use. In particular, blind source
separation such as independent component analysis (ICA) has been widely
applied to RS-fMRI data.

One limitation of current data-driven methods is the lack of incorporat-
ing knowledge about the hemodynamic system, which governs any activity-
related signal component in the fMRI measurements. In this dissertation, we
build upon the latest advances in convex optimization and propose a novel
framework that can reveal activity-inducing signals at the fMRI timescale.
In particular, our regularization strategy, termed “total activation” (TA),
allows deconvolving the fMRI signal to remove hemodynamic blur and to
improve spatial contrast of activation patterns by incorporating knowledge
about meaningful brain regions. The contribution of our method lies in
adapting and tailoring state-of-the-art signal processing techniques with spe-
cific domain knowledge from fMRI and neurosciences.
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First, we extend “total variation” (TV), which is a well-recognized method in
image processing for edge-preserving regularization. TV favors signals that
are piecewise constant, and, therefore, whose derivatives are sparse. We
generalize this concept for signals of which the derivative of an additional
linear differential operator is sparse, and build a variational formulation for
the denoising problem. The recovered signal can be also studied after ap-
plying the regularizing operators; e.g., applying the differential operator will
lead to the piecewise constant driving signal, while applying an additional
derivative reveals a sparse “innovation” signal. Fast and efficient schemes
from convex optimization are deployed to solve the variational problem at
hand.

Second, we apply TA for fMRI data analysis to explore the underlying “de-
blurred” activity-inducing signals. The temporal regularization is based on
generalization of TV where the differential operator is chosen to invert the
(linearized) hemodynamic system. Consequently, this will favor block-type
activity-inducing signals without restrictions on timing nor duration. The
spatial regularization uses a mixed-norm regularization to favor coherent
activity-inducing signals in brain regions chosen from an anatomical brain
atlas. After demonstrating the feasibility of the proposed method using sim-
ulated data, we show results on experimental fMRI data consisting of long
resting-state periods and a few unanticipated visual stimuli. The method
is able to readily recover plausible activation patterns for the visual stim-
uli without any prior knowledge about their timing. More interestingly,
we also recovered complex spatiotemporal patterns of spontaneous activity
that were organized in “resting-state networks”, as such providing a new
approach to study non-stationary dynamics of RS-fMRI, a research direc-
tion that will be of major interest in the coming years. Finally, we include
convincing results for localizing epileptogenic brain regions in patients using
simultaneous EEG-fMRI recordings.

Keywords: Linear system theory, regularization, sparsity, total variation,
mixed-norms, shrinkage algorithms, convex optimization, functional mag-
netic resonance imaging, blood-oxygenation-level-dependent signal, hemo-
dynamic model, deconvolution, spontaneous brain activity, resting state,
paradigm-free brain mapping, neurological disease, epilepsy



Résumé

L’imagerie par résonance magnétique (IRM) a ouvert des perspectives sans
précédent pour l’observation non-invasive du cerveau humain. En particu-
lier, depuis environ deux décennies, l’IRM fonctionnelle (IRMf ) a permis
d’observer le fonctionnement du cerveau en utilisant le signal dépendant
du niveau d’oxygène (BOLD) comme un indicateur de l’activité neuronale.
L’impact de l’IRMf sur les neurosciences, la médecine et la psychologie ne
cesse d’augmenter et s’est concentré principalement sur (1) la compréhension
de l’organisation du cerveau en termes de ségrégation (c.-à-d. traitement lo-
calisé) et d’intégration (c.-à-d. traitement distribué), en particulier, liée aux
processus sensoriels et cognitifs, (2) l’exploration de la dynamique des pro-
cessus du cerveau.

L’IRMf donne accès à un grand quantité de données spatio-temporelles,
avec typiquement une résolution spatiale de 1-3 mm selon chaque dimen-
sion, et une résolution temporelle de l’ordre de la seconde. L’interaction
des différentes contributions neurophysiologiques dans ces données est com-
plexe et nécessite donc un traitement avancé. L’analyse de l’IRMf clas-
sique exploite les propriétés de synchronisation d’une stimulation ou d’un
paradigme conçu par l’expérimentateur, c.-à-d., consiste à rechercher la
présence d’une réponse BOLD hypothétique, concommitante au stimuli.
Plus récemment, la communauté a montré un intérêt grandissant à l’étude
de l’activité cérébrale spontanée acquise au cours de l’IRMf à l’état de repos,
ou �resting-state� (RS-IRMf). En l’absence de tâche, les méthodes explo-
ratoires ont trouvé une grande utilité. Par exemple, la mise en évidence de
réseaux fonctionnels par analyse en composantes indépendantes (ICA) a été
largement appliquée aux données RS-IRMf.

Une limitation des méthodes exploratoires actuelles se situe dans l’absence
de prise en compte d’information a priori sur le système hémodynamique,
qui régit toute composante de signal activité liée aux mesures IRMf. Dans
cette thèse, nous proposons un nouveau cadre méthodologique qui per-
met de révéler la dynamique des signaux d’activité par l’IRMf, en s’ap-
puyant sur les dernières avancées en optimisation convexe. Notre stratégie de
régularisation, appelée �activation totale � (TA), permet de déconvoluer le
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signal IRMf pour retrouver la dynamique de l’activité cérébrale sous-jacente.
En outre, le contraste spatial des foyers d’activation peut être amélioré en
intégrant des connaissances a priori sur les régions pertinentes du cerveau.
La contribution de notre méthode réside dans l’adaptation et l’application
des dernières techniques de l’état de l’art de traitement des signaux dans le
domaine spécifique de l’IRMf et des neurosciences.

Tout d’abord, nous étendons la notion de �variation totale� (TV), méthode
de régularisation bien établie et efficace l’en traitement d’images pour
préserver les discontinuités. TV favorise les signaux constants par morceaux,
et, par conséquent, dont les dérivées sont parcimonieuses. Nous généralisons
ce concept aux signaux dont la dérivée d’un opérateur différentiel linéaire
supplémentaire est parcimonieux, et construisons une formulation varia-
tionnelle pour le problème de débruitage. Le signal ainsi récupéré peut
également être analysé après l’application des opérateurs de régularisation,
par exemple, en appliquant l’opérateur différentiel qui conduira au signal ori-
ginal constant par morceaux, tout en appliquant une dérivée supplémentaire
pour révéler un signal d’�innovation� clairsemé. Une solution, rapide et ef-
ficace, d’optimisation convexe est proposée pour résoudre le problème varia-
tionnel clé en main.

Deuxièmement, nous appliquons la méthode TA à l’analyse des données
IRMf pour étudier les signaux d’activité cérébrale sous-jacents (c.-à-d. en
l’absence du filtrage hémodynamique). La régularisation temporelle est
basée sur TA oú l’opérateur différentiel est choisi pour inverser le système
hémodynamique linéarisé. Cela a pour conséquence de favoriser l’activité des
signaux BOLD de type bloc sans restrictions sur la dynamique temporelle ni
la durée de l’activation. La régularisation spatiale utilise une régularisation
de type �norme mixte� pour favoriser l’activation cohérente dans les régions
cérébrales choisies à l’aide d’un atlas anatomique du cerveau. Après avoir
démontré la faisabilité de la méthode proposée sur les données simulées, nous
présentons des résultats sur des données expérimentales d’IRMf constituées
de longues périodes de repos altérées par quelques stimuli visuels inattendus.
La méthode est capable de recouvrer facilement les modèles d’activation
plausibles pour les stimuli visuels sans aucune connaissance préalable sur
leur temps d’arrivée ni leur durée. Plus intéressant encore, nous avons aussi
pu mettre en évidence des patterns spatio-temporels complexes de l’activa-
tion spontanée, qui sont organisés en �réseaux d’état de repos�. Ainsi, une
nouvelle approche pour étudier la dynamique non stationnaire de RS-fMRI
est proposée, ouvrant ainsi une nouvelle direction de recherche qui sera d’un
grande intérêt dans les années à venir. Enfin, en utilisant des enregistrements
EEG-IRMf simultanés, nous avons également obtenu des résultats probants
pour localiser les régions cérébrales épileptogènes chez des patients souffrant
d’épilepsie pharmaco-résistantes.
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Chapter 1

Introduction

New directions in science are launched by new tools much
more often than by new concepts. The effect of a concept-
driven revolution is to explain old things in new ways. The
effect of a tool-driven revolution is to discover new things
that have to be explained.

Imagined Worlds, Freeman Dyson

The brain has not always been conceived as the most vital organ in the center
of perception and cognition. In ancient civilizations, the heart was believed
to be the seed of the mind. Yet, this prevailing belief survives ironically,
such as in the famous idiom “knowing by heart”, meaning “memorizing”
something perfectly. Hippocrates was the first physician to suggest that the
brain is the origin of thoughts instead of the heart and further described
epilepsy as the “disturbance of the brain”. The first anatomical studies date
from sixteenth century and the first scientific evidence for cerebral localiza-
tion of psychological functions appeared in nineteenth century. Indeed, it
was not until the surgery of Henry Molaison (H.M.), a long-term epilepsy
sufferer, in mid-twentieth century that a major breakthrough was acciden-
tally made to understand the organization of memory. H.M. suffered from
anteriograde amnesia, inability to form new memory, after the resection of
particular brain regions in order to cure epilepsy.

Today, the brain’s vital role for communication and regulation inside the
body and with the external world is widely acknowledged. However, the
mystery of how the brain accomplishes these tasks has still not been fully
uncovered. Scientists are challenged to understand this intriguing and com-
plex mechanism constituting a large network of billions of neurons.

Significant improvements have been made in science for exploring the brain
from different aspects; i.e., structural or functional organization at either mi-
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2 Introduction

croscale (i.e., neurons and synapses), mesoscale (i.e., cortical columns and
projections), or macroscale (i.e., brain regions and connections). Functional
magnetic resonance imaging (FMRI), which enables observation of function-
ing brain at a macroscopic level, is a non-invasive brain imaging technique
introduced during the last decade of the twentieth century. It relies on
the nuclear magnetic resonance principle and produces images (volumes)
of the brain over time by measuring the difference of oxygen concentration
in the blood following neuronal activation. This relationship is known as
the hemodynamic effect and measured signal is referred to as blood-oxygen-
level-dependent (BOLD) signal. FMRI has been one of the vastly exploited
modalities not only for visualizing the functioning brain over time (in sec-
onds), but also with good spatial resolution (in millimeters). It is widely
used today for medical studies including epilepsy, schizophrenia, depres-
sion, stroke, Alzheimer’s disease and Parkinson’s disease. The most remark-
able clinical impact of fMRI is perhaps “detecting awareness in vegetative
state” [1]. Despite its many advantages, fMRI data have some limitations
that require careful consideration:

1. FMRI does not measure direct neuronal activity. The precise mech-
anism between neuronal activity and fMRI measurements is not yet
fully uncovered, however, repeated studies in the literature suggest
an indirect relationship between neuronal activations and fMRI by
the BOLD response, which is much slower than the actual neuronal
events; e.g., the peak activation is observed after around 5-6 secs [2].

2. The data is complex and large-scale; it contains spatial and temporal
correlations. Furthermore, even though advanced acquisition schemes
are emerging, there is a trade-off between the temporal and spatial
resolution.

3. The measurements are hampered by various sources of noise and
nuisance contributions, including reconstruction error, subject move-
ments, inter- and intra-subject variability, physiological effects, scan-
ner effects, magnetic field effects and so on.

4. The interpretation of the fMRI signal is challenging; i.e., how to har-
ness most information out of the fMRI signal is one of the biggest ques-
tions in neuroimaging. As more sophisticated questions arise about
the brain function, deciphering the vast amount of data becomes more
demanding.

In order to address (some of) these limitations, there is a dire need for inter-
disciplinary methodological frameworks that are able to aggregate physics,
signal processing and neuroscience.
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A lot of research efforts have been devoted in localizing different cognitive
functions in the cerebral cortex and understanding its organization. For ex-
ample, scientists have identified specific brain regions associated with partic-
ular tasks; e.g., solving puzzles, thinking of specific persons/objects, watch-
ing movie. Conventional fMRI analyses include model-based methods that
pinpoint the cortical regions of which the recorded signal is well-matched
with a predefined temporal model. These methods are only applicable in
the presence of an explicit paradigm. Besides task-based experiments, an-
other concept in fMRI has emerged that allows for the investigation of in-
trinsic brain activity, referred to as the resting-state. Specifically, fMRI
measurements are acquired while subjects are not engaged in a prescribed
attention-demanding task but rather let their minds wander freely. Resting-
state fMRI (RS-fMRI) requires subsequent data-driven methods that could
foster new insights into brain function and organization. Blind source sep-
aration methods, such as ICA, are able to provide the functional network
organization. However, they are invariant to spatial and temporal permu-
tations of the data; i.e., hemodynamic system is not taken into account.
Finally, fMRI deconvolution methods have been proposed to analyze the
fMRI data when the task is “implicit”. Specifically, these methods bring
out the “underlying activations” by attempting to invert the hemodynamic
system. With the reinforcement of signal processing methods and elimina-
tion of computational difficulties, these methods are becoming an important
part of the fMRI analysis.

While the BOLD signal relates to the underlying neuronal activity, it suffers
from significant temporal blurring due to the “slowness” of the hemodynamic
system. Deconvolution methods eliminate this blurring effect without the
need of any timing information of the events. The following features make
these methods stand out among state-of-the-art:

1. Contrary to conventional task-based methods, they are able to reveal
the activation patterns during rest or task-implicit experiments.

2. They incorporate the hemodynamic system into their formulation
whereas the blind source separation methods are insensitive to the
hemodynamic system.

Revealing the patterns of neuronal activities that underlie the BOLD signal
enables the fMRI data analysis not only to detect unknown activity, such as
spontaneous activity in RS-fMRI and interictal discharges in epilepsy, but
also to further elaborate the temporal dynamics, such as mental chronometry
and habituation effects.

The idea of deconvolving the hemodynamic blur was first proposed by Glover
[3] in order to study the dynamics in sensorimotor and auditory cortices.
The solution strategy consisted of applying Wiener deconvolution filtering,
which assumes an underlying Gaussian process and in turn recovers smooth
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activity-inducing signals.

In this dissertation, we aim at developing a novel fMRI data deconvolu-
tion scheme, which we named Total Activation. We intend to improve the
state-of-the-art by considering both the hemodynamic effect of fMRI and
anatomical organization of the brain. To that end, we formulate a spa-
tiotemporal regularization problem with appropriate spatial and temporal
regularizers.

All the research activities presented in this thesis have been carried out in
collaboration between Medical Image Processing Laboratory, École Poly-
technique Fédérale de Lausanne and Center for Biomedical Imaging, Uni-
versity Hospital Geneva.

1.1 Contributions

Generalization of Total Variation Regularization

The first contribution of this work is to propose a regularization term that
takes into account the presence of a linear system whose inverse is formu-
lated by a series of linear differential equations. The work is inspired by
the notable “total variation” regularization in which there is an implicit
generating system that favors piecewise constant signals. Total variation
combines a sparsity-pursing norm with the first-order derivative operator so
that derivative of the signal is enforced to be sparse to minimize the cost.
The sparsity constraint uses `1-norm, which is the relaxed convex counter-
part of the ideal sparsity-promoting `0, so that convex optimization schemes
can still be applied.

We extend the notion of total variation in the sense that the underlying
system does no longer prefer piecewise constant signals, which can be seen
as a combination of weighted and shifted Green’s functions of first-order
derivative operator, but rather signals composed of the Green’s function
of a general differential operator. Therefore, we construct a regularization
term that combines the sparsity constraint and the discrete differential fil-
ter associated to the inverse of the system. We solve a denoising problem
whose regularization term acts directly on the driving input signal; i.e., anal-
ysis formulation. Further tailoring the operator enables to handle different
driving signals; i.e., n-th order polynomials.

Total Activation

The second contribution of this work is to develop a novel deconvolution
method for fMRI data analysis. The aim is to recover the underlying
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activity-inducing signals, which are more closely related to neuronal ac-
tivity, without any restrictions on the timing or duration of the activations.
That allows for detection of spontaneous brain activity and observation of
the non-stationary dynamics. The variational formulation is convex and
contains a data-fitting term and two regularizers for the different dimen-
sions of the data. First, temporal regularization identifies the “innovation”
signal (which is spike-type) as the sparse driver of the hemodynamic system.
However, the activity-inducing signals are more flexible block-type signals.
From the physiological hemodynamic model in state-space representation, a
differential operator can be deriven and plugged into the generalized total
variation scheme. Spatial regularization is incorporated using mixed-norm
based on anatomical priors of brain regions; i.e., activities in the same brain
regions are favored to be coherent. We employ the efficient generalized
forward-backward splitting algorithm, which is a fast iterative shrinkage al-
gorithm that alternates between temporal and spatial domain solutions until
convergence to the final estimate of the underlying activity-inducing signal
is reached.

1.2 Thesis Outline

This thesis is organized as follows: In Chapter 2, we provide a theoretical
background on sparsity-promoting regularization methods, especially Total
Variation (TV) and its variants. We provide a detailed description of the
methods employed in this work, and briefly explain related state-of-the-art.
In Chapter 3, we extend the concept of TV regularization for a differen-
tial operator L. Specifically, we introduce the generalized L-TV framework
that takes into account the presence of a linear system represented by a
series of linear differential equations. We devise a variational formulation
that can be solved by fast iterative methods. We validate the strength of
our method by comparing it with other conventional methods on both syn-
thetic and real data. In Chapter 4, we then explain the basics of fMRI
principle and data analysis methods. We start with the working princi-
ple of MRI, specifically, the contrast mechanism in fMRI. Then, we discuss
state-of-the-art fMRI analysis methods in three subcategories; confirmatory,
exploratory and deconvolution methods. In Chapter 5, we introduce Total
Activation, spatiotemporal regularization tailored for exploring spontaneous
brain activity in fMRI. We further extend the generalized L-TV by includ-
ing an anatomical prior, so that both spatial and temporal characteristics
are taken into account. Finally, in Chapter 6, we present the results for
two real fMRI datasets. The first experiment is based on a few short and
unpredicted visual stimulation during resting-state for three healthy sub-
jects. Total activation is able to reconstruct the underlying experimental
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paradigm requiring neither timing nor duration of the stimuli. The second
experiment aims at detecting and mapping of sources of epileptic activity
on pharmaco-resistant epilepsy patients.



Chapter 2

Reconstruction with
Sparsity-Promoting
Regularization

Inverse problems are common in many engineering applications, in particu-
lar, in signal and image processing. The aim is to retrieve the original signal
from noisy and degraded measurements. However, this problem is typically
ill-posed, by that means, unique and stable solution might not exist due to
the nature of the observation model. Therefore, additional assumptions are
required to achieve a feasible solution. In this chapter, we describe how a
linear inverse problem can be cast as a convex optimization problem. Ad-
ditional constraints are incorporated into the formulation as regularizers to
favor some desirable properties of the recovered signal, such as smoothness
and sparsity. We specifically elaborate sparsity-promoting regularization
and discuss state-of-the-art optimization tools that lead to efficient iterative
schemes.

2.1 Observation Model

We consider a typical problem setting widely encountered in signal and
image processing applications: an unknown signal goes through a physical
process whose output is measured through some acquisition scheme. The
observed data is possibly degraded and corrupted by the system and/or
several sources of noise during the process. The measured signal is composed
of discrete samples and can be formulated through a linear mapping

y = Ax + εεε, (2.1)

7
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where A ∈ RM×N is the observation model, y ∈ RM is the measured signal,
x ∈ RN is the input signal and εεε is the additive noise. The matrix A can
possibly represent some dictionary (wavelets, DCT, . . . ), blurring kernel,
subsampling kernel, a binary map or a combination of these depending on
the application at hand. The system is referred to as underdetermined when
M < N and overdetermined when M > N . In its simplest version (i.e.,
A = I), the signal model reduces to noise-only case which will be covered
mostly throughout this thesis.

Often, the primary goal is to solve the inverse problem and access the source
signal; i.e., recovering the original signal x from noisy measurements y.

2.2 Variational Formulation

The problem of estimating the signal of interest x can be investigated via
different schemes. The fundamental solution strategy aims at minimizing
the squared-error, also known as least squares, leading to the following vari-
ational formulation:

x̂ ∈ arg min
x∈RN

‖y −Ax‖22. (2.2)

The solution of the above formulation is not necessarily unique. The set
of all x, which satisfy the above criteria, highly depends on the null space
of A, as the solution set of Axnull = 0. Note that, when A represents
an orthogonal basis, the solution is unique; i.e., xnull = 0. Otherwise,
any solution that involves the null space, x + cxnull, where c is a constant,
automatically satisfies (2.2). Therefore, the problem is considered as ill-
posed. The minimum-norm least squares solution, which maps (2.2) into a
unique solution of

x̂ = arg min
x
‖x‖2 subject to Ax = y, (2.3)

becomes x̂ = A†y, where A† is the pseudo-inverse of A. Specifically, when
A is a full rank overcomplete (M < N) or undercomplete matrix (M > N),
A† = AT (AAT )−1 is the right inverse or A† = (ATA)−1AT left inverse of
A, respectively. The condition-number of A plays an important role on the
robustness to small perturbations. Indeed, for the denoising case (A =I)
the solution becomes the measured noisy signal itself, x̂ = y.

Generally, additional constraints on the reconstructed signal could be incor-
porated into (2.2) to obtain a unique solution as

x̂ = arg min
x∈RN

‖y −Ax‖22 +R(x), (2.4)

where the first term is the data-(fitting) term and R(x) is the regularization
term. This regularization problem is also known as penalized least squares
problem.
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If we prefer smooth representations, the variational formulation could use
Tikhonov regularization as

x̂ = arg min
x
‖y −Ax‖22 + λ‖FFFx‖22, (2.5)

where λ is the regularization term and F is a suitable linear mapping. The
unique solution is then achieved as x̂ = (ATA + λFTF)−1ATy.

2.2.1 Bayesian Interpretation

The same aforementioned concepts can be elaborated from a statistical point
of view. The simplest estimation exploits the maximum likelihood (ML)
principle, which maximizes the probability of the measured signal given the
estimated signal; i.e., x̂ = arg maxx p(y|x). Clearly, the ML formulation
depends on the adapted noise model for the specific problem at hand, and
requires different solution schemes for different noise models. The widely
accepted noise model is the additive white Gaussian noise (AWGN); i.e.,
p(εεε) ∼ N (0, I), maximizing the ML follows

x̂ = arg max
x

p(Ax + εεε|x) = arg max
x

p(εεε),

= arg max
x

(
1

2πσ2

)1/2

e−
‖y−Ax‖2

2σ2 .

The log-likelihood leads to the same variational formulation in (2.2) with a
quadratic cost function through

x̂ = arg max
x

log

((
1

2πσ2

)1/2

e−
‖y−Ax‖2

2σ2

)
,

= arg max
x

(
−‖y −Ax‖22

2σ2

)
+K,

= arg min
x
‖y −Ax‖22, (2.6)

where K is a constant independent of x. When the correlated noise is
adapted (i.e., p(εεε) ∼ N (0, σ2Σ) with a covariance matrix Σ), ML leads to
weighted least squares as

x̂ = arg min
x
‖y −Ax‖2Σ = arg min

x
(y −Ax)TΣ−1(y −Ax).

If the prior probability density of the unknown signal x can be antici-
pated the Bayesian inference solves for the maximum a posteriori probability
(MAP); i.e., x̂ = arg maxx p(x|y) = arg maxx p(y|x)p(x). Then, the regu-
larization term can be driven from the prior as R(x) u − log(p(x)). When
the prior follows a Gaussian distribution with p(x) ∼ N (0, σ2

xΣxΣxΣx) and the
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noise is AWGN, the variational formulation becomes penalized least squares
as in (2.5) regularization term λ = σ2

σ2
x

and whitening operator F = Σ−1/2.

The same solution is also known as the minimum mean square error (MMSE)
estimator. A more general solution of the same problem for a general corre-
lation structure in signal and image processing applications is known as the
Wiener filter solution.

The link between the Bayesian inference and the variational formulation in
(2.4) is sometimes qualitative as the prior needs to correspond to a proper
probability density distribution. In this work, we deal with variational view-
point and do not elaborate on statistical interpretation of the regularizers.

2.3 Analysis and Synthesis Formulations

The incorporation of the regularizer leads to a variational formulation such
that the optimal solution depends on the compromise between the data-
and the regularization terms. Regularization can impose constraints either
on the coefficients c of the signal in a proper basis or frame; i.e., x = Tc,
known as synthesis prior

x̃ = Tc̃ with c̃ = arg min
c
‖y −ATc‖22 + λ‖c‖pp, (2.7)

or on signal as a result of a specific transformation, Fx, known as analysis
prior

x̃ = arg min
x
‖y −Ax‖22 + λ‖Fx‖pp, (2.8)

where T is the synthesis operator of a decomposition of x on a dictionary
(e.g., wavelets), F is the operator that extracts meaningful information from
x.
The analysis and synthesis formulations do not always lead to the same
solution. Two solutions are analytically equivalent only for some specific
cases:

(i) when F is a square and invertible matrix, T = F−1,

(ii) when A = I and T represents an undercomplete dictionary, T =
FT (FFT )−1,

(iii) when T is an overcomplete dictionary and p = 2, T = (FTF)−1FT .

However, it is difficult to anticipate which prior (analysis or synthesis) pro-
vides a better estimation of the underlying solution [4].
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2.4 Sparsity-Pursing Norms

Many signal and image processing studies have concentrated on finding the
best possible priors by looking for analysis/synthesis operators that lead to
desirable properties of the solution; i.e., by questioning the signal’s repre-
sentation in these domains and considering the computational cost of the
optimization. One of the popular choices is Tikhonov regularization which
corresponds to energy minimization of the signal via `2-norm and hence
yields smooth solutions. The quadratic norm is particularly interesting since
it leads to a closed form and analytical solution. However, sparsity-pursuing
norms can be a better substitute since it allows for representing the signal
with least amount of elements.

`0-(quasi)norm Constrained Regularization

The sparse solutions, which provide representations with only a few large
coefficients, are promoted by the `0-(quasi)norm. The problem is now cast
as

x̂ ∈ arg min
x
‖y −Ax‖2 + λ‖x‖0. (2.9)

The regularization is not convex and computationally demanding; the global
solution is only obtained with combinatorial complexity, therefore, it quickly
becomes intractable even for small sized problems. Search based methods,
matching pursuit (MP) and its variants, are heuristic solution proposed to
handle with these problems by tracking every coefficient and updating the
estimate iteratively [5, 6].

Convex Relaxation

We consider the convex relaxation of `0-(quasi)norm by `p-norms p ≥ 1,
especially the `1-norm which provides closest sparse solution through convex
(however, not strictly) formulations. `1-based regularization still favor few
large elements where the minimum length is achieved. The relaxation of `0
to `1-norm allows the use of efficient algorithms from convex optimization
to find a minimizer to the cost function C in the form of

x̃ ∈ arg min
x
C(x) = arg min

x
‖y −Ax‖22 + λ‖x‖1. (2.10)

This specific type of problem is referred to as basis pursuit (BP) or least
absolute shrinkage and selection operator (LASSO) problem in the literature
[7, 8]. Different versions of LASSO exist in literature; e.g., group LASSO
imposes sparsity constraint on a group of variables [9], overlapping group
LASSO and graph LASSO exploit specific group structure [10], fused LASSO
exploits both sparse and smooth regularization terms [11], etc.
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`p-(quasi)norm Constrained Regularization

Another family of regularization problems incorporate the ‘smoothed’ `0-
(quasi)norm, generally referred to as `p-(quasi)norm with 0 < p < 1, pos-
tulating that the solution approaches to `0 solution as p → 0, and hence
provides better estimation than `1 regularized solutions. Even though these
problems did not attract a lot of attention in the early stage of sparsity-
inducing regularization–probably due to its non-convex nature–, with re-
cent improvements in the optimization algorithms and regularization, `p-
(quasi)norm constrained regularization is emerging, especially in compres-
sive sensing community. The variational problem is casted as

x̃ = arg min
x
‖y −Ax‖22 + λ‖x‖p, 0 < p < 1. (2.11)

The problem might be considered as a weighted `1-norm regularization,
weighted least squares, iterative thresholding, smoothed `0 or specific type
of gradient descent, etc [12, 13]. The application on real data problems;
an example of MRI reconstruction problem from few Fourier samples is
particularly interesting [14]. A recent review of `p-(quasi)norm constrained
regularization methods can be found in [15].

Total Variation Regularization

One of the notable analysis priors in signal and image processing is the total
variation (TV) norm, introduced by Rudin et al. as a regularization that
measures the first degree information in the signal [16]. The regulariza-
tion is casted as a denoising problem that favors piecewise constant signal
representation preserving sharp edges.

TV regularization has found wide real-world data applications in signal and
image processing. So far, we have discussed only the discrete setting, how-
ever understanding the role of TV in continuous domain is more intuitive
than its discrete counterpart. Hence, we now start with the formal definition
of total variation in the continuous setting.

Definition 1. [Total Variation] The TV of a continuous-domain function
x(t) on interval [a, b], is defined as the supremum of absolute differences for
any partition P = {. . . , tn, . . .}n on its support:

TV{x} = sup
P

∑

n

|x(tn)− x(tn−1)| . (2.12)

If the first derivative of x(t) is well defined, then TV can be shown to be
equivalent to

TV{x} =

∫ b

a
|D {x} (t)| dt, (2.13)

where D is the regular (continuous-domain) derivative [17].
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In the discrete setting, TV can be represented as the `1-norm of the finite-
difference operator:

TV{x} =
∑

n∈Z
|∆D {x} [n]| = ‖∆D{x}‖1,

where ∆D is the finite difference operator and can be seen as the discrete
counterpart of derivative operator. Specifically, we adopt the shortest length
filter representation; i.e., ∆D{x}[n] = x(tn)− x(tn−1) 1.

Combining the quadratic data-term with TV-norm leads to TV regulariza-
tion:

x̃ = arg min
x∈RN

‖y −Ax‖22 + λ‖∆Dx‖1. (2.14)

The regularization parameter λ lets the result vary between the ML solution
(λ = 0) and the null space of TV (λ→∞).

Here, we elaborate the TV definition to give an insight into the concept that
is introduced in the following chapter. The ideal solution promoted by TV
regularization and the Green’s function of the derivative operator have a
connection. TV regularization in (2.14) promotes sparsity on the derivative
of the signal; i.e., piecewise constant signals whose derivatives only have
a few spikes are the optimal candidates. Moreover, the Green’s function
u(t) of the derivative operator D is the Heaviside step function satisfying
D{u}(t) = δ(t). Since piecewise constant signals are constructed by shifted
Heaviside step functions, TV regularization, indeed, promotes signals that
look like the Green’s function of its derivative operator.

It is important to note that basis-pursuit denoising [7] can offer a “synthe-
sis” counterpart of TV through a dictionary with (shifted) Heaviside step
functions that is the inverse of the TV analysis dictionary. Therefore, the
solutions of analysis and synthesis regularizations are equivalent [18]. How-
ever, the synthesis dictionary becomes unstable as the size of the problem
increases. In some cases, a specific dictionary can be built for the synthesis
operator [19, 20], including generalizations of wavelet design [21, 22]. The
selection of the solution scheme depends on the application at hand [23].

Structured Sparsity Constrained Regularization

Group or structured sparsity is first introduced as a synthesis formulation
known as group LASSO [9]. Structured sparsity assumes that the signal is
composed of M partitions, and promotes the sparsity of the partitions of
variables; i.e., instead of penalizing each coefficient separately, it penalizes

1The operator ∆D is defined in terms of its transfer function and represented in time
domain as ∆D{x}[n]. However, the matrix equivalent formulation is straight-forward
(Toeplitz matrix) and it is represented as ∆Dx.
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all coefficients in a partition. In the general form, the group constraint is
achieved through a `2,1 mixed-norm,

Definition 2 (Mixed Norm). For any non-overlapping partition Rk, k =
1, . . . ,M of signal x ∈ RN , the `(p,q) mixed-norm is defined as

‖x‖(p,q) =

(
M∑

k=1

(‖x[Rk]‖p)q
)1/q

=




M∑

k=1


∑

i∈Rk

x[i]p



q/p



1/q

. (2.15)

The structured sparsity is induced by the `(2,1)-norm, which ensures the
recovery of a few partitions in which smoothness is enforced. The analysis
counterpart asserts the `(2,1) mixed norm over a linear transform, F, and
the regularization becomes [24]

x̃ = arg min
x
‖y −Ax‖22 + λ‖Fx‖(2,1). (2.16)

2.5 Optimization Algorithms

We have introduced the variational formulations exploiting sparsity-pursing
norms that are relevant to many problems in signal processing. Now, we
briefly review the state-of-the-art convex optimization techniques.

2.5.1 Quadratic Priors

The minimizer of the cost function with an `2 regularizer (i.e., Tikhonov
regularization)

x̃ = arg min
x
C(x) = arg min

x
‖y −Ax‖22 + λ‖Fx‖22, (2.17)

can be computed analytically by deriving ∇C(x̃) = 0. Since both the data-
term and the regularization term are quadratic (differentiable) the mini-

mization directly yields x̃ =
(
ATA + λFTF

)−1
ATy.

2.5.2 Non-Quadratic Priors

The sparsity-pursuing regularization introduces non-quadratic functions,
hence differentiability is not always guaranteed. A vast amount of opti-
mization methods have emerged to address the problem in (2.10), such as
orthogonal matching pursuit OMP, least angle regression (LARS), iterative
reweighed least squares (IRLS), and forward-backward splitting [6, 25–27].
For a complete overview we refer to Chapter 3-5 of [18]. Now, we explain
the alternative popular iterative-shrinkage schemes that allow for dealing
with non-quadratic priors.
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2.5.3 Proximal Maps for Sparse Priors

The denoising problem with a non-quadratic regularization term R(·) can
be associated with a general framework referred to as proximal map.

Definition 3 (Proximal Map [28]). For a lower semicontinuous convex func-
tion, R(x); i.e., limx→x0 infR(x) ≥ R(x0) the proximal map, proxR(x)(·),
solves for the following minimization problem

proxR(x)(y) = arg min
x

1

2
‖y − x‖22 +R(x) with (2.18)

0 ∈x− y + ∂R(x)⇒ proxR(x)(y) ∈ (I + ∂R(x))−1y (2.19)

When f(x) = iC(x), indicator function of a convex set, C, the proximal map
becomes the projection, PC(y), onto the set. A list of interesting properties
and proximal maps of some notable functions are found in [29].

Soft Thresholding

Consider the following denoising problem

x̃ = arg min
x

1

2
‖y − x‖22 + λ‖x‖1. (2.20)

The solution can be computed by explicitly taking the derivative of the scalar
cost function separately over each coefficient x[i]; i.e., 1

2(y[i]−x[i])2+λ|x[i]|.
Then the proximal map; i.e., the minimizer of the above function is obtained
via soft thresholding operator [30]

x̃[i] = proxλ|x[i]|(y[i]) = (|y[i]| −min (λ, |y[i]|)) sign(y[i]). (2.21)

TV Denoising

We now show how to compute the proximal map minimizing the TV denois-
ing problem

x̃ = proxTV (y) = arg min
x

1

2
‖y − x‖22 + λ‖∆D{x}‖1. (2.22)

Unfortunately, the non-smoothness and non-separability of the TV term
do not let coefficient-wise derivation of the functional. Instead of a closed
form, an iterative scheme will lead to the minimizer. The primal problem
in (2.22) has no direct analytical solution. As proposed by Chambolle, the
dual definition allows for constructing a gradient based optimization to TV
denoising problem [31].
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Definition 4. (Dual norm of `1) ‖Fx‖1 can be written in its dual form as

‖Fx‖1 = max
|p[i]|≤1

〈Fx,p〉. (2.23)

The dual of `1-norm is the `∞-norm (i.e., |p[i]| ≤ 1). More generally, for
any `p-norm its dual `q satisfies 1

p + 1
q = 1.

The dual formulation of TV denoising then becomes

x̃ = arg min
x

max
|p[i]|≤1

1

2
‖y − x‖22 + λ〈∆D{x},p〉, (2.24)

= arg min
x

max
p
C(x,p).

We observe that the above function is concave (but not strictly so) in p and
convex in x, which satisfies the saddle point criteria [32] as

x̃ = arg min
x

{
max
p
C(x,p)

}
, p̃ = arg max

p

{
min
x
C(x,p)

}
and, (2.25)

C(x̃,p) ≤ C(x,p) ≤ C(x, p̃). (2.26)

The existance of a saddle point allows for exchanging the minimum and
maximum in the functional and lets us work with the dual formulation as

min
x

max
|p[i]|≤1

1

2
‖y−x‖22 +λ〈∆D{x},p〉 = max

|p[i]|≤1
min
x

1

2
‖y−x‖22 +λ〈∆D{x},p〉

(2.27)
The optimal solution for the inner minimization problem is obtained via
computing the derivative2

x̃ = y − λ∆T
D{p}. (2.28)

The inner solution is fed into the original formulation and solved for the
maximization

p̃ = arg max
|p[i]|≤1

1

2
‖y − (y − λ∆T

D{p})‖22 + λ〈∆D{y − λ∆T
D{p}},p〉

= arg min
|p[i]|≤1

λ2

2
‖∆T

D{p})‖22 − λ〈∆D{y},p〉

= arg min
|p[i]|≤1

−C(x̃,p). (2.29)

The gradient descent allows for computing the minimizer in an iterative way

p̃k+1 = PB

(
p̃k − 1

L
∇C(x̃,p)

)

= PB

(
p̃k − 1

L
(λ2∆D∆T

D{p} − λ∆D{y})
)
, (2.30)

2The transpose of the derivative operator (in matrix form) indeed converts to filtering
with the time reversed transfer function; i.e., ∆T

D[n] = ∆T
D[−n].
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where PB(·) = sign(·) min(|·|, 1) is the element-wise projection to satisfy the
constraint and 1/L is the step-size with L = λ2‖∆D∆T

D‖ = 4λ2 selected as
the smallest Lipschitz constant of C(x̃,p); i.e., ‖∇C(x̃,p1)−∇C(x̃,p2)‖2 ≤
L‖p1 − p2‖2. The algorithm is summarized in Algorithm 1.

Algorithm 1 TV Denoising proxTV (y) = arg minx
1
2‖y − x‖22 + λ ||∆D {x}||1

input: Noisy signal y

1: l← 1
2: Initialize: p0 = 0
3: repeat
4: Update pl = PB

(
∆D {y} /(4λ) + (I −∆D∆T

D/4)
{
pl−1

})

where ∆T
D is the adjoint and PB = sign(·) min(|·|, 1) denotes the elementwise

clipping function,
5: l← l + 1
6: until convergence or the number of maximum iterations are reached.
7: Set x̃ = y − λ∆T

D

{
pl−1

}
.

A variation to the Chambolle’s TV denoising algorithm in [31] is proposed
by Beck and Teboulle in [33]. The algorithm, so called (fast) Gradient
Projection (FGP) algorithm, includes a constraint set for the minimizer x.
The fast implementation is described in Algorithm 2 (steps 5-6).

Algorithm 2 Fast Gradient Projection Algorithm for TV Denoising

proxTV (y) = arg minx∈X 1
2‖y − x‖22 + λ ||∆D {x}||1

input: Noisy signal y

1: l← 1
2: Initialize: k1 = 1,p0 = 0,v0 = 0
3: repeat
4: Update pl = PB

(
vl + ∆D

{
PX
(
y − λ∆T

D

) {
vl
}}

/(4λ)
)

where PB = sign(·) min(| · |, 1) denotes the elementwise clipping function and
PX is the orthogonal projection onto set X,

5: Update kl+1 =
1+
√

1+4(kl)2

2

6: Update vl+1 = pl + kl−1
kl+1 (pl − pl−1)

7: l← l + 1
8: until convergence or the number of maximum iterations are reached.
9: Set x̃ = PX

(
y − λ∆T

D

{
pl−1

})
.

Denoising with Structured Sparse Prior

Instead of promoting piecewise constant solutions as in TV regularization,
one can solve for group sparsity prior. Then the denosing problem becomes
similar to (2.16) with A = I as

x̃ = proxλ‖Fx‖(2,1)(y) = arg min
x
‖y − x‖22 + λ‖Fx‖(2,1). (2.31)
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The proximal map is computed in a similar fashion as TV denoising by
starting with the dual formulation of the `(2,1)-norm as

‖Fx‖(2,1) = max(∑
i∈Rk

x[i]2
)1/2
≤1

〈Fx,p〉, (2.32)

for each partition Rk, k = 1, . . . ,M . Then, the algorithm differs from TV
only in the clipping function PB in (2.30) which is applied over each partition
instead of each coefficient of x. In [24], Baritaux et al. formulate the proximal
map in (2.31) for various linear mappings F .

2.5.4 Forward-Backward Splitting

Until now, we have elaborated the optimization algorithms to solve the
denoising problems, and computed the proximal maps. However, in a general
framework we would like to find the minimizer of the cost function, C, in
the form

x̃ = arg min
x
C(x) = arg min

x
F(x) +R(x), (2.33)

where F(x) is the quadratic data-term and R(x) is possibly non-smooth
regularization term which is the case for sparsity-pursuing problems consid-
ered so far. Then, the minimizer, x̃, can be computed via forward -backward
splitting [34] as

0 ∈ ∂CT (x̃) ∈ ∇F(x̃) + ∂R(x̃), x̃− µ∇F(x̃) ∈ (I + µ∂R)(x̃), (2.34)

⇒ x̃ = (I + µ∂R)−1

︸ ︷︷ ︸
backward step

(x̃− µ∇F(x̃))︸ ︷︷ ︸
forward step

= proxµR(x̃− µ∇F(x̃)). (2.35)

where µ is a proper step-size of the gradient descent. The forward step in-
volves an explicit gradient step on F and the backward step employs an im-
plicit projection on R. The denoising model diminishes the forward model;
i.e., F(x) = 1

2‖y− x‖2 leads to x̃− µ∇F(x̃) = y in (2.35) with µ = 1. The
forward-backward splitting method is described in Algorithm 3.

In the iterative scheme of forward step, the gradient descent at iteration l
initiates from the linear approximation of F(x̃l+1) around x̃l. Then, the
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optimization leads to the forward-backward splitting as

x̃l+1 = arg min
x
F(x̃l) + (x− x̃l)T∇F(x̃l) +

1

2
(x− x̃l)T∇2F(x̃l)(x− x̃l)

= arg min
x
F(x̃l) + (x− x̃l)T∇F(x̃l) +

1

2µ
(x− x̃l)T (x− x̃l) (2.36)

= arg min
x

1

2µ
‖x− (x̃l − µ∇F(x̃l))‖22 +R(x),

= arg min
x

1

2
‖x− (x̃l − µ∇F(x̃l))︸ ︷︷ ︸

x̃l+1/2

‖22 + µR(x),

= arg min
x

1

2
‖x− x̃l+1/2‖22 + µR(x) = proxµR(x̃l+1/2), (2.37)

where step-size should satisfy µ ∈ (0, 1/L) to guarantee the convergence
with L being the smallest Lipshitz constant of F(x). The upper bound on
the step-size µ in (2.36) is attained through the linear approximation of ∇F .

The forward-backward method is a specific class of splitting methods, for
a general overview of proximal splitting methods see [29] and references
therein. The (fast) Iterative Shrinkage Thresholding Algorithm (FISTA)
[35, 36] is a special case of forward-backward splitting that solves `1-norm
regularizations

x̃ = arg min
x

1

2
‖y −Ax‖22 + λ‖x‖1, with steps

x̃l+1 = prox λ‖x‖1
‖ATA‖

(
x̃l − 1

‖ATA‖A
T (Ax̃l − y)

)
.

FISTA includes an intermediate variable to achieve quadratic convergence
(optimally) similar to FGP presented in steps 5-6 of Algorithm 2. The fast
step can be incorporated into forward-backward splitting (instead of step 6
of Algorithm 3).

Algorithm 3 Forward-Backward Splitting Algorithm x̃ = arg minx F(x) +R(x)

input: Noisy measurements y, µ = 1/L,L is the smallest Lipschitz constant of
F , κl ∈ ]0, 3/2].

1: l← 1
2: Initialize: x̃0 = 0
3: repeat
4: Update forward step x̃l+1/2 = xl − µ∇F(x̃l)
5: Update backward step x̃l+1 = proxµR(x̃l+1/2)

6: Update x̃l+1 = x̃l + κl(x̃
l+1 − x̃l)

7: l← l + 1
8: until convergence or the number of maximum iterations are reached.
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Remarks

The sparsity-pursuing regularization problems can be solved with many al-
gorithms other than proximal splitting methods:

1. The iterative reweighted norm (IRN) method represents the `1-norm in
terms of weighted `2-norm and allows for inverting a quadratic function
[37,38].

2. Majorization-minimization methods compute a quadratic upper bound
converging to the desired solution iteratively [39,40].

3. Alternating direction method of multipliers (ADMM) forms an un-
constrained optimization and minimizes the augmented Lagrangian
function [41,42].

Generalized Forward-Backward Splitting

A more sophisticated optimization problem with multiple regularization
functions can be formed in order to impose different constraints on the
solution as

x̃ = arg min
x
F(x) +

N∑

k=1

Rk(x), (2.38)

where F is a smooth function and Rk’s are non-smooth lower semicontinu-
ous functions. In [43] a generalized forward-backward algorithm is proposed
which ideally leads to a joint solution of multiple regularizations. The gen-
eralized forward-backward method is described in Algorithm 4. Other gen-
eralizations of the splitting method exist; especially when F is not smooth,
Parallel Proximal Algorithm (PPXA) solves for the minimizer in (2.38).
Another specific case, denoising, with F(x) = 1

2‖x − y‖22, reduces to the
parallel Dykstra-like Proximal algorithm with appropriate weighting of each
regularization term [44].
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Algorithm 4 Generalized Forward-Backward Splitting Algorithm x̃ =

arg minx F(x) +
∑N
k=1Rk(x)

input: Noisy measurements y, x̃ = 0, pk = 0, ωk ∈ [0, 1],
∑N
k=1 ωk = 1, λ ∈]0, 1]

and µ = 1/L, L is the smallest Lipschitz constant of F .

1: repeat
2: for k = 1 to N do
3: Solve for each regularization

pk = pk + λ
(

prox µ
ωk
Rk (2x̃− pk − µ∇F(x̃))− x̃

)

4: end for
5: Update: x̃ =

∑
k ωkpk

6: until convergence or the number of maximum iterations are reached.
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Chapter 3

Generalization of Total
Variation Regularization

In this chapter1, we propose a generalization of TV regularization for 1-D
signals. As discussed in Chapter 2.4, TV regularization imposes sparsity
on the derivative of the signal, which favors reconstruction with piecewise
constant signals. We describe generalized L-TV for 1D signals by extending
the conventional TV concept for any linear differential operator L. Basically,
choice of the differential operator is chosen in accordance with the underlying
linear system and the type of the driving signal we expect to recover. We
start with the mathematical definition of the generalized L-TV and discuss
the corresponding linear system and driving signal properties. We build the
regularization using a filter representation of the general differential operator
and employ a TV-like regularization adapted for the general operator. We
validate our method on both synthetic examples and real audio signal.

3.1 Related Work and Contributions

TV regularization promotes piecewise constant signals by imposing sparsity
on the signal’s derivative. TV regularization is commonly applied where
solutions with sharp edges are preferred, but when the underlying signal
is smooth (e.g., piecewise polynomial signals), TV might lead to blocking
artifacts. Such result is known as staircase effect. In order to deal with this
problem, higher-order derivatives are adopted instead of first-order deriva-
tive inside the TV norm [46–50]. For example, TV with the second-order

1This chapter is based on the publication:
F. I. Karahanoglu, I. Bayram and D. Van De Ville. “A Signal Processing Approach to
Generalized 1-D Total Variation”, IEEE Transactions on Signal Processing, vol. 59, no.
11, pp. 5265-5274, Nov 2011 [45].

23
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derivative is optimal for piecewise linear signals [51]. This extension has
been used to retain smooth transitions while keeping sharp edges [50], for
texture extraction [52], and has recently been reintroduced for MRI recon-
struction [53].

The contributions of this work are the following:

1. Tailoring the derivative operator of TV to any linear differential op-
erator. We generalize the TV denoising to be able to deconvolve any
linear system that admits state-space representation. The problem is
formulated as a denoising setting. As the regularizer is based on spar-
sity of the “innovation” signal, we also have access to the deconvolved
versions of the solution.

2. Efficient convex optimization. The problem is cast as a convex opti-
mization problem, and solved using fast and efficient solution schemes.

3.2 Generalized L-TV

In what follows, we explain all necessary steps and ingredients for developing
generalized L-TV approach.

3.2.1 Mathematical Formulation

Instead of the first-order derivative in TV norm, generalized total variation
admits a linear differential operator L. In the case of uniformly sampled dis-
crete data, akin to TV regularization, the concept can easily be extended for
discrete filters that are associated with general linear differential operators.

Definition 5 (Generalized Total Variation). For a discrete signal x, we
define the generalized L-TV regularizer as

TVL{x} =
∑

n∈Z
|∆L {x} [n]| , (3.1)

where ∆L is the discrete version of the differential operator

L =
N∏

i=1

(D − αiI)

(
M∏

i=1

(D − γiI)

)−1

, (3.2)

with I the identity operator, αi ∈ C, i = 1, . . . , N , and γi ∈ C, i = 1, . . . ,M ,
the zeros and poles of the operator, respectively. We conveniently character-
ize the operator by ααα = (α1, . . . , αN ) and γγγ = (γ1, . . . , γM ).
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Clearly, the definition in (3.1) includes conventional TV; i.e., the case N = 1
with α1 = 0 and M = 0 reverts to that case when continuous operator
D is associated with finite difference operator ∆D. Moreover, we remark
that for M = 0 the discrete operator ∆L can be implemented as a filter
with minimal finite support N + 1. From digital signal processing view, we
build the simplest discrete approximation of the differential operator L; e.g.,
∆D[n] = [1 − 1] is a 2-tap filter. More sophisticated discrete filter designs
ideally lead to better approximation of the continuous-domain operator in
frequency domain. For M > 0, the support of the discrete operator ∆L

becomes infinite in general. Then, the operator can be constructed by a
proper combination of causal and anti-causal filtering depending on the poles
γi of the system. The following proposition summarizes how to obtain the
discrete counterpart ∆L of L. The proof can be found in Appendix A.1.

Proposition 1 (Discrete Implementation of L). Consider the continuous-
domain linear differential operator L = LnL

−1
d , where

Ln =

N∏

i=1

(D − αiI),

Ld =
M∏

i=1

(D − γiI).

We separate Ld into its causal (characterized by γγγ′ = (γ′1, . . . , γ
′
m1

),
Re(γ′k) < 0) and anticausal (γγγ′′ = (γ′′1 , . . . , γ

′′
m2

), Re(γ′′k ) > 0) parts to ensure
stability. Then, the discrete operator ∆L associated with L can be obtained
by a cascade of filtering operations corresponding to

y[n] =
∑

k∈Z
y′′[n− k]∆Ln [k],

y′′[n] = y′[n+m2]∆L′′d
[−m2]−

−1∑

k=−m2

y′′[n− k]∆L′′d
[k],

y′[n] = x[n]−
m1∑

k=1

y′[n− k]∆L′d
[k], (3.3)

The constituting filters are given in the time domain by

∆Ln [n] = (−1)n
∑

|m|=n

(eααα)m,m ∈ [0, 1]N , 0 ≤ n ≤ N,

∆L′d
[n] = (−1)n

∑

|m|=n

(eγγγ
′
)m,m ∈ [0, 1]m1 , 0 ≤ n ≤ m1,

∆L′′d
[n] = (−1)n

∑

|m|=−n

(e−γγγ
′′
)m,m ∈ [0, 1]m2 ,−m2 ≤ n ≤ 0,
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where we use the multi-index notation m = (m1, . . . ,mN ), with |m| =∑N
k=1mk and the conventions cm = (cm1 , . . . , cmN ) and cm =

∏N
k=1 c

mk
k .

3.2.2 Problem Definition

We define an operator Lh associated with a linear system h(t) as illustrated
in Fig. 1. To focus the attention, we consider a linear system

x(t) = h(t) ∗ u(t), (3.4)

where u(t) and x(t) are the driving signal and the system response, respec-
tively, and ∗ denotes the convolution operator.

We can define a pseudoinverse Lh{x} = g ∗ x, where g is defined by

ĝ(ω) =

{
1/ĥ(ω), if ĥ(ω) 6= 0,

ĥ(ω) = 0, if ĥ(ω) = 0.

Then Lh will cancel the effect of the linear system (Fig. 1 second row):

Lh{x} = Lh{h ∗ u} = g ∗ h ∗ u = u+ unull,

where unull is a null-space component, if it exists, of the system h, in other
words, h ∗ unull = 0. Notice that a null-space component of Lh cannot be
recovered.

We now illustrate these concepts by considering a linear system where the
Fourier transform of its impulse response has the form:

ĥ(ω) =
(jω − γ̃1)

(jω − α̃1)(jω − α̃2)(jω − α̃3)
(3.5)

with three poles and one zero. Consequently, the differential operator Lh
represents a third order differential equation and can be characterized in its
turn in the Fourier domain as the inverse of h:

L̂h(ω) =
(jω − α̃1)(jω − α̃2)(jω − α̃3)

(jω − γ̃1)
,

where the system’s poles take the role of the operator’s zeros (and vice
versa). The time-domain operator then corresponds to

Lh = (D − α̃1I)(D − α̃2I)(D − α̃3I)(D − γ̃1I)−1.
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Figure 1: Illustration showing the observation model and the use of gener-
alized L-TV. First, the driving signal serves as input to the linear system.
Next, the (ideal) system response gets corrupted by noise. Generalized L-
TV regularization aims at minimizing the `1-norm of the differential oper-
ator, which is tuned to the linear system and driving signal, applied to the
reconstruction.

Variational Formulation

The system response x(t) is corrupted by AWGN and sampled uniformly
to obtain the output signal y. Now, we cast our problem of finding the
approximation x̃ from the noisy measurements y into a variational formula-
tion where we use the L-TV regularizer from (3.1). Then, the minimization
problem becomes

x̃ = proxL−TV (y) = arg min
x
C(x) = arg min

x∈RN

1

2
||y − x||22 + λ ||∆L {x}||1 ,

(3.6)
where λ is the regularization parameter and ∆L is the discretized form of a
differential operator of the form (3.2) that depends on Lh and on the type
of the driving signal.

3.2.3 The Influence of The Differential Operator L

Linear System and Driving Signal

When dealing with a linear system with impulse response h(t), as in Fig.
1, the differential operator Lh can be tuned to the inverse of the system
response, such that Lh{h}(t) = δ(t). Therefore, h(t) can be seen as the
Green’s function of the differential operator Lh. If the operator L is matched
to the system in (3.6), L = Lh, the differential operator will “undo” the effect
of the linear system, and regularization will be guided by the driving signal.
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Table 3.1: The differential operator L needs to be chosen according to the
linear system and the type of driving signal. The linear system is associated
with a general operator Lh such that Lh{h}(t) = δ(t), hu(t) is Heaviside
step function and I is the identity operator.

driving signal linear system optimal operator L

spikes δ(t) I
piecewise constant δ(t) D (conventional TV)
spikes hu(t) D (conventional TV)
spikes h(t) Lh
piecewise constant h(t) DLh
piecewise linear h(t) D2Lh

The `1-norm leads to the optimal performance when the signal L{x}(t) is
spike-like or ∆L{x} is sparse. Therefore, tuning the operator L = Lh will
promote spike-like driving signals (Fig. 1 second row). More complex driving
signals can be dealt with by further refining the operator; e.g., for a step-like
driving signal a regular derivative can be added to the regularizing operator
L = DLh. Depending on the assumptions on the driving signal u(t), the
optimal differential operator includes higher order derivatives that sparsify
the signal and make the `1-norm effective. Specifically, in Table 3.1, we give
an overview of how the operator L should be chosen for various types of
driving signals; e.g., spikes, piecewise constant, and piecewise linear.

Null Space Considerations

The optimal solution to (3.6) satisfies a compromise between the data- and
the regularization terms. The signals with sparse representation after ap-
plying ∆L have a low regularizer cost for the `1-norm and will be favored. In
the continuous domain, any homogeneous solution xh(t) of the differential
operator L has no cost for the regularizer since L {xh} (t) = 0. This prop-
erty also holds for the sampled version xh and the discrete filter ∆L; i.e.,
∆L {xh} = 0. Therefore, null space components of the differential operator
can be used at no regularization cost to minimize the residual data-fitting
error. The regularization parameter determines the amount of adaption of
the signal towards the prior. Setting λ = 0 diminishes the regularization
whereas increasing λ strengthens the effect of regularization till only the
null-space components fitting on the data are recovered.

3.2.4 Optimization Algorithm

The early application of TV regularization has been hampered by compu-
tationally expensive algorithms, but recent advances in convex optimization
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have led to fast algorithms for the `1 regularization problem. In what fol-
lows, we briefly explain our preferred algorithm to obtain a minimizer of
the cost functional in (3.6). This minimization problem can be regarded as
a generalized form of the analysis-prior denoising problem (see [4, 20] and
the references therein). The Algorithm 5 is essentially an adaptation of the
one provided by Chambolle for TV denoising [33,54] in Algorithms 1-2 (see
also [31] for a slightly different algorithm) for the discrete operator ∆L.

Algorithm 5 Generalized L-TV Algorithm for Denoising

proxL−TV (y) = arg minx
1
2‖y − x‖22 + λ ||∆L {x}||1

input: Noisy signal y, the regularization operator ∆L and Lipschitz constant c
subject to

c > sup
ω

∣∣∣∆̂L(ejω)
∣∣∣
2

= sup
ω

∏N
i=1 |1− eαie−jω|2∏M
i=1 |1− eγie−jω|2

.

1: l← 1
2: Initialize: k1 = 1,p0 = 0,v0 = 0
3: repeat
4: Update pl = PB

(
∆L {y} /(λ c) + (I −∆L∆T

L/c)
{
vl
})

where the adjoint of ∆L is ∆T
L[n] = ∆∗L[−n] and

PB = sign(·) min(| · |, 1) denotes the elementwise clipping function,

5: Update kl+1 =
1+
√

1+4(kl)2

2

6: Update vl+1 = pl + kl−1
kl+1 (pl − pl−1)

7: l← l + 1
8: until convergence or number of maximum iterations are reached.
9: Set x̃ = y − λ∆T

L

{
pl
}

.

It is important to note that generalized L-TV can be combined with a general
inverse problem as

x̃ = arg min
x

1

2
‖y −Ax‖22 + λ ||∆L {x}||1

Then, the solution can be obtained through a two-step optimization
(forward-backward splitting Algorithm 3). The first (outer) loop tackles
the deblurring problem while the second (inner) loop solves the denoising
problem. The forward-backward scheme is discussed in Section 2.5.4.

3.3 Results

In this section, we present several examples to illustrate the performance
of generalized L-TV. First, we demonstrate the signal reconstruction of a
simulated linear system response with different driving signals and show how
it outperforms conventional TV. Finally, we perform waveform analysis of
audio signals by tuning the zeros of the operator to the central tone.
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3.3.1 Proof of Concept

We considered a third-order system defined in (3.5) by its impulse response
h(t) with three poles and one zero. We assigned the poles α̃ = α̃1 = α̃2 =
α̃3 = −2 and zero γ = −0.1. When the operator was tuned to the system
directly L = Lh, the spike-like driving signal was reconstructed. The dis-
crete version ∆Ln of the forward operator corresponded to a finite impulse
response (FIR) filter with four taps: [1,−3eα̃, 3e2α̃,−e3α̃] and the discrete
version of the inverse operator corresponded to a causal infinite impulse re-
sponse (IIR) filtering with ∆L′d

= [1,−eγ̃ ]. In Fig. 3.2(a), we show the orig-
inal signal with the spike-like driving signal in the inset. We also added a
random null-space component of the operator L (i.e., c1e

α̃t+c2te
α̃t+c3t

2eα̃t)
as a “background”. Next, the signal was corrupted by AWGN 15 dB (see
Fig. 3.2(b)). Three different denosing methods are exploited: generalized
L-TV, conventional TV and oracle Wiener filter, as shown in Figs. 3.2(c),
3.2(d) and 3.2(e), respectively. Moreover, we computed the filtered version
∆L of the regularized solution in order to explore how well we reconstruct
the underlying driving signal, see the insets in Figs. 3.2(c)-(e).

As an additional experiment, we considered piecewise constant driving sig-
nal, as shown in Fig. 3.3. Accordingly, we adapted the regularizing op-
erator into L = DLh, which only leads to an alteration of the FIR filter,
∆Ln = [1,−1 − 3eα̃, 3e2α̃ + 3eα̃, 3eα̃ − e3α̃, e3α̃]. The results are shown in
Figs. 3.3c-e.

Regularization Parameter

For each method, the oracle selected the optimal regularization parameter λ
since it had access to the ground truth. When the oracle is not available at
hand, the choice of the regularization parameter λ is important to calibrate
the solution towards the desired constraints. Different strategies can be
adapted for selecting λ; see [55] for classical references to methods such
as generalized cross-validation and the L-curve, or [56] for a recent Monte-
Carlo adaptation of Stein’s Unbiased Risk Estimate that works well for TV,
and [31,57–60].

Signal to Noise Ratio Measurements

We deployed three different noise settings: AWGN corresponding to SNR
level of 5, 10, and 20 dB. We report average SNR levels with standard
deviation (over 100 realizations), with the optimal regularization parameter
and maximum SNR, in Table 3.2. We compared the reconstruction quality
obtained by oracle Wiener filtering (optimal for a Gaussian-process driving
signal corrupted with AWGN), conventional TV, and generalized L-TV. As
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(a) Original signal 
(inset: driving signal) 

(c) Reconstruction using generalized L-TV 
regularization

(b) Noisy signal 

(d) Reconstruction using conventional TV 
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Figure 3.2: generalized L-TV, conventional TV and oracle Wiener filter
solutions for a third-order linear system (with three poles and one zero)
driven by spike-like signal.
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(inset: driving signal) 
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Figure 3.3: generalized L-TV, conventional TV and oracle Wiener filter
solutions for a third-order linear system (with three poles and one zero)
driven by piecewise constant signal.

expected, the results reveal that generalized L-TV is superior to conventional
TV and the Wiener filter when tuning the operator L different from D is



3.3 Results 33

Table 3.2: Overview of the performance measured as SNR (dB). The optimal
tuning parameter λ was determined using an oracle. Average SNR and its
standard deviation are reported for 100 realizations of the noise.

SNR (dB) λ SNR (dB) λ SNR (dB) λ

noisy signal 1 5 — 10 — 20 —
oracle Wiener 14.09 ± 0.87 — 17.45 ± 0.65 — 24.31 ± 0.41 —
conventional TV 12.32 ± 0.68 0.32 ± 0.04 15.89 ± 0.63 0.16 ± 0.05 22.15 ± 0.46 0.10 ± 0.01
generalized L-TV 14.86 ± 1.96 0.82 ± 0.38 19.58 ± 2.22 0.52 ± 0.25 28.71 ± 1.92 0.17 ± 0.09
noisy signal 2 5 — 10 — 20 —
oracle Wiener 14.17 ± 0.88 — 18.87 ± 0.84 — 26.90 ± 0.59 —
conventional TV 13.08 ± 0.72 1.96 ± 0.36 16.70 ± 0.64 0.98 ± 0.17 23.99 ± 0.41 0.22 ± 0.05
generalized L-TV 14.83 ± 1.68 10.02 ± 1.86 19.78 ± 1.86 4.90 ± 1.49 29.35 ± 1.60 1.70 ± 0.63

appropriate. In addition, as it can be appreciated from the corresponding
Figures, the reconstruction of the underlying driving signal has high quality
and can be useful for further processing in applications.

Tuning the Parameters of Differential Operator

An important concern is the robustness of the choice of the regularization
operator L with respect to the underlying “true” linear system. To that
aim, we generated signals for a spike-like input of a third-order linear system
Lh = (D − α̃I)3(D − γI)−1 with α̃ in the range [−2, 2]. We repeated the
regularization for 10 surrogate signals corrupted by AWGN resulting into 10
dB SNR. Next, we applied several regularization strategies:

1. Generalized L-TV with α tuned exactly to the system L = Lh,
2. Generalized L-TV with α = −1,
3. Generalized L-TV with α = 0 to illustrate second-order TV,
4. Conventional TV.

We kept γ = 4 constant to eliminate pole-zero cancellation. In Fig. 3.4,
we plot the average SNR (10 regularizations) for different α̃ values of the
linear system. As expected, we observe that second-order TV and matched
generalized L-TV have equal performance at α̃ = 0. Similarly, generalized
L-TV with fixed α = −1 meets matched generalized L-TV at α̃ = −1.
Moreover, we notice that SNR levels for matched generalized L-TV tend to
increase further for larger values of α̃. Conventional TV underperforms as
the derivative operator is not well tuned to the linear system.

3.3.2 Audio Signal Example

We show that it is possible to tune the operator of generalized L-TV to
include information about modulation, which can be useful for audio signals;
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Figure 3.4: Performance measured as SNR (dB) for generalized L-TV and
conventional TV regularization of a third-order linear system with equivalent
differential operator Lh = (D − α̃I)3(D − γI)−1, with γ = 4, for varying α̃
values. The reported SNR measures are averaged over 10 realizations of
AWGN (SNR 10 dB).

e.g., processing of tonal and transients layers [61].

Specifically, let us assume the simplified signal model as a sum of shifted
decaying exponentials, each one modulated by a high-frequency sinusoidal
function:

y(t) =
∑

i

Ai sin(ω0,i(t− ti))eα(t−ti)u(t− ti), (3.7)

where α < 0 is the decay rate. Eq. (3.7) can be considered as the sum
of responses of linear systems with impulse responses sin(ω0,it)e

αtu(t) for
spikes Aiδ(t− ti), respectively. The corresponding transfer function is

ĥ(ω, ω0,i) =
ω0,i

(jω + (jω0,i + α))(jω + (−jω0,i + α))
. (3.8)

Here, we exploit the differential operator

L = (D + (jω0 + α)I)(D + (−jω0 + α)I),

where ω0 is the average frequency.

We generated a synthetic signal (Fig. 3.5(a) according to (3.7) with the
first 9 notes of “Für Elise”, whose frequencies range from 329 − 1318 Hz,
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at sampling frequency fs = 44100 Hz. The decay rate was α = −4s−1.
We used the average frequency of the notes and α = −4s−1. The effect of
tuning α is negligible on the output since the decay is very slow compared
to the sampling frequency. We created a noisy realization of the audio
signal by corrupting it with AWGN at SNR=15 dB, see Fig. 3.5(b). We
show the output of generalized (25.3 dB), conventional TV (18.3 dB) and
oracle Wiener (18.54 dB) in Fig. 3.5(c)-(e), respectively. The regularization
parameter λ was chosen using an oracle.

Performance of the real data was tested through the analysis of “Glocken-
spiel” audio waveform [61]. We increased the multiplicity of zeros to make
the frequency response of L increasingly flat around ω0, and thus cancel
also tones with nearby frequencies.2 Finally, in Fig. 3.6(a), we show the
“Glockenspiel”, which was directly adopted from [61]. We degraded the sig-
nal with AWGN at SNR=15 dB, see Fig. 3.6(b). The output for generalized
L-TV (18.3 dB), conventional TV (16.67 dB) and oracle Wiener (17.01 dB)
is shown in 3.6(c)-(e). Note that the SNR values were computed against the
real “Glockenspiel” signal, which contains some noise itself. Moreover, the
signal contains different frequency components from perturbed harmonics in
the tonal layer and sharp transitions in the transient layer, neither of which
were modeled by the operator in generalized L-TV—nevertheless, the result
is still better than the other methods we considered here. More advanced
applications of generalized L-TV for sound wave processing can be devised
in the future, such as the inclusion of multiple regularization terms with
different operators each (e.g., for different frequencies and harmonics) and
an additional model to deal with the transient layer.

3.4 Discussion and Summary

Extensions to TV regularization have mainly focused on the use of higher-
order derivatives [46–50, 52] and recently also on non-local generaliza-
tions [62]. We extend the basic TV concept further by introducing a general
differential operator L instead of the derivative D, and motivate this choice
by a linear system in the observation model. This allows a great deal of
flexibility since we can take into account the presence of a linear system and
different types of driving signals. The formulation is constructed as a de-
noising problem, however, it permits access to both the denoised signal and
underlying driving signal (deconvolved). This work can be considered as the
analysis prior counterpart of exponential spline wavelets [21] or generalized
Daubechies wavelets [22], which are generalizations of Nth order derivatives.
Indeed, these wavelets can be tuned to a given differential operator and their
use in regularized reconstruction concurs with a synthesis prior.

2Increasing the multiplicity of the zeros increases the size of the nullspace.
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Figure 3.5: Zoom of the denoised audio signal, Für Elise corrupted with
AWGN 15 dB with generalized L-TV, conventional TV and oracle Wiener
filter. We employ differential operator L = (D+(jω0+α)I)(D+(−jω0+α)I)
for Für Elise where ω0 is the average frequency and α = −4s−1.
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The generalized L-TV scheme will be further elaborated in Chapter 5 for
analyzing the functional magnetic resonance imaging (fMRI) data, where the
transfer function is considered as the fMRI’s slowly varying hemodynamic
system.
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Figure 3.6: Zoom of the denoised audio signal Glockenspiel signal corrupted
with AWGN 15 dB with generalized L-TV, conventional TV and oracle
Wiener filter. We employ differential operator L = ((D + (jω0 + α)I)(D +
(−jω0 + α)I))3 for Glockenspiel signal, where ω0 is the average frequency
and α = −4s−1.



Chapter 4

Functional Magnetic
Resonance Imaging

Functional magnetic resonance imaging (fMRI) is a non-invasive modality
for visualizing brain function. Since its introduction in the 1990s, fMRI has
been studied and applied extensively [63]. In this chapter, we explain how
neuronal activity leads to changes in the fMRI signal, identify the underlying
physiological processes, and describe fMRI data analysis by state-of-the-
art methods. We begin by introducing some of the fundamental principles
behind basic MRI acquisition. Then, we describe what the term functional
implies. A complete overview of the concepts introduced here can be found
in [64–66] and references therein.

4.1 Introduction

We discuss the underlying principle of MR image formation for different
contrasts, which are related to the different intensities between tissues in
the acquired images.

4.1.1 Basic MRI Principle

Quantum theory ascribes to each atomic nucleus an intrinsic property known
as spin, which when non-zero gives rise to a magnetic moment. Normally,
these moments are randomly aligned, producing zero net magnetization per
unit volume. However, when placed within an external magnetic field, the
spins start to align parallel (low-energy state) or anti-parallel (high-energy
state) to the field direction. At equilibrium, there is a slight abundance
of spins in the lower energy state, thereby producing a net magnetization,
which precesses around the external field direction, considered henceforth

39
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as the longitudinal axis. The frequency of this precession, known as the
Larmor frequency, depends linearly on both the external field strength, and
a constant known as the gyromagnetic ratio, which varies with each nucleus.

In order to measure the magnetization, the equilibrium condition must be
perturbed. Early experiments showed that this is possible by applying a
circularly polarized magnetic field (i.e., the RF pulse) to the system. If the
frequency of the RF pulse is matched to the Larmor frequency, known as
the resonance condition, then spins in the low-energy state begin to ab-
sorb energy and pass to the high-energy state, effectively tipping the net
magnetization into the transverse (measurable) plane. The magnetization
can then be measured through simple circuitry. This principle is defined as
nuclear magnetic resonance (NMR). Early experiments were performed by
Rabi for the lithium nucleus [67], then by Purcell for solid substances [68],
and by Bloch for water [69]. Indeed, NMR was first applied in chemistry in
order to better understand the chemical composition of substances, known
as NMR spectroscopy. Later, the first medical application was suggested
by Damadian, who hypothesized that cancerous tissues might be delineated
by exciting the water molecules with NMR [70]. Yet, it was unclear how
NMR could be used to generate spatial images. The solution to MR image
formation was found through the use of additional linear gradient fields, as
proposed by Lauterbur and Mansfield [71, 72]. By allowing the resonance
frequency to vary as a function of position, spatial information could be
ascertained through the use of the inverse Fourier transform. Hence, the
concept of MRI was born.

One of the primary reasons MRI has been so successful clinically rests in
the diversity of contrasts it can provide. At a basic level, MRI contrast is
defined by two intrinsic sample tissue properties, known as the T1 and T2
relaxation times, which are described further below.

1. Longitudinal relaxation (T1 recovery): Following an RF pulse (or else
a general perturbation of the spin system from equilibrium), the net
magnetization will tend to grow back to its equilibrium value along the
longitudinal axis as spins interact with the surrounding lattice. The
rate at which this occurs is known as the spin-lattice relaxation time,
or T1.

2. Transverse relaxation (T2 - T2* decay): Once the net magnetization
has been flipped onto the transverse plane, each local spin system
(commonly referred to as an “isochromat”) experiences a slightly dif-
ferent local magnetic field. The resulting variations in resonance fre-
quency lead to a loss of coherence of the system as a whole, thus
diminishing the net transverse magnetization–contributing to what is
known as the spin-spin relaxation time, or T2. Additionally, inho-
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mogeneities in the primary magnetic field compound this dephasing
effect, further reducing the transverse relaxation time to T2*.

Biological tissues have different T1 and T2 relaxation times (T2 � T1).
Table 4.1 shows typical T1 and T2 relaxation times for brain tissues at 1.5
Tesla. The MR image is formed by choosing appropriate parameters and
pulse sequences such that the images provide the maximum intensity differ-
ence (contrast) between tissues of interest. The two important parameters
are: (1) the repetition time (TR), which is the elapsed time between succes-
sive applications of the selected pulse sequence, and (2) the echo time (TE),
which is the time passed between the rf excitation and acquisition of the MR
signal. Fig. 4.1 depicts T1 and T2 relaxation curves for gray matter, white
matter and cerebrospinal fluid. Maximum T1 contrast between white matter
and gray matter is usually obtained with a very short TE; i.e., minimum T2
effect, and relatively short TR. T2 weighted images are typically obtained
with long TR; minimum T1 effect, and relatively long TE; maximizing the
T2 effect. Another contrast that minimizes both T1 and T2 effects, with
longer TR and very short TE, is called proton density-weighted imaging.
Fig. 4.2 shows T1-weighted, T2-weighted and proton density MR images of
the brain. For a complete overview of basic MR theory, pulse sequences,
and image reconstruction, we refer the reader to [73,74].

Table 4.1: T1 and T2 relaxation times for brain tissues at 1.5 Tesla

Gray Matter White Matter Cerebrospinal Fluid

T1 900ms 600ms 4200ms

T2 100ms 80ms 2000ms

4.1.2 From MRI to FMRI: A BOLD Connection

FMRI measures physiological changes that are related to neuronal activ-
ity. Specifically, it relies on an endogenous contrast agent, hemoglobin,
whose density can be monitored through the blood-oxygen-level-dependent
(BOLD) response. Instead of revealing direct neuronal activation, fMRI in-
dicates hemodynamic changes; e.g., alterations in the veins, cerebral blood
volume (CBV) and blood flow (CBF). The relationship between neuronal
activity and the BOLD signal is described through neurovascular coupling.
Fig. 4.3(a) provides a step-by-step illustration of the vascular effect follow-
ing neuronal activity. Basically, neuronal activity–the synaptic and spiking
activity during information transmission–causes local energy and oxygen
consumption. Therefore, a demand for nutrients is signaled to the veins,
which triggers a vascular response. As a result, the CBV and CBF are in-
creased. Specifically, the BOLD signal measures the ratio of deoxygenated
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Figure 4.1: Longitudinal and transverse relaxations for white matter, gray
matter and cerebrospinal fluid in the brain. Longitudinal relaxation time
(left) shows the recovery of the net magnetization following excitation, the
transverse relaxation (right) shows the decay in the transverse plane due
to spin-spin interactions and magnetic field inhomogeneities. The contrast
highlights the difference between the gray matter and white matter. Max-
imum T1 contrast (orange), in which white matter is represented by the
highest intensities in the image, is achieved with short TR and short TE.
Maximum T2 contrast is obtained with longer TR and longer TE, and cere-
brospinal fluid is represented with the highest intensity.

hemoglobin (dHb) to oxygenated hemoglobin (Hb) during this chain of
metabolic events. The dHb is paramagnetic, that is to say, has a high mag-
netic susceptibility, whereas the Hb is diamagnetic. The decrease in dHb/Hb
ratio causes an increase in the fMRI signal, which can be detected with (T2-
T2*)-weighted imaging. One expects that the dHb ratio would increase and
hence BOLD would decrease due to oxygen consumption following neuronal
activity, however, the vascular effect causes overcompensation of oxygen,
which leads to an increase in the BOLD signal [77]. Fig. 4.4(b) shows the
changes in BOLD, CBF and CBV. The BOLD signal increases a couple of
seconds after the stimulus and slowly returns to the baseline value.

It is known that neuronal activity is correlated with the BOLD signal in
fMRI, however, the exact relation between the neuronal activity and hemo-
dynamic effect is not yet completely understood, and is still a topic of active
research [64, 78, 79]. Simultaneous fMRI and direct single-neuron intracor-
tical recordings suggest that the BOLD signal indirectly reflects integrative
synaptic activity [2].

FMRI data is acquired using (T2-T2*)-weighted imaging, which maximizes
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Figure 4.2: T1, T2 and proton density contrast MR images of the brain.
Proton density image shows minimum T1 and T2 effects with long TR and
very short TE. White matter is represented with highest intensity in T1
contrast, and T2 effect is minimized. In T2 contrasted images, the highest
and lowest intensity values belong the cerebrospinal fluid and white matter,
respectively.

the dHb/Hb concentration. The dataset is 4D, i.e., it is composed of the
of time series of individual voxels in the brain. Temporal resolution is de-
fined by TR (typically around 1− 3 sec.). Recently, faster fMRI acquisition
schemes have been proposed [80]. The spatial resolution depends on the
volume of interest. For a whole brain scan, the voxel size typically ranges
between 1 − 4 mm. per spatial dimension. Each volume consists of around
(10’000–100’000) voxels. The duration of the fMRI experiment varies with
the type of experiment respecting subjects’ comfort in the scanner (typically
around 2 − 20 min.). Ultimately, a compromise must be reached between
temporal and spatial resolution.

4.1.3 Noise in FMRI

The variability of the BOLD signal is not solely due to brain activity. The
fMRI signal contains various sources of noise including:

1. Thermal noise due to the motion of electrons caused by both the sub-
ject and the scanner (e.g., eddy currents, heating), which tends to be
spatially and temporally independent [81,82],

2. (Aliased) physiological noise due to the subject’s cardiac and respira-
tory fluctuations, as well as the interference of intravascular fluctua-
tions (e.g., CBV and CBF) [83],

3. Subject head motion during scanning,
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Figure 4.3: The graphical representation of neurovascular coupling (Cour-
tesy of Arthur W. Toga, Laboratory of Neuro Imaging at UCLA) and
schematic representation of balloon model (Courtesy of [75, 76]). The neu-
ronal activity signal u(t) is the input of the system which is then converted
to flow inducing signal s triggering the vascular effects. The blood flow fin,
blood volume v and dHb concentration are the other intermediate dynamic
states in the system. The output is a nonlinear function of all states.

4. Other subject/experiment specific effects such as variability of the
BOLD response, anatomy, experiment related artifacts (e.g., antici-
pation, habituation,variability across sessions etc.), [84, 85],

5. Gradual low frequency drifts and varying baselines in the voxel time
series due to the magnetic field inhomogeneities, physiological effects



4.1 Introduction 45

[86,87], which has been characterized by 1/f power spectrum [88],

Noise in fMRI can be typically characterized by autoregressive models [89].
Furthermore, if head motion and specific noise factors constituting low fre-
quency drifts are carefully dealt with, then the residual errors might be
assumed as white noise [83].

Modeling The BOLD Response

Apart from examining neural correlates of the BOLD response to a single
stimulus, many studies have investigated explicit modeling of the BOLD
response following stimuli. One important issue related to neurovascular
coupling is the linearity of the BOLD response, which has been an ongoing
research topic since the early days of fMRI. For example, nonlinear effects
caused by successive applications of the stimuli have been observed [90,91].
The hemodynamic system, which reflects the neuronal activity underlying
the BOLD signal, can be expressed via intermediate variables; blood flow,
volume and oxygen concentration play an important role, and should be
included in mathematical modeling [76, 92–95]. One such model, the so-
called balloon model, was proposed by Buxton and colleagues [76], and
later extended by Friston using Volterra kernel series [75] to represent the
hemodynamic system by partial differential equations. In the state-space
representation, the single-input single-output system is built with four state
variables as:

ṡ = εu− s

τs
− fin − 1

τf

ḟin = s

v̇ =
1

τ0

(
fin − v

1
α

)

q̇ =
1

τ0

(
fin

1− (1− E0)
1
fin

E0
− v 1

α
−1q

)
.

The schematic representation and list of variables of the balloon model are
depicted in Fig. 4.3(b). Then, the nonlinear BOLD signal is represented as
BOLD

BOLDnonlinear = V0

(
k1(1− q) + k2(1− q

v
) + k3(1− v)

)
,

where V0 is the resting blood volume fraction and k1 = 7E0, k2 = 2, k3 =
2E0 − 2 are the BOLD constants [82].

Nonlinear models, however, limit the fMRI data analysis. Besides the as-
sociated computational challenges, it leads to difficulties when quantitative
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Figure 4.4: Hemodynamic response following neuronal activation (courtesy
of [64, 77, 92]). The concentration of deoxygenated hemoglobin (dHb) in-
creases towards the beginning of the stimulation due to oxygen consump-
tion (a). The cerebral blood volume (CBV) and cerebral blood flow (CBF)
increase with neuronal activity (b), which elevates the oxygen concentration
(overcompensation) and reduces the dHB (a). The ratio of dHb to Hb forms
the BOLD signal change (b).
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comparisons of fMRI responses are needed; e.g., group analyses, comparisons
of responses over different tasks or in different brain regions. Alternatively,
linear models have been extensively exploited in fMRI studies due to their
simplicity and further ease of data interpretation; e.g., group and longi-
tudinal studies. There is indeed experimental evidence suggesting linear
behavior of BOLD in the literature [96–100]. The BOLD signal is thus rep-
resented through a linear shift-invariant system as a convolution of the input
(e.g., stimulus) with the hemodynamic response function (HRF), which is
the impulse response.

The most acknowledged HRF approximation is the canonical HRF, which
uses a combination of gamma functions [82]. Another model is the lin-
ear approximation of the balloon model proposed by Khalidov et al. with
first-order Volterra kernel [101]. Here, we describe the model introduced
in [101] in detail. The state-space representation for the new four states
{x1, x2, x3, x4} = {s, 1− fin, 1− v, 1− q} is represented as

ẋ1 = εu− x1

τs
+
x2

τf

ẋ2 = −x1

ẋ3 =
1

τ0

(
x2 −

x3

α

)

ẋ4 = cx2 −
1− α
ατ0

x3 −
1

τ0
x4,

leading to
BOLDlinear = V0 ((k1 + k2)x4 + (k3 − k2)x3) .

Then for such a system, BOLDlinear for a single input u(t) is derived as

ẋ(t) = Ax(t) +Bu(t), BOLDlinear(t) = Cx(t),

BOLDlinear = (C(D −A)−1B){u}

where x is the state vector, ẋ(t) = D{x}(t), A and B are the system and
input matrices, respectively, C is the output matrix,

A =




−1
τs

1
τf

0 0

−1 0 0 0

0 1
τ0

− 1
ατ0

0

0 c − (1−α)
ατ0

− 1
τ0



, B =




ε

0

0

0



, C =

[
0 0 V0(k3 − k2) V0(k1 + k2)

]
.
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Figure 4.5: The balloon model (green) with a typical parameter set [75] and
the canonical HRF (blue). The canonical HRF has a longer dispersion and
smaller undershoot than balloon model.

The corresponding BOLDlinear is defined explicitly as

BOLDlinear =

V0ε
τ0

[
(− (k1 + k2) cτ0 − k3 + k2)D + ((k1 + k2)(1−α

ατ0
− c

α)− (k3 − k2) 1
τ0

)
]

(D + 1
τ0
I)(D + 1

ατ0
)(D2 + 1

τs
D + 1

τf
I)

{u}

= G
D − γI∏i=4

i=1(D − αiI)−1
{u},

where G = V0ε
τ0

(−(k1 + k2)cτ0 − k3 + k2).

A differential operator Lh that represents the inverse of the impulse response
of the hemodynamic system is derived by assigning u = δ. The differential
operator Lh and its zeros and pole is represented explicitly [101] as

Lh =

i=4∏

i=1

(D − αiI)(D − γI)−1, (4.1)
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Fig. 4.5 depicts the canonical HRF and the linear balloon model. The
canonical HRF is slowly decaying, whereas the balloon model has a shorter
dispersion time with a higher undershoot.

The measured BOLD signal variability is not solely due to the neuronal
response. Indeed, the measured fMRI signal is corrupted by different types
of artifacts including, but not limited to subject motion in the scanner,
inference from cardiac and respiratory signals (aliased), random thermally-
generated noise, intersubject anatomical variability, subject specific effects,
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magnetic field inhomogeneity, and scanner drifts [81–83, 86]. Some of the
noise effects can be reduced by using appropriate techniques, which are
briefly discussed in Section 4.3.1.

4.2 FMRI Experiments

FMRI data is recorded sequentially, typically while subjects engage in a task
(for example, watching a video), and is then analyzed in order to understand
how the particular task is processed by the brain, e.g., which regions are
interrelated. The experimenter derives a hypothesis and designs an experi-
ment to address his/her question. The experiment often consists of different
conditions such as presenting images of human faces vs. images of objects.
The acquired data is later analyzed to verify the research hypothesis.

4.2.1 Task Based Stimuli

In task based studies (also known as task-evoked or task-induced in the liter-
ature), subjects are asked to perform a task, referred to as the experimental
paradigm/stimuli, during the fMRI scan. There are generally three types
of experimental designs for fMRI studies. Event-related designs consist of
several short stimuli (events) presented at particular intervals of time. The
events could be different conditions related to the cognitive study, such as
presenting images of objects with different semantic meaning, a motor task,
etc. The time elapsed between two consecutive events is referred to as the
interstimulus interval (ISI), during which subjects do not perform any ac-
tivity; i.e., the baseline condition. The aim is for the subject to demonstrate
differences between specific conditions. Another typical experimental design
strategy consists of longer stimuli, called a block based design, such as au-
ditory stimuli. Every block can represent a different kind of condition to be
examined. Block based designs are known to provide higher and persistent
BOLD contrast, as longer stimulation causes an accumulation of activation.
However, the prolonged stimuli might introduce anticipation and habitua-
tion effects (i.e., subject interest is lost due to repetition of the condition) or
lead to saturation in the measured BOLD response. Finally, a mixed design
constitutes a combination of block based and event-related designs, where a
series of short stimuli are included in blocks. Fig. 4.6 illustrates the types
of design schemes employed in fMRI analysis.

4.2.2 Resting-State fMRI

Task-related studies are intended for comparing different experimental con-
ditions that are successively manipulated during scanning. On the other
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Figure 4.6: The experimental design schemes in fMRI with different con-
ditions. Green and red represent conditions A and B, respectively and R
represents resting (baseline). Event-related designs consist of short stimuli
(a) whereas in block based designs each condition is presented for a pro-
longed period of time (b). Mixed designs are composed of several different
stimuli in blocks (c).

hand, resting-state fMRI (RS-fMRI) examines brain activity while subjects
are not engaged in any particular task, but rather relax and do not think
about specific events. The concept of RS-fMRI was introduced by Biswal et
al. [102] in a study showing that slow fluctuations in the time courses of re-
gions that are co-activated during a (motor) task are also correlated during
rest. These co-active brain regions during rest suggest the presence of an
intrinsic brain mechanism–when the task is implicit. Even though there is
no consensus on the definition and the role of the resting baseline state, it is
clear that the brain consumes a high amount of energy during this paradigm-
free period [103]. Many studies validate task-negative brain regions, which
are suspended during the task. These universal regions are designated as
the default-mode network [104–106]. Scientists have been further able to
uncover other characteristic patterns of activation during RS-fMRI, which
are referred to as resting-state networks (RSN) [107].

4.3 FMRI Data Analysis

Selecting a suitable method depends highly upon the aim of the study. Two
classes of techniques can be distinguished: confirmatory approaches put
forward a hypothesis to be verified with the data from the experimental
paradigm. Exploratory approaches, or data-driven methods, aim to discover
the underlying structures of the data that are not anticipated a priori. We
discuss the state-of-the-art of confirmatory and exploratory analyses em-
ployed for fMRI studies.

4.3.1 Preprocessing

The literature contains a broad range of preprocessing methods proposed
for removing noise factors in fMRI data to enable further processing. Many
prominent preprocessing steps have been included in fMRI software tool-
boxes; e.g., SPM, FSL, AFNI, BrainVoyager, FreeSurfer etc. Fig. 4.7 il-
lustrates a prototypical preprocessing scheme. The order of the methods
may vary or some methods might be refrained according to the purpose of
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the study. Quantitative analysis of different preprocessing pipelines can be
found in [108,109]. Basically, the acquired fMRI data are corrected for head
motion, then functional images are registered with structural images, or vice
versa, and projected into a common image space (e.g., MNI, Talairach). Pro-
jecting from subjects’ individual space to a common space is practical for
referential purposes and allows group analysis. The temporal filtering might
include the detrending for low frequency components, high pass, low pass
filtering, and physiological noise correction [110]. Spatial smoothing reduces
the inter voxel variability and introduces spatial correlation that is required
by the Gaussian random field theory to assess the statistical power of the
analysis.

Structural ImageFunctional Image

Motion 
Correction

Normalization
(MNI, Talairach)

Temporal 
Filtering

Coregistration Spatial
 Filtering

Template Output

Figure 4.7: FMRI preprocessing pipeline. Most common preprocessing steps
include: (1) the realignment of functional images for subject head motion
correction, (2) projection of functional images into the structural space,
or vice versa, (3) normalization of functional and structural images into
a common space (e.g., MNI space), (4) detrending for low frequency drifts,
high pass filtering, or physiological noise correction, etc., (5) spatial filtering,
generally smoothing, in order to reduce spatial variability and make use of
the Gaussian random field theory for thresholding.

4.3.2 Confirmatory Methods

Based on the research question, the experimenter first designs an experimen-
tal paradigm, and then exploits a confirmatory analysis to affirm or reject
the hypothesis. General linear model (GLM) is one of the most acknowl-
edged method in task-related fMRI analysis.

General Linear Model

Here, we give the key ingredients for GLM analysis at a single subject level;
for a review we refer to [65, 111] and references therein. GLM is a lin-
ear regression model where the experimental paradigm is used to construct
temporal regressors and then fitted into every voxel’s time series to recover
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the weights of each regressor. Finally, statistical hypothesis testing reveals
task-related activation maps. Specifically, consider

y = Xβββ + εεε, (4.2)

where y ∈ RN vector representing the measured and sampled time course of
a single voxel, N being the number of time points, X ∈ RN×M is the deter-
ministic design matrix composed of M regressors, βββ ∈ RM is the parameter
weight vector, and εεε is the additive noise. We assume a correlated Gaussian
noise with pε ∼ N (0, σ2ΣΣΣ) with ΣΣΣ is the covariance matrix. The aim of the
analysis is to recover the parameter weights βββ given the design matrix X,
then one can assess the voxels best represent an experimental condition up
to a certain statistic.

Fig. 4.8 depicts a complete picture of GLM (colored). The GLM is a mass-
univariate method; i.e., it is applied for each voxel time series separately.
The task conditions are first convolved with canonical HRF h(t) to retain
the temporal characteristic of fMRI and then fed into the design matrix X.
Generally, the design matrix embodies additional factors, nuisance regressors
n(t) that are related to the non-experimental sources of variability, such
as temporal derivatives of HRF, subject’s motion parameters, basis sets
representing scanner drift effects or subject cardiac and respiratory effects,
etc [81–83,86].
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tim
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task-related 
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���

Y B E

parameters residualsFigure 4.8: GLM analysis. The regressors (X) are fitted on each voxel time
course (orange column) of the fMRI data y in order to recover parameter
weights βββ. The design matrix can include both experiment related regressors
(green) and nuisance parameters (red). The aim is to find the parameter
weights βββ that minimize the empirical error εεε (cyan).

Then, exploiting generalized least squares or the Bayesian inference (ML),
the weights are estimated as

β̂̂β̂β = arg min
βββ∈RM

(y −Xβββ)TΣ−1(y −Xβββ) (4.3)

= (XTΣ−1X)−1XTΣ−1y = Py, (4.4)

which requires an estimate of the covariance matrix Σ. The covariance
structure can be estimated by a two step regularization iteratively; i.e.,
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given covariance matrix we recover the weights, and then we estimate the
covariance matrix from the residuals [112]. Note that, assuming an i.i.d.
Gaussian noise Σ = I yields β̂̂β̂β = (XTX)−1XTy.

Once the weights are estimated, t-test may be used to verify the hypothesis.
If the hypothesis is “the effect of performing task 1 or task 2 is the same”; i.e.,

H0 = E
[
cT β̂̂β̂β

]
= 0, with the contrast vector c = [1,−1,0]T , it asserts that

the difference between weights can be explained by chance. Finally, each
voxel’s statistic is compared to the null hypothesis with certain probability
(p-value). The null hypothesis is rejected for the voxels whose test statistic
is above a threshold that depends on the α-value, reflecting the desired
p-value.

The t statistic yields

t =
cT β̂̂β̂β√

var(cT β̂̂β̂β)
, (4.5)

where
var(cT β̂̂β̂β) = σ2cT (PΣPT )c = σ2cT (XTΣ−1X)−1c. (4.6)

The error variance is estimated from the residual error ε̂̂ε̂ε = y − Xβ̂̂β̂β =
y −Py = Ry as

σ̂2 =
ε̂T ε̂̂ε̂εε̂T ε̂̂ε̂εε̂T ε̂̂ε̂ε

tr(R)
. (4.7)

The effective degrees of freedom of the Student’s t-distribution can be com-
puted [113] as

ν =
tr(R)2

tr(R2)
, (4.8)

in order to be able to compare the t-values which are represented explicitly
as

t =
cT β̂̂β̂β

σ̂
√

(cT (XTΣ−1X)−1c)
. (4.9)

The F-test compares the residual errors of the complete model to a reduced
model. Basically the regressors are partitioned as X = [X1|X0]; regressors
of interest in X1 and those of no interest in X0. The projection matrices
are computed to get the weights for the complete and reduced (y = X0βββ0 +
εεε0) models as β̂̂β̂β = Py and β̂̂β̂β0 = P0y, respectively. Finally, F-statistic is
computed as

F =
yTMy/trMΣ)

yTRy/tr(RΣ)
, (4.10)

where R = I − P, R0 = I − P0 are the corresponding residual-forming
matrices and M = R0 −R.
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Since the statistical testing is performed over massive amount of voxels, it
will result (under H0) in many false positives, which are incorrectly rejected
under the null hypothesis. The reliability and validity of the tests can be im-
proved by correcting for multiple hypothesis testing by exploiting Benferonni
correction, Gaussian Random Fields and False Discovery Rate [114–116].

4.3.3 Exploratory Methods

Not all brain activity can be modeled beforehand using stimulus functions.
For example, spontaneous activity cannot be introduced as regressors in
traditional GLM analysis [117]. Therefore, there is an increasing need for
methodologies that enable the exploration of brain activity without prede-
fined responses [66]. Exploratory methods are essentially employed when the
experimenter is interested in extracting useful information from the data.
These methods perform a data-driven analysis instead of imposing a prior
model (e.g., design matrix), therefore they constitute a perfect candidate for
analysing the spontaneous brain activity. Data-driven methods have been
proposed for that purpose such as fuzzy clustering [118], temporal clustering
analysis (TCA) [119,120], seed correlation analysis [102], or subspace decom-
position methods such as independent component analysis (ICA) [121,122],
partial least squares [123, 124], canonical correlation analysis (CCA) [125]
and agnostic canonical variates analysis (agnostic-CVA) [126]. We explain
seed based analysis which have been the primer RS-fMRI analysis method
and ICA which is probably the most commonly used data-driven method.

Seed-Based Analysis

This method has been used in the first RS-fMRI data analysis to reveal the
coherent structures during rest [102]. Specifically, it is based on selection
of an a priori seed voxel/region, e.g., posterior cingulate cortex (PCC), and
computing the correlation between the seed’s time course with the rest of
the voxel time courses. Subsequent methods propose to feed the time course
of the selected voxel/region into further analyses, such as GLM analysis
and partial least squares (PLS) [127–129]. It is, however, computationally
exhaustive to perform this analysis and assess the connectivity patterns
for all voxels in the brain, and choice of the seed might not be optimal.
Moreover, intrinsic activity in the seed voxel/region potentially introduces
biased networks [130].

Independent Component Analysis

Independent component analysis (ICA) is a blind source separation method
that aims at segregating the data into different compartments based on their
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statistical independence [131]. Basically, the original data is represented
through a bilinear model; i.e., composition of the independent sources with
associated weights (mixing matrix), so that the original data can be per-
fectly reconstructed. In fMRI, ICA can be performed either spatially or
temporally; then the sources become either spatial maps or time courses,
respectively. Spatial ICA is generally preferred since the spatial dimension
is higher than the temporal dimension. ICA was first employed in fMRI
for analyzing task-related data [132]. Later, it has been applied for RS-
fMRI studies and for separating the noise components from the data [133].
Consider the following data model as in Fig. 4.9

Y = AS, (4.11)

where Y ∈ RN×V is a matrix representing the measured and sampled fMRI
data, N and V being the number of time points and number of voxels,
respectively, A ∈ RN×M is the mixing matrix with M components, and
S ∈ RM×V is source matrix where each component is a spatial map (in rows).
Note the similarity of ICA to GLM in terms of graphical interpretation,
that is, the mixing matrix A acts as the design matrix X that should be
estimated.
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Figure 4.9: (Spatial) ICA for fMRI data analysis. The fMRI data Y is
a multiplication of spatially independent sources S and temporal weights
(mixing matrix A)

The main idea is to find the unmixing matrix W that recovers the sources
Ŝ from the mixture data Y; i.e., Ŝ = WY. Indeed, ICA has some inherent
assumptions that; (1) the sources are generated from independent processes,
(2) the sources follow non Gaussian distribution, and (3) the observed data
is a linear mixture of sources and follow a Gaussian distribution (according
to the central limit theorem) [131]. Another multivariate decomposition
similar to ICA is principal component analysis (PCA) which estimates the
uncorrelated (orthogonal) sources best explain the variance in the data.
Note that PCA can be interpreted as the Gaussian version of ICA. In the
literature there are several methods to estimate the unmixing matrix W
such as entropy maximization (infomax) [134], ML-ICA [135], maximization
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of non-gaussianity [136] etc. Even though ICA has been one of the most
popular methods in fMRI analysis, it has some disadvantages:

1. ICA is not directly designed to identify “activation like” components
since no knowledge is taken into account about the hemodynamics or
about the type of activity-driven signal (e.g., spikes versus sustained
activity).

2. Due to random initialization and complex criterion of the method its
reproducibility is not always guaranteed [137].

3. The selection of the model order (how many components to estimate)
remains as an issue [138,139].

4.3.4 FMRI Deconvolution Methods

The GLM and ICA constitute the mainstream state-of-the-art methods in
fMRI data analysis. Alternatively, temporal analysis of fMRI is of interest
to the neuroscience community, especially the elaboration of unpredicted
activations. Since GLM is only applicable when the task is explicit, and
ICA does not incorporate any hemodynamic effect, new tools should be de-
veloped. FMRI deconvolution methods have been proposed to uncover the
underlying activation signals in BOLD signal. Initially, Glover introduced
Wiener deconvolution filtering that is optimal for Gaussian sources and thus
results in very smooth activity-inducing signals [3]. This work was general-
ized by Gitelman et al. to study the psychophysiologic interactions at the
neuronal level [140]. We shortly explain the prominent temporal deconvolu-
tion schemes that are of particular interest in this work;

1. Activelets; wavelets mimicking the hemodynamic system, are designed
and used to decompose BOLD signals that should be ideally rep-
resented by sparse activelet coefficients. Extended from traditional
wavelets, which behave like Nth-order derivatives, activelets are a fam-
ily of exponential spline wavelets that annihilate the null-space of a
general differential operator L; i.e., exponential vanishing moments.
Fig. 4.10(a) illustrates the evolution of B-spline wavelets to activelets.
Specifically, the activelets are constructed from the shifted replicates
of Green’s function of operator Lh, operator related to the inverse
hemodynamic system in (4.1), in a multiscale formalism [21,101,141].

Exploiting the activelet dictionary as the building blocks of BOLD
signal, a sparsity-inducing variational formulation is constructed as a
synthesis problem

c̃ = arg min
c
‖y −Φc‖22 + λ‖c‖1, (4.12)
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where y is the measured BOLD signal, c is the activelet coefficient, Φ
is the activelet dictionary, which satisfies the BOLD signal estimate
x̃ = Φc̃. The activelet coefficient c are implicitly computed using the
filter bank formulation; i.e., Φ is not explicitly computed, see Fig. 4.10
(b).

Explicit forms of the scaling and wavelet filters can be
found in [31], including the dual filters for the synthesis
side. Given these filters, we can adapt Mallat’s fast
decomposition-reconstruction filterbank algorithm with
scale-dependent filters as shown for one decomposition
level in Fig. 3. Our implementation performs filtering in
the FFT domain since closed-form expressions of the
filters are known in the Fourier domain, similar to [32].
We can also obtain the undecimated activelet transform
by using the ‘‘!a trous’’ algorithm; i.e., the filters Gi and Hi

are upsampled with a factor 2i instead of downsampling
the signal.

3.4. Algorithms for the sparse recovery problem

The activelet transform guarantees a sparse represen-
tation for the activity-related signal. The activelet basis
can easily be extended to an activelet frame by perform-
ing the undecimated activelet transform (UDAT). The
frame expansion being overcomplete, it brings shift-
invariance and can lead to even sparser representations.
Given the noisy data y[k], k¼1,y,T in (4), we would like
to identify (to a good approximation because of noise) the
signal x that has a representation as sparse as possible
(ideally the sparsest one) in the undecimated activelet
dictionary.

Let F be the T"K overcomplete dictionary matrix
whose columns include the UDAT basis functions, nor-
malized to a unit ‘2 norm. x¼Fw0 is the ideal noiseless
fMRI signal in (4) assumed to have a sparse representation
vector w0 in F (synthesis-type prior), but we observe a

noisy version of it y. We seek to identify the components
of w0 by solving the convex ‘1 optimization problem

ðP1,eÞ : min
w

JwJ1 subject to JWðy%FwÞJ2re, ð8Þ

where W is a linear weighting operator, and e40. The
weighting operator is problem-dependent and may
account for our prior statistical knowledge on the noise.
Problem ðP1,eÞ is equivalent1 to the Lagrangian form

ðQl,‘1
Þ : min

w
Jy%FwJ2

2þlJwJ1: ð9Þ

ðQl,‘1
Þ is the well-known BPDN, or the popular Lasso in the

statistical literature.
Problems ðP1,eÞ and ðQl,‘1

Þ have been extensively stu-
died in the recent years both in terms of their theoretical
guarantees and convergent algorithms to solve them. We
will not delve into these details here and the interested
reader may refer to e.g., [33,22].

Among the algorithms to solve ðQl,‘1
Þ, in the statistical

literature, the Lasso, LARS and homotopy methods were
proposed to track its regularization path by solving it for
all l 2 ½0,JFTyJ1( [34–36] (in fact in the overdetermined
case). These methods associate to each problem ðQl,‘1

Þ,
l 2 ½0,JFTyJ1(, a solution w%

l , and follow the entire solu-
tion path fw%

lg starting at w%

l ¼ 0 when l¼ JFTyJ1 [36].
The key observation is that the solution subset is piece-
wise-constant as a function of l, changing only at critical
values of l; i.e., the solution path is polygonal.

The LARS method computes the solution by consider-
ing one coordinate at a time as a candidate to enter the
active set. Inspired by the notion of path-following, an
accelerated algorithm (IT-LARS) was proposed [37]. The
IT-LARS follows the solution path approximately by suc-
cessively selecting groups of atoms at each iteration using
a stagewise iterative-thresholding (IT) variant of LARS.
Now, the sequence fl‘g‘Z0 is not data-adapted as in LARS,
but allowed to be strictly decreasing. Let Aþ be the
Moore–Penrose pseudo-inverse of a matrix A. For a subset
I ) f1, . . . ,Tg, I is its complement. AI is the restriction of A
to the columns indexed by I. For a vector d, d[I] is the sub-
vector indexed by I. With these notations, the main steps
of IT-LARS are summarized in Algorithm 1.

Algorithm 1. IT-LARS algorithm.

Initialization: Iteration counter ‘¼ 0, wð0Þ ¼ 0, rð0Þ ¼ y, l‘ ¼ JFTyJ1 .

Choose t, e.g., t¼
ffiffiffi
T
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ2
ffiffiffiffiffiffiffiffiffi
2=T

pq
Þ (see the text).

for Jrð‘ÞJ2 4tsn do

* Residual : rð‘Þ ¼ y%Fwð‘Þ ,

* Correlation : cð‘Þ ¼FTrð‘Þ ,

* Hard Thresholding : Ið‘Þ ¼ fi : jcð‘Þ½i(j4l‘g,
* Update direction : dð‘Þ½Ið‘Þ( ¼FþIð‘Þ rð‘Þ ,
and dð‘Þ½?I ð‘Þ( ¼ 0,

* Update the solution : wð‘þ1Þ ¼wð‘Þ þgdð‘Þ ,0ogr1,

* l‘þ1 ¼ gðl‘Þ,
* Next iteration : ‘’‘þ1:

666666666666666664

Output : Reconstruct x from wð‘Þ .

Fig. 2. From classical B-spline wavelets (thick gray) to activelets (thick
black).

Hi (z
−1)

2
↓ ci+1

Gi (z
−1)

2
↓ di+1

ci

2
↑ H̃i (z)

2
↑ G̃i (z)

ci

Fig. 3. Filterbank implementation of the activelet basis decomposition
for a single decomposition level. Notice that the scaling and wavelet
filters are scale-dependent. The reconstruction is performed using the
dual filters.

1 There is a bijection between e and l such that ðPe,‘1 Þ and ðQl,‘1
Þ

share the same solution set.

I. Khalidov et al. / Signal Processing 91 (2011) 2810–28212814

Explicit forms of the scaling and wavelet filters can be
found in [31], including the dual filters for the synthesis
side. Given these filters, we can adapt Mallat’s fast
decomposition-reconstruction filterbank algorithm with
scale-dependent filters as shown for one decomposition
level in Fig. 3. Our implementation performs filtering in
the FFT domain since closed-form expressions of the
filters are known in the Fourier domain, similar to [32].
We can also obtain the undecimated activelet transform
by using the ‘‘!a trous’’ algorithm; i.e., the filters Gi and Hi

are upsampled with a factor 2i instead of downsampling
the signal.

3.4. Algorithms for the sparse recovery problem

The activelet transform guarantees a sparse represen-
tation for the activity-related signal. The activelet basis
can easily be extended to an activelet frame by perform-
ing the undecimated activelet transform (UDAT). The
frame expansion being overcomplete, it brings shift-
invariance and can lead to even sparser representations.
Given the noisy data y[k], k¼1,y,T in (4), we would like
to identify (to a good approximation because of noise) the
signal x that has a representation as sparse as possible
(ideally the sparsest one) in the undecimated activelet
dictionary.

Let F be the T"K overcomplete dictionary matrix
whose columns include the UDAT basis functions, nor-
malized to a unit ‘2 norm. x¼Fw0 is the ideal noiseless
fMRI signal in (4) assumed to have a sparse representation
vector w0 in F (synthesis-type prior), but we observe a

noisy version of it y. We seek to identify the components
of w0 by solving the convex ‘1 optimization problem
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where W is a linear weighting operator, and e40. The
weighting operator is problem-dependent and may
account for our prior statistical knowledge on the noise.
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Þ have been extensively stu-
died in the recent years both in terms of their theoretical
guarantees and convergent algorithms to solve them. We
will not delve into these details here and the interested
reader may refer to e.g., [33,22].

Among the algorithms to solve ðQl,‘1
Þ, in the statistical

literature, the Lasso, LARS and homotopy methods were
proposed to track its regularization path by solving it for
all l 2 ½0,JFTyJ1( [34–36] (in fact in the overdetermined
case). These methods associate to each problem ðQl,‘1
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l 2 ½0,JFTyJ1(, a solution w%

l , and follow the entire solu-
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l ¼ 0 when l¼ JFTyJ1 [36].
The key observation is that the solution subset is piece-
wise-constant as a function of l, changing only at critical
values of l; i.e., the solution path is polygonal.

The LARS method computes the solution by consider-
ing one coordinate at a time as a candidate to enter the
active set. Inspired by the notion of path-following, an
accelerated algorithm (IT-LARS) was proposed [37]. The
IT-LARS follows the solution path approximately by suc-
cessively selecting groups of atoms at each iteration using
a stagewise iterative-thresholding (IT) variant of LARS.
Now, the sequence fl‘g‘Z0 is not data-adapted as in LARS,
but allowed to be strictly decreasing. Let Aþ be the
Moore–Penrose pseudo-inverse of a matrix A. For a subset
I ) f1, . . . ,Tg, I is its complement. AI is the restriction of A
to the columns indexed by I. For a vector d, d[I] is the sub-
vector indexed by I. With these notations, the main steps
of IT-LARS are summarized in Algorithm 1.

Algorithm 1. IT-LARS algorithm.

Initialization: Iteration counter ‘¼ 0, wð0Þ ¼ 0, rð0Þ ¼ y, l‘ ¼ JFTyJ1 .

Choose t, e.g., t¼
ffiffiffi
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ffiffiffiffiffiffiffiffiffi
2=T

pq
Þ (see the text).

for Jrð‘ÞJ2 4tsn do

* Residual : rð‘Þ ¼ y%Fwð‘Þ ,

* Correlation : cð‘Þ ¼FTrð‘Þ ,

* Hard Thresholding : Ið‘Þ ¼ fi : jcð‘Þ½i(j4l‘g,
* Update direction : dð‘Þ½Ið‘Þ( ¼FþIð‘Þ rð‘Þ ,
and dð‘Þ½?I ð‘Þ( ¼ 0,

* Update the solution : wð‘þ1Þ ¼wð‘Þ þgdð‘Þ ,0ogr1,

* l‘þ1 ¼ gðl‘Þ,
* Next iteration : ‘’‘þ1:

666666666666666664

Output : Reconstruct x from wð‘Þ .

Fig. 2. From classical B-spline wavelets (thick gray) to activelets (thick
black).

Hi (z
−1)

2
↓ ci+1

Gi (z
−1)

2
↓ di+1

ci

2
↑ H̃i (z)

2
↑ G̃i (z)

ci

Fig. 3. Filterbank implementation of the activelet basis decomposition
for a single decomposition level. Notice that the scaling and wavelet
filters are scale-dependent. The reconstruction is performed using the
dual filters.

1 There is a bijection between e and l such that ðPe,‘1 Þ and ðQl,‘1
Þ

share the same solution set.

I. Khalidov et al. / Signal Processing 91 (2011) 2810–28212814

(a) From B-spline wavelets (gray), related to 
Nth order derivative, to activelets (black), 

related to general differential operator

(b) Filter-bank implementation of activelets 
dictionary for one level

Figure 4.10: Activelets and filter-bank implementation. The B-spline
wavelets are designed to annihilate high order polynomials, instead, ac-
tivelets annihilate the operator Lh of the hemodynamic system (a). The
implementation is performed exploiting the filter bank representation, at
each level the coefficients are filtered with the low-pass (scaling g(t)) and
high-pass (wavelet, h(t)) filters. The synthesis dictionary ΦT is implicitly
computed using the dual filters in Fourier domain. (Courtesy of Khalidov
et al. [101]).

2. (Sparse) Paradigm-Free Mapping is another deconvolution method
aiming at recovering the underlying activity without any timing in-
formation. The method consists of two stages; (1) temporal decon-
volution based on a synthesis dictionary, here canonical HRF, and
solved through Tikhonov regularization, and (2) statistical analysis of
the time courses [142]. Sparse paradigm-free mapping is later proposed
imposing sparsity constraint on the dictionary coefficients c [143] as

c̃ = arg min
c
‖y −Hc‖22 + λ‖c‖1, (4.13)

where dictionary H is composed of shifted replicates of canonical HRF,
and finally the estimated BOLD activity x̃ is recovered from the sparse
coefficients c̃ convolved with HRF; i.e., x̃ = Hc̃.

3. Event Detection by Iterative Estimation; Garcia et al. [144] exploits
the synthesis dictionary, shifted canonical HRFs, and formulates a
regularization problem consisting multiple regularization terms; both
`1-norm and TV as

c̃ = arg min
c≥0
‖y −Hc‖22 + λ1‖c‖1 + λ2‖∆Dc‖1. (4.14)
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The regularization presumes a combination of non-negative spike-like
and block-like activity-inducing signals.

Interestingly, Wu et al. proposed an insightful method [145]. They first pin-
point the local maxima points in the BOLD signal and construct indicators
function of its time shifted replicates. Then, regressors are built by the
convolution of the indicator functions with the canonical HRF and its sec-
ond order variants. GLM analysis yields the HRF estimates for all indicator
functions where minimum error criteria determines the best representative of
the neuronal activity and HRF. Finally, BOLD deconvolution is performed
using a Wiener filter with the corresponding HRF estimate.

The aforementioned methods presume the presence of a linear hemodynamic
model. Nonlinear models have also attracted a lot of attention for blind de-
convolution. They basically solve the continuous state-space representation
constructed by stochastic differential equations. Note that, the inversion of
the nonlinear hemodynamic system to uncover the underlying state transi-
tions has been studied for a while; for example, dynamical causal modelling
for effective connectivity analysis between brain regions [146]. Instead, Ri-
era et al. proposed the deconvolution of the underlying neuronal signal and
estimation hidden states through Bayesian filtering [147]. Later, Friston et
al. developed dynamic expectation maximization (DEM), variational filter-
ing and generalised filtering with extended Kalman filtering [148–150]. An
extended method is developed by Havlicek et al. using nonlinear cubature-
Kalman filtering [151]. In a recent work, Bush et al. presume a parametric
model for underlying activations and exploit nonlinear regression to decon-
volve the hemodynamic system [152]. These methods, however, have high
computational cost compared with linear models and are generally preferred
rather for region of interest (ROI) or network analysis.

Besides the deconvolution methods with a fixed HRF model, many studies in
the literature investigate temporal dynamics via HRF identification. In stan-
dard GLM approaches [82], the HRF is predefined using gamma functions
which does not take the subject variability into account. The temporal and
dispersion derivatives are often incorporated into GLM to account for intra-
subject variability. More flexible techniques are suggested to estimate HRF
components in a subject- or time-dependent way in order to deal with inter-
and intra-subject variability [84], such as parametric model, non-parametric
models using voxel-wise or region-wise priors [153–156]. More notably,
parcel-based HRF estimation methods through joint detection estimation
(JDE) framework are studied based on Bayesian approaches [157–159]. Re-
cently, an adaptive parcel identification driven by the hemodynamics is pro-
posed using JDE [160, 161]. These HRF identification methods are mainly
combined with GLM analysis to explore the parcel/subject/group/task spe-
cific hemodynamic models.



Chapter 5

Total Activation

In this chapter 1, we introduce a novel spatiotemporal deconvolution
method, for which we coin the term total activation (TA), for fMRI data
analysis. Our framework allows exploring the underlying activations related
to the BOLD signal without any timing information. We begin by defining
the fMRI signal model upon which we build TA framework. We then for-
mulate a regularization problem with carefully chosen temporal and spatial
priors that take into account the specific characteristics of fMRI data. First,
the temporal regularization—based on generalized L-TV framework (intro-
duced in Chapter 3)—is adapted to the hemodynamic system in order to
recover the system’s driving (activity-inducing) signals. Second, the spatial
regularization term promotes coherent activation patterns in anatomically-
defined brain regions. The utility of TA is corroborated by 3D phantom
experiments where TA significantly reduced the deviations in the activity-
related signals.

5.1 Related Work and Contributions

We mentioned three particular state-of-the-art deconvolution methods in
Chapter 4.3.4 that have deployed similar ideas to recover activity-inducing
signals [101, 142–144]. All of these methods were cast as variational formu-
lations that aim at temporal deconvolution. However, they operate solely in
the temporal domain in a voxel-wise fashion and do not use spatial informa-
tion. Moreover, the variational formulation admits a synthesis prior, which
means that a dictionary of atoms is built. Khalidov et al. designed activelets,

1This chapter is based on the publication:
F. I. Karahanoglu, C. Caballero-Gaudes, F. Lazeyras, and D. Van De Ville, “Total activa-
tion: fMRI deconvolution through spatio-temporal regularization”, NeuroImage, vol. 73,
pp. 121-134, June 2013 [162].
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as new flexible wavelets tailored to the hemodynamic system, to decompose
BOLD signals such that the BOLD signal is ideally represented with a few
large activelet coefficients if the underlying activity is spike-like [101]. A
similar idea was developed by Caballero-Gaudes et al. where an explicit
dictionary with all possible shifts of the canonical HRF was constructed to
recover spike-like activity [142,143]. Akin to the dictionary based methods,
Garcia et al. exploited two regularization terms, which in turn provide the
spike-like and block-like atoms. This, however, raises the issue of how to
choose the regularization parameters to adapt to the ratio of spikes and
blocks for each voxel [144].

We have proposed TA to deconvolve fMRI data based on hemodynamic
and anatomical properties of the brain. The unique features of TA can be
summarized as:

1. Reveal temporal properties of the activity-inducing signal. The de-
convolution identifies the “innovation” signal (which is spike-type) as
the sparse driver of the BOLD signal. The innovation signal then de-
fines the activity-inducing signal (by integration), which is a flexible
block-type signal where the timing and duration is driven from the
data.

2. Combine temporal and spatial regularization. Spatial regularization
is incorporated using structured sparsity as expressed by mixed-norms
based on a priori knowledge of spatial structure of the data [24]; i.e.,
time courses of voxels in the same brain regions are favored to be
coherent.

3. Take advantage of efficient optimization schemes. We employ the ef-
ficient generalized forward-backward splitting algorithm [43], which is
a fast iterative shrinkage algorithm that alternates between temporal
and spatial domain solutions until convergence to the final estimate of
the underlying activity-inducing signal. Moreover, we utilize an adap-
tive scheme to systematically calibrate the regularization parameter.

5.2 Total Activation

5.2.1 Generative BOLD Signal Model

In the sequel, we describe the temporal properties of the fMRI signal model
adopted for our work. We exploit a linear shift-invariant system, which
specify the activity-related signals x(i, t) as convolution of the hemodynamic
response function (HRF) h(t) with the activity-inducing signals u(i, t):

x(i, t) = u(i, t) ∗ h(t), (5.1)
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where i ∈ Z is the voxel index.

Essentially, we model the activity-inducing signal as the block-like driving
signal of the hemodynamic system. Thus, we represent u(i, t) as a weighted
sum of shifted and dilated box functions b(t),

u(i, t) =
∑

k

ck(i)b(t/ak − tk), (5.2)

where b(t) = rect(t − 1/2), ck(i) is the amplitude of the k-th block, ak is
the block length, and aktk is the onset timing of activity. We define the
innovation signal us(i, t) as the derivative of the activity-inducing signal:

D{u(i, ·)}(t) =
∑

k

c′k(i) (δ(t− aktk)− δ(t− ak(tk + 1))) ,

=
∑

k′

ck′(i)δ(t− tk′) = us(i, t), (5.3)

where D is the derivative operator and δ(t) is the Dirac-delta function.
Ideally, for block-type signals, the innovation signal consists of spikes indi-
cating the onsets and offsets of the blocks and zeros elsewhere. Note that,
we have reparameterized the innovation signal to clearly reflect its sparse
nature. Hence, us(i, t) indicates the timing when the activity inducing sig-
nal’s u(i, t) amplitude changes. In Fig. 1, we illustrate the fMRI signal

us(i,t)

us(i,t) = D{u(i,.)}(t)

hemodynamic
system 

h(t)

u(i,t) h(t)

u(i,t) = Lh{x(i,.)}(t) Lh{h}(t) = δ(t) x(i,t) = h(t)*u(i,t)

x(i,t)

y(i,t) = x(i,t)+n(i,t)

y(i,t)

activity-inducing
signal
u(i,t)

sparse
innovation signal

us(i,t)

activity-related
signal
x(i,t)

measured fMRI
signal
y(i,t)

Figure 1: FMRI signal model. Assuming that the activity-inducing signal is
block-type, its derivative is the innovation signal, which will be sparse. The
activity-related signal can be obtained by convolving the activity-inducing
signal with the impulse response of the hemodynamic system. The activity-
related signal is then further corrupted with noise and signal artifacts, and
finally sampled at the fMRI temporal resolution (TR).

model and its underlying sparse structure.

The HRF is adopted from the linear approximation of the balloon model,
which was introduced by Khalidov et al. [101], and formulated explicitly
in Chapter 4.1.2. The linear differential operator Lh in (4.1) inverting the
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hemodynamic system is represented by four zeros αi (i = 1, . . . , 4) and one
pole γ1

Lh =
4∏

i=1

(D − αiI) (D − γ1I)−1 ,

and satisfies
Lh{h}(t) = δ(t). (5.4)

Then, we recover the activity-inducing signal by exploiting the differential
operator that inverts the system as

Lh{x(i, ·)}(t) = u(i, t). (5.5)

Given the link between innovation and activity-inducing signal, we also have
L{x(i, ·)}(t) = D{u(i, ·)}(t) = us(i, t), where the sparsifying operator L =
DLh combines Lh with the regular derivative; i.e., adding one more zero
α5 = 0 into its expression.

In practice, the activity-related signal x(i, t) is corrupted by different sources
of noise, such as non-neurophysiological contributions (e.g., aliased cardiac
and respiratory fluctuations), movement, scanner drifts and thermal noise
[83]. The fMRI signal y(i, t) then becomes

y(i, t) = u(i, t) ∗ h(t) +
∑

k

βk(i)nk(t) + ε(i, t), (5.6)

where nk(t) represent known nuisance regressors (e.g., movement, low fre-
quency drifts), βk are associated weights, and ε(i, t) is AWGN with variance
σ2
i .

FMRI Data Representation

Before we move on with the problem formulation, it is necessary to explain
the fMRI data representation. We represent the sampled and discretized
full dataset as a matrix Y[i, n] = [y(i, t)]i,tn , n ∈ Z of size V ×N , where V
is the total number of voxels and N is the number of scans. Following the
same convention in previous chapters, the discretised operators are denoted
by ∆; e.g., ∆D indicates the finite-difference for the derivative D, and so on.
We also consider a predefined structural atlas that contains an anatomical
parcellation of the brain; i.e., we assume M different parcels where Rk,
k = 1, . . . ,M , are the sets of voxels for each region. Fig. 1 illustrates the
fMRI dataset structure that is exploited further on.

5.2.2 Variational Formulation

We now aim at reconstructing activity-related signals from noisy fMRI mea-
surements by casting a variational formulation [163,164]. Within the context
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Figure 1: FMRI data representation. The dataset is represented as a matrix
Y of size V ×N , where V is the total number of voxels and N is the number
of scans. An anatomical atlas enables to define region of interests in the
data and is exploited in our method.

of fMRI data processing, we introduce a novel spatiotemporal formulation
based on the minimization of a cost function that is composed of a data-
term, and two regularization terms. Specifically, our cost function reads

X̃ = arg min
X∈RV×N

1

2
‖Y −X‖2F +RT (X) +RS(X), (5.7)

where Y ∈ RV×N is the noisy fMRI measurements, RT and RS are the tem-
poral and spatial regularization terms, respectively. The optimal solution X̃
is a compromise between the data fitness and the regularization penalties,
which will now be further elaborated.

Temporal regularization

We have discussed in Chapter 3 how the generalized L-TV framework allows
recovering sparse driving signals by inverting a linear system. Following
the same idea, but this time on the hemodynamic system, we define the
regularization term RT (X) such that the sparsity of the innovation signal
is emphasized when a differential operator ∆L = ∆D∆Lh is applied to the
recovered activity-inducing signals X:

RT (X) =
V∑

i=1

λ1(i) ||∆L {X} [i, ·]||1 , (5.8)

where

||∆L {X[i, ·]}||1 =

N∑

n=1

|∆L {X} [i, n]| , (5.9)

and λ1(i) is the regularization parameter for voxel i.
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Spatial regularization

Since fMRI data has large amount of spatial correlations, we design a spatial
regularization term RS(X) that promotes coherent activity within the same
region. To that end, we use a mixed `(2,1)-norm to express spatially coherent
(i.e., smooth) activity inside a region and possibly crisp changes in activity
at regional borders [24,165]:

RS(X) =
N∑

n=1

λ2(n) ||∆Lap {X} [·, n]||(2,1) , (5.10)

where

||∆Lap {X[·, n]}||(2,1) =
M∑

k=1

√∑

i∈Rk

∆Lap {X} [i, n]2, (5.11)

and ∆Lap is the second-order finite difference (Laplacian) operator and λ2(n)
is the regularization parameter for each time point.

5.2.3 Optimization Algorithm

We now focus on the minimization problem given in (5.7). Since our
cost function consists of a quadratic data fitting term and multiple
sparsity-promoting regularization terms, we employ the generalized forward-
backward algorithm [43]. The solution is obtained by incorporating the
proximal maps of each sparse prior defined as

X̃T = arg min
X

1

2
||Y −X||2F +

V∑

i=1

λ1(i) ||∆L {X} [i, ·]||1 = proxRT
(Y),

(5.12)

X̃S = arg min
x

1

2
||Y −X||2F +

N∑

n=1

λ2(n) ||∆Lap {X} [·, n]||(2,1) = proxRS
(Y).

(5.13)

Algorithm 6 summarizes the generalized forward-backward scheme adapted
to the fMRI denoising problem. Similar to the generalized L-TV algorithm
(Algorithm 5 in Section 3.2.4), each proximal map is solved exploiting the
dual norm.

The good news is that we can calibrate the regularization parameter λ1(i)
such that the residual noise converges to the pre-estimated noise level of
the data fit. Then, at iteration n, we update the temporal regularization
parameter λ1(i) as in [31]:

λ1(i)[n+1] =
Nσ̃(i)

‖X[i, ·]−Y[i, ·][n]‖2
λ1(i)[n],
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where σ̃(i) is the pre-estimated noise level of voxel i, λ1(i)n and X[i, ·]n
are the regularization parameter and recovered activity-related signal of the
ith voxel at nth iteration of the algorithm, respectively. We pre-estimate
the noise level σ̃ using the median absolute deviation of fine-scale wavelet
coefficients (Daubechies, order 3) [166].

Algorithm 6 Spatiotemporal Regularization for fMRI
X̃ = arg minX

1
2‖Y −X‖2F +RT(X) +RS(X)

INPUTS: Noisy fMRI data y,

1: Initialize: l← 1, X̂0
T = 0, X̂0

S = 0, X̃0 = 0,
2: repeat
3: Solve for temporal prior: X̂l+1

T = X̂l
T + proxRT (X̃l − X̂l

T + Y)− X̃l

4: Solve for spatial prior: X̂l+1
S = X̂l

S + proxRS (X̃l − X̂l
S + Y)− X̃l

5: Update X̃l+1 = X̂l+1
T /2 + X̂l+1

S /2
6: l← l + 1
7: until convergence or number of maximum iterations are reached.

In Fig. 2, we schematically outline the TA algorithm for fMRI data analysis.
The extracted time courses are fed into a two step forward-backward split-
ting algorithm where a joint solution is achieved. Temporal regularization
works with each voxel time course since the differential operator ∆L acts on
the temporal domain, whereas spatial regularization term works with each
fMRI volume exploting the Laplacian operator ∆Lap in space. The algo-
rithm solves for the denoised activity-related signals X̃: We can access the
activity-inducing signals as ∆Lh{X̃}, which are driving the system as the
neuronal-related activity at fMRI time scale.

5.3 Numerical Simulations

In this section, we present the results of TA applied on a 3D synthetic phan-
tom. We elaborated extensively TA for various settings, including temporal
and spatial mismatches. For this purpose, we created a software phantom
with 10×10×10 voxels divided into four regions. The activity-inducing sig-
nal was fixed within a region, but different across regions. Two regions had
spike-like activity-inducing signals: Region 1 had spike trains with gradually
increasing inter stimulus interval (ISI) from 1 to 12 sec.; Region 2 had short
events with duration uniformly distributed between [1, 2] sec. The other
two regions had longer block-like activity (duration uniformly distributed
between [1, . . . , 15] sec.). The onset timings of the events had uniform dis-
tribution such that 12 and 6 events on average were generated in regions
with spikes and blocks, respectively. A very short event was included into
region 4 to test TA’s robustness for short events in the middle of sustained
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Figure 2: Flowchart of TA. Successive regularization in temporal and spatial
domains are applied to the noisy BOLD signals. The algorithm alternates
between temporal regularization (blue window) and spatial regularization
(red window) until the convergence of activity-related signals. Finally, we
derive activity-inducing signals which reveal the neuronal-related activity.

events. All activity-inducing signals were sampled on a grid with temporal
resolution (TR) of 1 s and had 200 timepoints. The activity-induced signals
were then convolved with the HRF and corrupted with AWGN such that
SNR was 1 dB. The phantom is depicted in Fig. 5.4 with the associated
time courses for each region.

5.3.1 Matched Model

TA analysis was first performed for the perfect setting; i.e., the temporal
differential operator was matched with the generative HRF and the spa-
tial regularization exploited the same regions as the phantom itself. In
Fig. 5.5 (a) and (b), we show the activity-related and activity-induced sig-
nals for randomly selected voxels in four regions, respectively. The recovered
activity-inducing signals match very closely with the ground-truth activity
with no prior information on the timing or duration of the simulated events.
In Fig. 5.5 (first row), we observe for Region 1 that TA can resolve for events
with ISI down to 2 TRs. Our model is able to successfully recover differ-
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Figure 5.4: The phantom contains 4 regions in a cube of 10 × 10 × 10
voxels. The first region (cyan, 300 voxels) was simulated as spike train with
gradually increasing ISI from 1 sec. to 12 sec. and the second region (blue,
210 voxels) was simulated with random events with uniform duration in [1,2]
sec. The third region (green, 245 voxels) and the fourth region (red, 245
voxels) were simulated with random events with uniform duration in [1,15]
sec. The time resolution was chosen as TR=1 sec. The activity-inducing
signals (in grey) were convolved with HRF to obtain the BOLD activity for
each region. Each voxel time series was then corrupted with AWGN such
that voxel time series had a resulting SNR of 1 dB.

ent types of activity-inducing signals; i.e., short spike-like and long block-like
stimuli, especially the short event in Region 4 is well detected with a slightly
lower amplitude.

We also analyzed the evolution of the total cost function minimized by the
generalized forward-backward algorithm (see Fig. 5.6(a)). At each outer it-
eration, we computed the proximal map of the temporal and spatial priors
as described in Algorithm 6 steps 3-4. The cost functions of these regular-
izations are plotted in Fig. 5.6 (b)-(c). The total cost decreased as expected
and the inner regularizations also converged to a proxy solution at each
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outer iteration. In particular, we plot the cost of the proximal maps that
solve proxRT (X̃l − X̂l

T + Y) and proxRS (X̃l − X̂l
S + Y) for temporal and

spatial regularizations, respectively. We remark that the proximal maps are
computed using variants of generalized L-TV regularization algorithms in
Algorithm 5, which is globally convergent. By that means, the algorithms
converge to a minimizer regardless of the initial condition, that was assigned
as zero in our case (the peaks in Figs. 5.6(b)-(c)). We also note that, the
algorithm does not have to be very precise in the early iterations, a coarse
reconstruction is sufficient; therefore, we gradually increase the maximum
number of inner iterations in temporal regularization to reduce the total
computational cost. It is known that such an iteration strategy achieves
better convergence performance [167].

5.3.2 Effect of Spatial Regularization

Our spatial regularization opts for smooth activitation patterns in the same
region. Here, we illustrate the contribution of the spatial prior. In this
regard, we compared three methods:

1. Full TA;

X̃ = arg min
X

1

2
‖Y −X‖2F +RT (X) +RS(X),

2. Regularization with the temporal prior only; this method basically
simulates the state-of-the-art fMRI temporal deconvolution models

X̃ = arg min
X

1

2
‖Y −X‖2F +RT (X),

3. Regularization with the temporal and a spatial smoothing prior lacking
the atlas; i.e., Tikhonov regularization;

X̃ = arg min
X

1

2
‖Y −X‖2F +RT (X) +RS2(X),

where

RS2(X) =
N∑

n=1

λ2(n) ||∆Lap {X} [·, n]||2 .

Fig. 5.7 shows all reconstructed activity-related signals per region. In
Fig. 5.7, (a) depicts the TA reconstructed signals, (b) shows the recon-
structed signals exploiting only the temporal prior, and finally (c) depicts
the reconstructed signals with a global smoothing constraint (i.e., Tikhonov
regularization) in the spatial domain. Despite the relatively high noise level
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Figure 5.5: Results for the software phantom. The left column (a) shows
simulated noisy data (black), underlying BOLD signals (magenta), and re-
covered activity-related signals of a random voxel in each region (cyan,
blue, red, green, respectively). The right column (b) shows the underlying
activity-inducing signal (grey) and the associated recovered activity signals.
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Figure 5.6: The cost function of TA algorithm. The left figure (a) shows
the total cost of generalized forward-backward algorithm per iteration. At
each iteration two suboptimization problems are again solved iteratively;
temporal and spatial regularizations. The corresponding inner costs are
plotted in (b) and (c).

in the simulated time courses, TA-regularized signals have smallest vari-
ance in a specific region. When there is no spatial constraint each voxel is
treated independently, thereby, the variations are substantially higher. We
notice that Tikhonov regularization imposes global smoothness, which in
turn brings on interferences with other regions; i.e., false activations or loss
of the weak ones.

5.3.3 Temporal Model Mismatch

Under the linear time-invariant system assumption, the inter-subject or
intra-subject HRF fluctuations should be directly captured by TA. There-
fore, we tested TA for HRF variations by adopting different hemodynamic
models for signal generation (canonical HRF) and analysis (balloon model).

We generated a synthetic time course (1dB SNR) and analyzed with both
temporally matched model and mismatched model. Fig. 5.8 depicts the
HRF variations (time-to-peak, amplitude, dispersion, and undershoot). Fig.
5.8(a) shows the recovered activity-inducing signal (blue) with the tempo-
rally matched model, and Fig. 5.8(b) illustrates the mismatched case; i.e.,
ground-truth was generated with canonical HRF and analyzed with balloon
model. We observe a time shift of the activity-inducing signal due to the
differences in the temporal characteristics. However, both models were able
to reveal similar activation patterns.
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Figure 5.7: The effect of different spatial regularizations. The left column
(a) shows all recovered activity-related signals obtained with TA analysis
indicated by their mean, maximum, minimum per region. Small deviations
within each region are observed. The middle column (b) shows all recovered
activity-related signals without the spatial regularization. Maximum, min-
imum, first and third quartiles are indicated. The variation is considerably
higher as each voxel is treated independently. The right column (c) shows
activity-related signals produced by exploiting Tikhonov regularization. The
interference among the time courses may lead to false activations.
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Figure 5.8: HRF variation. We generated a synthetic time course (SNR 1
dB) with two settings; (a) matched model, we simulate and analyze using
the same HRF model and (b) mismatched model. Both models resulted in
showing similar activation patterns, however, the mismatched model had
an expected time shift in the underlying activations due to different HRF
characteristics.
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5.4 Model Extensions

5.4.1 Correlated Noise

The noise in fMRI data is known to exhibit temporal correlations (“serial
correlations”), which are typically handled by using autoregressive models
[89]. TA’s cost function is optimal for uncorrelated noise, nevertheless, an
autoregressive noise model can be easily integrated into the framework. The
colored noise should be whitened based on an estimated covariance of the
residuals, which then leads to a weighted `2-norm for the data-term of the
cost function. Considering the fMRI generative model with a first order
auto-regressive noise AR(1), we have

y(i, t) = x(i, t) + ε(t), ε(t) = ρε(t− 1) + n(t),

where n(t) is AWGN with N (0, σn) and ε(i) is AR(1) with covariance matrix
Σ. We can therefore whiten the noise and define the regularization in time
as

X̃T = arg min
X

1

2
(Y −X)TΣ−1(Y −X) +RT (X), (5.14)

Consider x and y denote the activity-related and measured BOLD signals
at the ith voxel. Then, given an estimate of the correlation (e.g., FSL-like
estimation based on the correlation of residuals) we derive the following
updates for each iteration l;

pl = PB

(
∆L {y} /(λ1(i)l c) + (I −∆LΣ∆T

L/c)
{

vl
})

, (Algorithm 5, step 4)

(5.15)

xl = y − λ1(i)l Σ∆T
L {p} , (Algorithm 5, step 9). (5.16)

The above algorithm integrates the temporal regularization with the noise
model, where only the data term is affected by the noise; the spatial regu-
larization is not modified since the AR noise is in the temporal domain.

5.5 Discussion and Summary

In this chapter, we try to give an insight into the underlying principle of TA
through performing experiments on a synthetic 3D phantom. The dataset
consisted of four regions with distinct temporal characteristics; e.g., long
blocks, short blocks, and fast stimuli (spike train with various ISI). Further-
more, we perturbed the perfectly matched generative and analysis models
to study how TA deals with these discrepancies. We specifically highlight
the flexibility of the HRF operator and the contribution of the spatial regu-
larization. TA shows promising results to handle the synthetic data, which
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is encouraging to perform analysis of real experimental fMRI data. In the
next chapter, we study two such fMRI datasets.



Chapter 6

Data Mining with Total
Activation: Application to
FMRI Data

In this chapter 1, we describe how TA proves to be a useful tool for various
aspects of fMRI data. The primary goal of TA is to reveal the activity-
inducing signals, which provide rich information on task-related as well as
spontaneous brain activity, thereby, enabling further exploration that can
not be performed with traditional fMRI data analysis methods. Here, we
specifically evaluate TA in cognitive and clinical experimental conditions:

1. An event-related fMRI experiment with prolonged resting-state peri-
ods that are disturbed by unpredicted visual stimuli. We illustrate how
TA captures the paradigm, without any prior knowledge on timing,
and further recovers task-related as well as meaningful resting-state
networks (RSN) that cannot be inferred from conventional analyses.

2. RS-fMRI data acquired from pharmacoresistant epilepsy patients for
presurgical planning. We show that TA is able to locate the epilep-
togenic regions from simultaneous recording of fMRI and electroen-
cephalography (EEG).

1This chapter is based partially on the publications:
F. I. Karahanoglu, C. Caballero-Gaudes, F. Lazeyras, and D. Van De Ville, “Total activa-
tion: fMRI deconvolution through spatio-temporal regularization”, NeuroImage, vol. 73,
pp. 121-134, June 2013 [162];
F. I. Karahanoglu, F. Grouiller, C. Caballero-Gaudes, M. Seeck, S. Vulliemoz, and D.
Van De Ville, “Spatial Mapping of Interictal Epileptic Discharges in FMRI with Total
Activation”, in Proceedings of IEEE International Symposium on Biomedical Imaging:
From Nano to Macro, 2013, in press [168].

75
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6.1 Potential Applications

We will show that TA can be useful for elucidating brain function and dys-
function. Among fMRI data analysis tools, TA explicitly aims at retrieving
the patterns of cortical activity that underlie the BOLD signal, thereby,
enable the exploration of many remaining and intriguing questions in neu-
roscience to improve the understanding of brain processes. However, fMRI
data itself is confounded by various factors, which make the analysis chal-
lenging. Due to the low SNR of the fMRI signal, data analysis is often
carried out with appropriate assumptions or exploiting prior information
about the experimental conditions. To increase the reliability of the sta-
tistical analysis in terms of specificity and sensitivity, task-related studies
rely on the presentation of multiple trials of each experimental condition,
which are repeated within and across sessions. The traditional analysis tech-
niques often overlook possible non-stationary patterns in the BOLD signal,
such as spontaneous or transient activities, or learning, habituation, antici-
pation processes, delays in responses, mental chronometry, pharmacological
effects, etc [79, 84, 85, 169–171]. Specifically, the timing of the events can-
not be anticipated or modelled in advance, possibly due to neurological and
psychiatric disorders (e.g., interictal epileptic discharges and schizophrenic
hallucinations) or absence of consciousness (e.g., ongoing activations during
sleep) [172, 173]. In these cases, TA constitutes as a promising tool for an-
alyzing these spontaneous and highly non-stationary dynamics of the fMRI
signal.

TA is designed primarily as a denoising problem; i.e., the activity-related
signals are “clean” fMRI signal satisfying spatial and temporal priors. Con-
sequently, another potential use of TA is for preprocessing the fMRI BOLD
signals prior to further analysis with other methods. Lately, there has been
a debate on whether deconvolution is necessary for functional and effective
connectivity analyses [145,174–178]. In one of the recent works, the Granger
causality and dynamic causal modelling are compared for effective connec-
tivity analysis and deconvolution has been suggested as a necessary step to
obtain adequate inferences [178]. Even though limited number of works exist
in the literature to draw any conclusions, deconvolution might potentially
constitute a necessary step for fMRI analysis.

6.2 Event-Related Visual Experiment

We evaluated our method using fMRI data acquired from three healthy
subjects engaged in an event-related experiment. Subjects were presented
10 (unexpected) visual stimuli of 8Hz flickering checkerboard of duration
1 sec. with onsets following a uniform distribution (see Fig. 6.1 for the
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time1 sec.

Figure 6.1: Visual stimuli. The paradigm consists of 10 visual stimuli of
8Hz flickering checkerboard of duration 1sec. The experiment lasted for 5-6
minutes with TR=2 sec.

paradigm). When no visual stimuli were present, subjects were instructed
to maintain visual fixation on a cross in the center of the screen.

6.2.1 Acquisiton and Preprocessing

The experiment was conducted in a Siemens TIM Trio 3T MR scanner with
a 32-channel head coil. The fMRI data comprised N = 160 (subjects 1
and 3) and N = 190 (subject 2) T∗2-weighted gradient echo-planar volumes
(TR/TE/FA=2s/30 ms/85o, voxel size: 3.25× 3.25× 3.5mm3, matrix=64×
64). A T1-weighted MPRAGE anatomical image was also acquired during
the MR session (192 slices, TR/TE/FA: 1.9s/2.32ms/9o, voxel size: 0.45 ×
0.45 × 0.9mm3, matrix = 512 × 512) to aid anatomical localization of the
functional maps.

The preprocessing steps included realignment of the datasets to the first
scan to correct for head motion of each subject and then spatial smoothing
with a Gaussian smoother (FWHM = 5mm). The spatial smoothing was
not an essential step since TA also included spatial regularization. How-
ever, the temporal regularization parameter was tuned for each voxel with
respect to the (estimated) noise level. Therefore, spatial smoothing enabled
reliable estimattion (less variations) of the noise level. Both steps were per-
formed in the functional space of the subjects using SPM8 (FIL, UCL, UK).
The anatomical automatic labelling (AAL) atlas, which is an automated
parcellation of a single subject’s structural MR image consisting 90 regions
without the cerebellum, was mapped onto each subject’s functional space
using the IBASPM toolbox [179, 180]. The voxels’ time courses labelled
within the atlas were detrended using a first-degree polynomial (i.e., linear
trend) and slow oscillations (i.e., DCT basis function up to cut-off frequency
of 1/250Hz), and finally scaled to have unit variance.
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Algorithm Setting

Next, datasets were analyzed with the TA algorithm using the following
specifications. The temporal regularization parameter was adjusted auto-
matically, as discussed in Chapter 5.2.3, for each voxel within the inner
temporal regularization problem such that the residual noise level converges
to the pre-estimated noise level [31]. Spatial regularization parameter was
empirically selected to be 5, which compensate well between temporal and
spatial priors. Increasing λ2 forces the smoothness leaving no room for local
differences, especially for large brain regions, whereas small λ2 results in
high variance of the activity-related signal in the regions. The algorithm is
implemented in Matlab 7.14 (Mathworks, Natick, MA) on a 64-bit, 4-core
computer with 16 GB RAM, operating Linux. The total allocated time was
around 5-7 hours.

6.2.2 Network Analysis

After applying TA, we obtain three spatiotemporal datasets per subject:
(1) the innovation signals Us; (2) the activity-inducing signal U; (3) the
activity-related signal X. The innovation signal is the driver of the others,
which can be derived through convolution. To summarize the rich amount
of information available in these datasets, we computed the average of the
activity-inducing signals within each anatomical region, and then obtained
the Spearman correlation matrix between the averaged timecourses. Corre-
lations were Fisher z-transformed, averaged over three subjects and fed into
a Ward’s hierarchical clustering algorithm, already implemented in Mat-
lab (Mathworks, Natick, MA) to reveal the network structures in activity-
inducing signals. We selected two different levels to cut the dendrogram
in order to show the evolution of clusters with respect to the inconsistency
criterion that measures the deviation in each cluster. We extracted func-
tionally distinct clusters at coarse (high) and detailed (low) levels. In other
words, going down from the highest level in the dendrogram (whole brain)
the consistency in the hierarchy gradually increments until a first group of
clusters is defined (high-level), further increasing the consistency splits the
clusters into subclusters which are meaningful segregations (low-level). Fig.
6.2 depicts the average correlation matrix and dendrogram as a result of hi-
erarchical clustering. At the high-level hierarchy, the brain was segregated
into 9 global clusters (represented in different colors in the dendrogram);
at the low-level hierarchy, 17 local networks (subclusters pinned from (1a)
to (9) in the dendrogram) were revealed. Fig. 6.3 illustrates the high-level
networks overlaid on the anatomical atlas. The extended anatomical de-
scriptions in each (sub)cluster are listed in Table 1. We detail these clusters
according to the order of the dendrogram.
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Figure 6.2: Correlation matrix and corresponding clusters for TA activity-
inducing signal. The dendrogram that reflects the hierarchical organization
is shown on the left. Each color is described with the regions correspond to
a different cluster in high level clusters (total 9 clusters) which is evaluated
via inconsistency measure. Note that low level clusters (marked with black
pins in the dendrogram from (1a) to 9) subdivides the clusters resulting 17
clusters. The anatomical descriptions in the clusters are detailed in Table
1.
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Figure 6.3: Brain maps for the 9 high-level hierarchy clusters viewed from
sagittal left (top left), sagittal cross-section in the middle (top right), top
view (bottom left) and bottom view (bottom right). The regions are gener-
ated using anatomical atlas in MNI space corresponding to the anatomical
descriptions in Table 1. We recover the activity-related networks; i.e., pri-
mary and late visual networks in clusters 1 and 2, respectively. Additionally,
the fronto-parietal network (cluster 3), motor and somatosensory regions
(cluster 4) and auditory network (cluster 5) as well as the default-mode net-
work (cluster 7), subcorticals (cluster 8) and limbic system (cluster 9) are
observed. The clusters are nicely organized bilaterally.
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CLUSTER LOBE ANATOMICAL DESCRIPTION CLUSTER LOBE ANATOMICAL DESCRIPTION

1a

Occipital Calcarine Fissure Left

6

Limbic Medial Cingulate Cortex Left
Occipital Calcarine Fissure Right Limbic Medial Cingulate Cortex Right
Occipital Lingual Gyrus Left Temporal Superior Temporal Gyrus Right
Occipital Lingual Gyrus Right Temporal Middle Temporal Gyrus Left
Occipital Cuneus Left Temporal Middle Temporal Gyrus Right
Occipital Cuneus Right Temporal Temporal Pole (Superior) Right

1b
Occipital Superior Occipital Gyrus Left

7a

Frontal Superior Frontal Gyrus (Orbital) Left
Occipital Superior Occipital Gyrus Right Frontal Middle Frontal Gyrus Left

2a

Occipital Middle Occipital Gyrus Left Frontal Superior Frontal Gyrus (Dorsolateral) Left
Occipital Inferior Occipital Gyrus Left Frontal Superior Frontal Gyrus (Dorsolateral) Right
Occipital Middle OccipitalGyrus Right Frontal Middle Frontal Gyrus Right
Occipital Fusiform Gyrus Left Subcortical Caudate Nucleus Left
Occipital Fusiform Gyrus Right Subcortical Caudate Nucleus Right
Occipital Inferior Occipital Gyrus Right Subcortical Thalamus Left

2b
Temporal Inferior Temporal Gyrus Left Subcortical Thalamus Right
Temporal Inferior Temporal Gyrus Right

7b

Frontal Superior Frontal Gyrus (Medial) Left

2c
Parietal Superior Parietal Gyrus Left Frontal Superior Frontal Gyrus (Medial) Right
Parietal Superior Parietal Gyrus Right Limbic Anterior Cingulate Cortex Left

3a

Frontal Superior Frontal Gyrus (Orbital) Right Limbic Anterior Cingulate Cortex Right
Frontal Inferior Frontal Gyrus (Orbital) Right Frontal Superior Frontal Gyrus (Medial-Orbital) Left
Frontal Middle Frontal Gyrus (Orbital) Right Frontal Superior Frontal Gyrus (Medial-Orbital) Right
Frontal Inferior Frontal Gyrus (Opercular) Right

7c

Limbic Posterior Cingulate Cortex Left
Frontal Inferior Frontal Gyrus (Triangular) Right Limbic Posterior Cingulate Cortex Right
Parietal Inferior Parietal Gyrus Right Parietal Precuneus Left

3b

Frontal Middle Frontal Gyrus (Orbital) Left Parietal Precuneus Right
Frontal Inferior Frontal Gyrus (Opercular) Left Parietal Angular Gyrus Left
Frontal Inferior Frontal Gyrus (Triangular) Left Parietal Angular Gyrus Right

Parietal Inferior Parietal Gyrus Left

8

Subcortical Putamen Left
Frontal Inferior Frontal Gyrus (Orbital) Left Subcortical Pallidum Left

4a

Frontal Precentral Gyrus Left Subcortical Putamen Right
Frontal Precentral Gyrus Right Subcortical Pallidum Right

Parietal Postcentral Gyrus Left

9

Frontal Olfactory Cortex Left
Parietal Postcentral Gyrus Right Frontal Olfactory Cortex Right

4b

Frontal Supplementary Motor Area Left Frontal Gyrus Rectus Left
Frontal Supplementary Motor Area Right Frontal Gyrus Rectus Right
Parietal Paracentral Lobule Left Temporal Temporal Pole (Superior) Left
Parietal Paracentral Lobule Right Temporal Temporal Pole (Middle) Left

5a

Central Rolandic Operculum Left Temporal Temporal Pole (Middle) Right
Central Rolandic Operculum Right Limbic Hippocampus Left

Temporal Superior Temporal Gyrus Left Limbic ParaHippocampal Gyrus Left
Temporal Heschl Gyrus Right Limbic Hippocampus Right
Temporal Heschl Gyrus Left Limbic ParaHippocampal Gyrus Right

5b

Limbic Insula Left Limbic Amygdala Left
Limbic Insula Right Limbic Amygdala Right
Parietal SupraMarginal Gyrus Left
Parietal SupraMarginal Gyrus Right

Table 1: The list of regions in the clusters. The clustering algorithm delin-
eates 9 and 17 clusters in the high and low-level hierarchies (also presented
in dendrogram in Figure 6.2). The first two clusters correspond to the visual
networks. Note that cluster 3 (fronto-parietal network) is subdivided into
its right (3a) and left (3b) compartments in the higher hierarchy. Likewise,
cluster 7 (default mode) is divided into its anterior (7a, 7b) and posterior
(7c) components.

The visual network made up the first and second cluster, which was expected
due to the stimulation and its strong coherence in resting-state. Cluster
1 contained primary visual areas such as calcarine fissure, lingual gyrus
and cuneus. Cluster 2 included higher level visual areas extending towards
ventral and dorsal visual pathways, inferior temporal gyrus and superior
parietal lobule, which were subclusters 2b and 2c, respectively. In Fig. 6.7
(bottom right), the region-averaged activity-inducing signal in the visual
network confirmed that the timing of the visual stimuli (red bars) was well
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recovered without any prior knowledge. Cluster 3 revealed a fronto-parietal
network extending bilateral middle frontal gyrus, inferior frontal gyrus and
inferior parietal lobule, which mimics the dorsal attention network [181] and
involves in attentional mechanisms, especially for “salient and unattended
events” [182]. Subclusters 3a and 3b represent the right and left lateralized
fronto-parietal regions similar to [183,184], respectively.

Cluster 4 revealed sensory-motor areas including primary motor cortex, pri-
mary somatosensory cortex as subcluster 4a, and supplementary motor ar-
eas as subcluster 4b. Cluster 5 maps the auditory network where speech
and language processing occur, including the Heschl gyrus, superior tempo-
ral gyrus (Wernicke’s area) and inferior frontal gyrus. Cluster 6 involved
bilateral midcingulate cortex, middle temporal gyrus as well as the right
superior temporal gyrus. Cluster 7 consisted of superior and middle frontal
gyrus, anterior-posterior cingulate cortex (PCC) representing the default-
mode network (DMN) including thalamus [185]. The hierarchical clustering
suggested that cluster 7 was segregated into its anterior (7a, 7b) and poste-
rior (7c) components, which are known to be part of saliency and executive
control networks [181, 186], respectively. Similar subdivisions of the DMN
have also been reported recently using real-time fMRI neurofeedback [187].
Subcortical regions, putamen and pallidum, were engaged in cluster 8 bilat-
erally. Cluster 9 involved bilateral limbic regions, parahippocampal gyrus,
hippocampus and amygdala, as well as olfactory bulb, gyrus rectus and
temporal poles.

The network analysis was performed over region averaged time series instead
of individual voxel time courses for two reasons:

1. Coping with high dimensional data. Images with a whole-brain cov-
erage comprise about 10’000-20’000 voxels, computing the correlation
matrix voxel-wise and performing hierarchical clustering is not com-
putationally feasible and roboust.

2. Presenting results at the group-level. TA was exploited in the subjects’
native functional spaces, that is to say, the images were not normalized
to a common space prior to TA analysis. Hence, incorporating an
atlas enabled us to extract the time courses according to a common
anatomical prior; i.e., Region 1 always referred to the same cortical
area.

TA’s spatial regularizer incorporates the anatomical atlas, which is a large-
scale cortical parcellation of the brain with 90—rather course—distinct re-
gions. In order to investigate the spatial segregation and elaborate how TA
handles the spatial smoothing inside each brain region, we further exploited
hierarchical clustering at the voxel level in a pivot region, insula, which is
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known to split functionally into anterior-posterior parts [188]. Fig. 6.4 de-
picts the hierarchical clustering, the dendrograms, and the color-coded maps
of the right and left insula of Subject 2. We observe that TA revealed the
expected the anterior-posterior partition inside insula.

Dendrogram: Left Insula Dendrogram: Right Insula

Figure 6.4: Hierarchical clustering using the voxel-wise correlations in in-
sula. The hierarchical clustering inside the lateral regions provide two main
anterior and posterior partitions. The result suggests that spatial smoothing
in a region still allows for further functional segregation inside each parcel.

Network Analysis without TA

In order to illustrate the advantage of TA-processed data for capturing con-
sistent networks, we performed the same network analysis on the prepro-
cessed data without applying TA. The average correlation matrix and cor-
responding dendrogram following the hierarchical analysis are depicted in
Fig. 6.5. Furthermore, the recovered networks are illustrated in 6.6 and
corresponding regions are listed in Table 6.2. We find that visual, motor
and auditory networks were also identified, however, they were given dif-
ferent preferences in dendrogram (auditory network was cluster 8 instead
on 5, motor is 7 instead of 4). Moreover, the most prominent right-left
lateralized fronto-parietal network and anterior-posterior segregation of the
default-mode network was lost in the hierarchy.
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Figure 6.5: The average correlation matrix, dendrogram and corresponding
clusters are depicted when only detrended data was analyzed (without TA).
The correlation matrix still detected the boosted visual network, similarly
motor and auditory networks possibly due to dominant activations in these
regions. However, the hierarchy was lacking prominent organized networks
detected by TA, such as left-right lateralization of fronto-parietal network.

6.2.3 Time Series Analysis

Having identified temporally coherent networks through clustering of the
activity-inducing signals, now we can try to represent the dynamics for brain
regions revealed by TA. Fig. 6.7 depicts the average activity-inducing signals
rearranged according to the clusters. While the stimulus timings were well
detected mainly in the clusters corresponding to visual areas, we observed
spontaneous activity in the visual network which did not correspond to vi-
sual stimuli (e.g., subject 2, cluster 1, around 300 sec). Fig. 6.8 shows the
dynamic activity-inducing maps of subject 2. Two time courses were picked
randomly from cuneus and PCC in order to track the temporal evolution
of the task-related and spontaneous events. The positive and negative ac-
tivations in PCC lagging the stimulus reflected the alternating structure of
functional reorganization in the brain.

Finally, since the temporal prior of TA favors block-like activity-inducing
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Figure 6.6: The recovered networks from clustering analysis of the data
without applying TA. The primary visual network was perfectly recovered
in cluster 1, however, contrary to TA-recovered clusters, secondary visual
network was segregated into two; cluster 2 included mainly the ventral vi-
sual pathway and cluster 3 included regions of dorsal pathways. Cluster 4
shows the fronto-parietal network jointly with temporal gyrus; the left-right
lateralization was lost. Cluster 5 was the default-mode network together
with middle cingulate cortex. Despite being in a different order in the den-
drogram compared to TA, motor and auditory networks were reconstructed
successfully in clusters 7 and 8, respectively.

signals, we computed the average block-length, which was not set a priori
in our analysis, per region as the 4th quartile of the activity duration, see
Fig. 6.9. From the duration map, we clearly observe that the regions in
the visual cortex had shorter duration whereas fronto-parietal regions had
relatively the longest duration.

6.2.4 Discussion and Summary

We illustrated the application of TA on fMRI dataset acquired during an
event-related visual stimuli. The results proved that both block-type and
spike-type activity could be recovered successfully without prior knowledge
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CLUSTER LOBE REGION CLUSTER LOBE REGION

1

Occipital Calcarine Fissure Left

5b

Frontal Superior Frontal Gyrus(Medial) Left
Occipital Calcarine Fissure Right Frontal Superior Frontal Gyrus (Medial) Right
Occipital Lingual Gyrus Left Limbic Anterior Cingulate Cortex Left
Occipital Lingual Gyrus Right Limbic Anterior Cingulate Cortex Right
Occipital Cuneus Left Frontal Superior Frontal Gyrus (Medial-Orbital) Left
Occipital Cuneus Right Frontal Superior Frontal Gyrus (Medial-Orbital) Right
Occipital Superior Occipital Gyrus Left Limbic Posterior Cingulate Cortex Left
Occipital Superior Occipital Gyrus Right Limbic Posterior Cingulate Cortex Right

2

Occipital Middle Occipital Gyrus Left Parietal Angular Gyrus Left
Occipital Middle Occipital Gyrus Right Parietal Angular Gyrus Right

Occipital Inferior Occipital Gyrus Left

6

Subcortical Putamen Left
Occipital Fusiform Gyrus Left Subcortical Pallidum Left
Occipital Fusiform Gyrus Right Subcortical Putamen Right
Occipital Inferior Occipital Gyrus Right Subcortical Pallidum Right

3
Parietal Superior Parietal Gyrus Left

7a

Frontal Precentral Gyrus Left
Parietal Superior Parietal Gyrus Right Frontal Precentral Gyrus Right

4a

Frontal Superior Frontal Gyrus (Orbital) Left Parietal Postcentral Gyrus Left
Frontal Middle Frontal Gyrus (Orbital) Left Parietal Postcentral Gyrus Right
Frontal Superior Frontal Gyrus (Orbital) Right

7b
Frontal Supplementary Motor Area Left

Frontal Middle Frontal Gyrus (Orbital) Right Frontal Supplementary Motor Area Right
Frontal Inferior Frontal Gyrus (Orbital) Left

7c
Parietal Paracentral Lobule Left

Frontal Inferior Frontal Gyrus (Orbital) Right Parietal Paracentral Lobule Right

Temporal Middle Temporal Gyrus Left

8a

Central Rolandic Operculum Left
Temporal Middle Temporal Gyrus Right Central Rolandic Operculum Right
Temporal Inferior Temporal Gyrus Left Temporal Heschl Gyrus Right
Temporal Inferior Temporal Gyrus Right Temporal Heschl Gyrus Left

4b

Frontal Inferior Frontal Gyrus (Opercular) Left
8b

Temporal Superior Temporal Gyrus Left
Frontal Inferior Frontal Gyrus (Triangular) Left Temporal Superior Temporal Gyrus Right
Parietal Inferior Parietal Gyrus Left

8c

Limbic Insula Left
Frontal Inferior Frontal Gyrus (Opercular) Right Limbic Insula Right
Frontal Inferior Frontal Gyrus (Triangular) Right Parietal SupraMarginal Gyrus Left
Parietal Inferior Parietal Gyrus Right Parietal SupraMarginal Gyrus Right

5a

Frontal Superior Frontal Gyrus Left

9a

Frontal Olfactory Cortex Left
Frontal Middle Frontal Gyrus Left Frontal Olfactory Cortex Right
Frontal Superior Frontal Gyrus Right Frontal Gyrus Rectus Left
Frontal Middle Frontal Gyrus Right Frontal Gyrus Rectus Right
Limbic Middle Cingulate Cortex Left

9b

Limbic Hippocampus Left
Limbic Middle Cingulate Cortex Right Limbic ParaHippocampal Gyrus Left
Parietal Precuneus Left Limbic Hippocampus Right
Parietal Precuneus Right Limbic ParaHippocampal Gyrus Right

Subcortical Caudate Nucleus Left Limbic Amygdala Right
Subcortical Caudate Nucleus Right Limbic Amygdala Left
Subcortical Thalamus Left

9c

Temporal Temporal Pole (Superior) Left
Subcortical Thalamus Right Temporal Temporal Pole (Superior) Right

Temporal Temporal Pole (Middle) Left
Temporal Temporal Pole (Middle) Right

Table 6.2: Clustering analysis of detrended fMRI time courses before TA.
List of regions in all (sub)clusters.

of the experimental paradigm. Further network analysis with hierarchi-
cal clustering showed that the activity-inducing signals revealed by TA
contained information about meaningful task-related and resting-state net-
works, demonstrating good abilities for the study of non-stationary dynamics
of brain activity.

Dynamics of Activity-Inducing Maps

When visualizing activity-inducing signals obtained by TA as dynamic brain
maps, we could easily recognize the presence of the visual stimuli. However,
it was also clear that the data were much richer and many spontaneous
events were captured as well; e.g., we observed strong activity in the visual
network of subject 2 during the final resting period (Fig. 6.7). Interestingly,
activity-inducing signals revealed some non-stationary relationships between
the different brain regions; e.g., as could be seen from Fig. 6.8, the correla-
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Figure 6.7: Activity-inducing signals per region and subject. Clearly, the
activity-inducing signal in the visual regions (clusters 1 and 2) followed the
visual paradigm closely. Moreover, we observe the intrinsic brain activity,
for example, a spontaneous event (in black contour) occurs around 300s in
subject 2 which was followed by negative activation in clusters 4-7 (posterior
default-mode network). The average activity in the occipital lobe (bottom
right) matched with the visual stimulation.

tion sign of signals from PCC and visual cortex were alternating. Similar
non-stationary behavior has also been noted in a time-frequency (wavelet)
coherence analysis of fMRI data [189]. Moreover, in recent work, Smith
et. al exploited temporal and spatial ICA on high resolution data to reveal
the temporally-independent and spatially overlapping activity maps called
“temporal functional modes” [190]. The authors showed that different net-
works share common subcomponents of each other, that is, one brain region
does not necessarily belongs to a distinct functional network.

Hierarchical Clustering

Clustering TA-recovered activity-inducing signals leads to a better under-
standing of the data. We obtained functionally plausible networks (many
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Figure 6.8: Reconstructed dynamic activity-inducing maps for subject 2.
Time courses from cuneus and PCC are plotted in white and yellow, respec-
tively. The stimulus time course is shown in magenta. In the first frame,
the activity maps are illustrated for two instances (top row around 90 s and
bottom row around 250s). The left and right columns show the activation
maps before and after the stimulus, respectively. PCC lagged the stimuli
with positive (top row) or negative response (bottom row).

Figure 6.9: Average block length for the region-averaged activity-inducing
signals. Regions in the visual network had relatively shorter average activity
than other brain regions.
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bilateral) reflecting both task-related and task-negative2 activity. It is some-
what intriguing that structure of both task-related and resting-state net-
works were so well captured. While it is known that spontaneous activity is
intertwined with task-related activity and networks very similar to resting-
state networks are formed [169], it also means that our model for block-like
activity-inducing signals is well suited for both types of activity. This raises
the interesting hypothesis for future studies whether resting-state activity
is rather block-like (with long durations on average) versus low frequency
sinusoidal fluctuations as it is commonly assumed in resting-state studies.

6.3 Simultaneous EEG-FMRI Data Analysis of
Epilepsy Patients

In the previous section, we validated TA through an event-related experi-
ment; the activity-inducing signals in the visual regions confirmed the exper-
imental paradigm. In this section, we exploit TA to explore RS-fMRI data
acquired with simultaneous recording of electroencephalography (EEG) data
in pharmaco-resistant epileptic patients with the goal of detecting and lo-
calizing unpredicted interictal epileptic discharges (IEDs).

6.3.1 Epilepsy Monitoring with Simultaneous EEG-FMRI

Epilepsy is a major neurological disorder that causes recurrent episodes of
seizures affecting cognitive and physical functions of the patients. Interictal
epileptic discharges (IEDs) are transient discharges that occur between the
seizures. EEG is one of the most prominent methods to diagnose and mon-
itor epilepsy noninvasively [191, 192]. EEG measures the electric potential
induced by neuronal using several electrodes on the scalp. It offers a valuable
research and clinical tool with a time resolution of milliseconds. However,
EEG alone lacks the spatial resolution to localize the sources, especially in
deep brain structures; i.e., EEG source localization is an ill-posed inverse
problem that requires additional assumptions on the source model. There-
fore, to profit from fMRI’s high spatial resolution and overcome the source
localization problem of EEG, simultaneous recording of EEG and FMRI is
often proposed for presurgical exploration. Importantly, the EEG signals
must be cleaned from MR artifacts [191]. Combined with the electrophysio-
logical measurements, BOLD signal variations due to the EEG-driven IEDs
can be identified and mapped on structural MR image of the patients. The
spatial maps are then used to (1) delineate the surgical resection areas or
(2) localize the target areas of the intracranial EEG (icEEG) electrodes for

2Task-negative networks, the prominent one being the default-mode network, are active
during rest
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further investigation [193–195]. However, significant variations in BOLD
signal due to EEG-driven IEDs have been reported only for around 50% of
the analyzed patients [173,196,197]. The possible explanations constitute;

1. No IEDs are observed during EEG-fMRI.

2. The presumed BOLD model might not be sensitive to some IEDs dur-
ing the scanning due to modifications in the neurovascular coupling.

3. The electric potentials related to epileptic seizures may not be observ-
able on the surface if these occur in deep-brain structures [198].

Therefore, despite being an invasive procedure, icEEG is still acknowledged
as the “gold-standard” before proceeding towards epilepsy surgery. It is also
possible that EEG recordings might miss the IEDs that can be detected with
icEEG [199]. Indeed, experiments with simultaneous icEEG-fMRI show that
the BOLD signal seems to localize the epileptogenic regions based on precise
icEEG-driven IEDs while EEG might miss them due to spatial blurring [200].
Yet, icEEG-fMRI is not a common procedure as it carries various risks
and many concordant results support the profound benefits of simultaneous
EEG-fMRI for presurgical evaluation [201–203]. All these studies suggest
that further investigation of the BOLD correlates of IEDs is still needed
for understanding the physiology of epilepsy and improving the presurgical
assessments. For a review on imaging studies of patients with epilepsy we
refer the reader to [196,202,203].

Typically, EEG is the primary imaging method that drives the analysis
in simultaneous EEG-fMRI studies of IEDs. EEG-derived IED onsets are
used to set up the regressors of general linear model (GLM) [194, 198, 204].
Fig. 6.10(a) illustrates the schematic diagram of the conventional analysis.
A temporal indicator function of IED onsets pinned by an neurophysiologist
is convolved with HRF to be fed into GLM analysis as regressors. Topo-
graphic mapping (TM) approach is proposed for finding the BOLD corre-
late of epileptogenic activity when no IED is detected during simultaneous
EEG-fMRI [198], shown in Fig. 6.10(b). Instead of detecting IEDs during
the EEG-fMRI, the topographic map of epileptic activity is extracted from
long-term EEG outside the MR and correlated with the intra-MRI EEG.
The resulting spatial similarity time course is then plugged into the GLM
analysis.

Alternative methods for the investigation of IED with simultaneous EEG-
fMRI include independent component analysis [205–208], activelets [141],
and mutual information [209]. Here, we apply TA to data of patients with
epilepsy and localize the epileptogenic regions by measuring the similarity
between the EEG-driven onsets, either from simultaneous EEG-fMRI or
long-term EEG.
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6.3.2 Acquisition and Preprocessing

The data consist of five pharmacoresistant epilepsy patients, scanned dur-
ing simultaneous EEG-fMRI. Long-term EEG was also recorded. The fMRI
data was acquired by a Siemens 3T TIM Trio MR scanner with gradi-
ent echo EPI while resting (eyes-closed). The acquisition parameters were
TR/TE/FA = 1.5s/35ms/85o, voxel size= 3.75×3.75×5.5mm3, 25 slices and
N=1100 scans (subjects 1-4) and 600 volumes (subject 5). T1- and T2-
weighted (pre & post-operation) images were also acquired. The prepro-
cessing of the fMRI volumes included an initial realignment to the first vol-
ume to correct for head motion, and then spatial smoothing with Gaussian
filter (FWHM=5mm) using SPM8 (FIL,UCL,UK). The anatomical AAL at-
las [179] (90 regions without the cerebellum) was mapped onto the subject’s
functional space using the IBASPM toolbox [180]. The first 10 volumes
were discarded so that the fMRI signal achieves steady-state magnetization.
Voxels’ time series labelled within the atlas were detrended for slow oscilla-
tions using a first-degree polynomial and DCT basis function up to cut-off
frequency of 1/125 Hz, and finally scaled to have unit variance.

EEG signals were recorded with a 64 MR-compatible EEG cap (EasyCaps,
FalkMinnow Services, Herrsching, Germany) according to the 10-20 system.
Electrodes were equipped with an additional 5k resistance and impedances
were kept as low as possible. EEG was acquired at 5kHz using 2 BrainAmp
MR compatible amplifiers (Brain Products, Munich, Germany) and record-
ings were synchronized with the MR clock. MR gradient and cardioballistic
artefacts were removed from the EEG using Vision Analyzer (Brain Prod-
ucts, Munich, Germany) using average artifact subtraction methods [210].
EEG data was subsequently downsampled to 250Hz, and IED were visually
marked by an experienced neurophysiologist and averaged. The EEG map
at the maximum of the GFP was selected as the epileptic map [198,211]. The
maps were correlated with the intra-MRI EEG recordings and the absolute
value of the correlation yielded the long-term EEG-driven IEDs [198].

Clinical details of patients are listed in Table1. Patients 1-3 had signifi-
cant IEDs during simultaneous EEG-fMRI whereas patients 4-5 did not;
therefore, only the topographic maps could be utilized for these patients.
Three patients had undergone icEEG and all patients were seizure-free for
more than one year after the resection surgery. Recently, (three years after
the surgery) Patient 3 experienced new epileptic seizures with a different
semiology.
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Patient Focus Localization Cause Scalp EEG
focus

icEEG Resection IEDs Outcome

1 Left frontal Tuberous
sclerosis

Left
frontotemporal

+ Left prefrontal tuber EEG-
fMRI

SF (¿ 1 Y)

2 Left fronto-temporal Gliosis bacterial
abcess

Left frontal + Left
parieto-temporal
cortectomy

EEG-
fMRI

SF (¿ 1 Y)

3 Left parieto-occipital DNT Bilateral
parieto-
occipital

- Lesionectomy EEG-
fMRI

SF(¿1 Y)∗

4 Left temporal HS Left temporal - Left anterior
temporal lobe

Long-term
EEG

SF (¿ 1 Y)

5 Left parieto-temporal Tuberous
sclerosis

Left temporal + Left
parieto-temporal
tuber

Long-term
EEG

SF (¿ 1 Y)

Table 1: The clinical details of epilepsy patients. DNT: Dysembryplastic
Neuroepithelial Tumor; icEEG: intracranial EEG; HS: hippocampal sclero-
sis; FCD: focal cortical dysplasia; SF: Seizure-free; ∗: new seizures occurred
three years after the resection; Y: year.

6.3.3 Spatial Mapping of Interictal Epileptic Discharges with
TA

We applied TA and recovered activity-inducing signals, which accommo-
dated not only epileptic activity but also spontaneous brain activity. There-
fore, a robust measure to reflect the brain regions with significant epileptic
activity was needed. In order to extract epilepsy related activity, we cor-
related the activity-inducing signals with the EEG-driven IEDs. Fig. 6.11
illustrates our method step by step. Specifically, we performed the following
steps;

1. We did not know the size of the epileptic focus a priori, however, we
presumed that the regions of the anatomical atlas could be oversized.
Indeed, TA could be able to delineate small areas. To that end, we
further segregated large regions in the atlas into regions with a maxi-
mum of 100 voxels. Subsequently, K-means clustering was performed
on the activity-inducing signals (K clusters for regions with number of
voxels more than K× 100 voxels).

2. The IED indicator signals; i.e., the topography map correlations and
EEG-fMRI IEDs, were convolved with a Gaussian filter (FWHM= 3s)
and downsampled to the fMRI temporal resolution TR= 1.5s. Patient
1 had IEDs during simultaneous EEG-fMRI and both EEG-fMRI IED
regressors and topographical correlations were used as IED reference
signals. In contrast, patients 2-5 were analyzed exploiting only the
correlation signal driven by topographical analysis.

3. The region averaged activity-inducing signals were correlated (Spear-



6.3 Simultaneous EEG-FMRI Data Analysis of Epilepsy Patients93

man) with the reference signals.

4. Finally, non-parametric hypothesis testing was performed to localize
the epileptogenic regions. Correlations with 999 surrogates (random
shuffling) were computed to establish the null-hypothesis distribution
and fifth highest value of maximum statistics is selected as a threshold
(p < 0.05 (corrected)) [209,212].

The summary of results and comparison with topographic mapping is listed
in Table 1. The target area was defined as the resection area and its prox-
imity (¡15 mm margin). The results were designated as concordant (+) only
if the regions survived the non-parametric test p < 0.05 (corrected); oth-
erwise designated as discordant (-). The Patients 1-3, who had significant
IEDs during the EEG-fMRI, showed concordant results with the clinical
findings whereas no conclusive results were obtained form the analysis of
the patients 4-5. For patient 5, the TM analysis results were found to be
concordant [198]. We further discuss our results in detail for each patient.

Patient 1: The patient had tuberous sclerosis with two epileptogenic tu-
bers. Fig. 6.12(a)-(b) depicts detected regions with TA using IEDs driven
by intra-MRI IEDs and topography-related correlation, respectively. Both
maps were concordant with the first target area (i.e., anterior frontal). Nev-
ertheless, long-term EEG also provided localization around the second target
area (inferior frontal).

Patient 2: The patient had left hemispheric epilepsy symptomatic of a large
abscess gliotic scar. The focus areas confirmed by icEEG were left fronto-
temporal-parietal areas. Fig. 6.13(a) depicts the significant epileptogenic
regions. TA delineated the target areas and some remote areas on the left
hemisphere; e.g., right hippocampus and inferior occipital, and negative
correlations were revealed.

Patient 3: No icEEG were recorded for patient 3; the scalp EEG focused
on bilateral parieto-occipital regions and resected area was localized on the
left hemisphere. TA analysis showed negative correlations in the bilateral
parietal-occipital regions. The epilepsy episodes reoccurred three years after
the resection surgery with a different semiology.

Patient 4: The patient had hippocampal sclerosis ans was operated for the
resection of the left anterior temporal lobe. Both TA and TM found signif-
icant diffuse bilateral regions which were not conclusive. The patient had
significant head jerks during EEG-fMRI recordings, and it was substantially
degraded by movement artifacts [198].

Patient 5: Patient 5 had tuberous sclerosis localized in the left tempo-
ral lobe. The resected area was the left parieto-temporal tuber. TA found
diffuse bilateral regions, located more on the right hemisphere. TM also
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found diffuse bilateral regions but endorsing the left parietal target area.
Fig. 6.13(b) depicts the spatial map obtained by TA analysis. We remark
that the detected area constituted the default-mode network (DMN), which
is characterized as the task-negative network in RS-fMRI. Indeed, the in-
volvement of the posterior regions in temporal lobe epilepsy has been pre-
viously noted in various studies in the literature [173,200].

Patient Concordance:
TA/TM

IED
onsets

TA (in
target)

TA (remote) TM (in target) TM (remote)

1 +/+ EEG-
fMRI

Left ant
frontal

Left medial
frontal, Left
insula

Left ant frontal,
Left inf frontal

Left medial frontal,
Right cerebellum,
Bilat parietal, Right
frontal

1 +/+ Long-term
EEG

Left ant
frontal

Left medial
frontal, Left
insula, Left temp
sup, Right
rolandic
operculum

Left ant frontal,
Left inf frontal

Left medial frontal,
Right cerebellum,
Bilat parietal, Right
frontal

2 +/+ Long-term
EEG

Left parietal,
Left
frontoparietal

Right
hippocampus,
Right parietal,
Right inf
occipital

Left parietal,
Left
frontoparietal

bilat cingulate,
Right temporal,
Right cerebellum,
Basal ganglia

3 +/+ Long-term
EEG

Left parieto-
occipital

Right
parieto-occipital ,
Mid occipital

Left
parieto-occipital

Left cerebellum,
Basal ganglia, Bilat
orbito-frontal, Right
parietal

4 -/- Long-term
EEG

Diffuse
bilateral

Scattered Mid
occipital, Right
temporal, Bilat
mid frontal

Diffuse bilateral Scattered bilateral
sup frontal

5 -/+ Long-term
EEG

– Bilat temporal
superior, Ant
frontal, Post
cingulate, Right
parietal

Left parietal Diffuse bilateral

Table 1: The results of TA and topographic map
(TM) analysis, ant/post/inf/sup/mid/bilat = ante-
rior/posterior/inferior/superior/middle/bilateral. Concordance is defined
by p-value (p < 0.05 corrected). Two IED onset signals were used; (1)
driven from simultaneous EEG-fMRI, (2) driven from topographic map
correlations. Both TA and TM found in target areas, defined as the
resection areas with 15 mm proximity margin, and out of focus (remote)
areas.
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6.4 Discussion and Summary

We have applied TA to simultaneous EEG-fMRI data of five patients with
epilepsy. The activity-induced signals were correlated with the EEG-drived
IED signals (either simultaneous EEG-fMRI or long-term EEG). TA was
able to localize the epileptogenic regions especially when IEDs were de-
tected during simultaneous EEG-fMRI. Even though TA did not provide
conclusive results for the patients who did not have IEDs during EEG-fMRI
(Patients 4-5), in Patient 5 the TA analysis revealed negative correlations
with the reference signals in the areas of captured default-mode network (see
Fig. 6.13(b)). This is an intriguing finding which motivates us to further
investigate the use of TA for the study of dynamics of the BOLD correlates
associated with IED by following these possible paths; (1) studying the
network organization during the epileptic activity and outside the epilep-
tic activity: “Are there any suspended or persistent network structures?”,
(2) investigating the latencies of the BOLD response in relation to IEDs,
(3) elaborating the effect of IED occurrence frequency on BOLD signals;
especially in terms of BOLD deviations and scattered activity patterns.
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(a) Conventional analysis for detecting epileptogenic regions from simultaneous EEG-fMRI 
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combined EEG–functional MRI to reveal focal epileptic activity

not seen on conventional EEG.

In patients with focal epilepsy who are considered for surgery,

concordant results of several localizing techniques are an import-

ant element for the planning of surgical resection or intracranial

EEG electrode placement. We have shown that EEG–functional

MRI combined with topographic information from routine clinical

EEG could help localize focal epileptic activity in 78% of patients

(100% in lateral temporal or extratemporal neocortical epilepsy

and 60% in medial/polar temporal lobe epilepsy), in whom a pre-

vious conventional EEG–functional MRI analysis was negative,

Figure 8 Discordant results in medial/polar temporal lobe epilepsy. Patient 19 with right temporal epilepsy, dysplasia of right uncus.
(A) Long-term EEG. Red arrow = representative spikes used to build the epileptic map; (B) epileptic map derived from long-term EEG,
blue/red cross indicates maximum negativity/positivity; (C) topography-related BOLD changes (P5 0.001, uncorrected for display but
the bilateral opercular activations survived FWE correction, P5 0.05) co-registered with postoperative MRI (right anterior temporal
lobectomy).
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range: 30–1407). These spike-related BOLD changes (BOLD in-

creases in 3/5, BOLD decreases in 2/5) were spatially concordant

with the electroclinical evaluation in all five patients. In 4/5, the

localization was further validated by intracranial EEG and/or

postoperative seizure freedom. Using the topography-based

method, all of these patients showed significant topography-

related BOLD changes surviving FWE correction and these were

concordant with the results of conventional analysis and the

Figure 2 EEG and correlation coefficient in a patient with intra-MRI spikes (Patient 2). (A) Run of spikes in the intra-MRI EEG;
(B) correlation coefficient for the same EEG segment: note the sustained duration of high correlation due to spikes and slow-wave who
have similar topography (map polarity is not considered in the correlation); (C) functional MRI (fMRI) regressor obtained after convolution
with the haemodynamic response function. Peaks in the regressor are related to sustained runs of spikes, as indicated by the arrow.
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the bilateral opercular activations survived FWE correction, P5 0.05) co-registered with postoperative MRI (right anterior temporal
lobectomy).
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Sources of IEDs

Long term
clinical EEG

validation by intracranial EEG and/or surgical resection. (average

correlation coefficient across time: range: 0.23–0.42, grand mean

0.35; standard deviation of the correlation coefficient: range:

0.16–0.24, grand mean 0.22).

This concordance is illustrated for Patient 1 in Fig. 4. This pa-

tient had suffered from tuberous sclerosis with two large tubers in

left anterior frontal and left inferior frontocentral regions.

Intracranial EEG recording showed spikes over the inferior fronto-

central tuber with occasional concomitant involvement of the in-

ferior frontal tuber. Seizure onset occurred independently in both

tubers. These were subsequently resected and the patient was

seizure free 12 months after surgery. Both conventional and topo-

graphical analysis showed BOLD changes in the resection area of

both tubers (statistical maximum in the left anterior frontal tuber).

Patients with inconclusive
conventional analysis
Eighteen out of 20 patients with previously inconclusive EEG–

functional MRI analysis were suitable for topographic analysis.

Figure 3 EEG and correlation coefficient in a patient without intra-MRI spikes (Patient 13). (A) Sample of intra-MRI EEG; (B) correlation
coefficient for the same EEG segment. Blue vertical lines show time points with high correlation values. (C) The EEG maps (bottom left and
centre) at these time points are highly correlated (or anti-correlated) with the epileptic map (bottom right). A posteriori review of the EEG
revealed focal slow activity in the left temporal region simultaneous to the sustained increases of the correlation coefficient (T3–T5).
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range: 30–1407). These spike-related BOLD changes (BOLD in-

creases in 3/5, BOLD decreases in 2/5) were spatially concordant

with the electroclinical evaluation in all five patients. In 4/5, the

localization was further validated by intracranial EEG and/or

postoperative seizure freedom. Using the topography-based

method, all of these patients showed significant topography-

related BOLD changes surviving FWE correction and these were

concordant with the results of conventional analysis and the

Figure 2 EEG and correlation coefficient in a patient with intra-MRI spikes (Patient 2). (A) Run of spikes in the intra-MRI EEG;
(B) correlation coefficient for the same EEG segment: note the sustained duration of high correlation due to spikes and slow-wave who
have similar topography (map polarity is not considered in the correlation); (C) functional MRI (fMRI) regressor obtained after convolution
with the haemodynamic response function. Peaks in the regressor are related to sustained runs of spikes, as indicated by the arrow.
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Correlation of intra MRI 
EEG with epileptic map

Figure 6.10: Schematic representation of state-of-the-art methods for local-
izing epileptogenic regions from simultaneous EEG-fMRI. (a) IEDs driven
from simultaneous EEG-fMRI is fed into GLM analysis. (b) Topographic
mapping uses the long term EEG recordings to find the epileptogenic map-
ping when no IEDs are observed during simultaneous EEG-fMRI. The
epileptic map is correlated with the simultaneous EEG recordings and the
correlation time course is fed into GLM analysis (Courtesy of Grouiller et
al. [198]).
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Simultaneous
EEG-FMRI ...

Activity-inducing
Signals

Discussion
EEG-derived voltage maps reflect the sum of the activity of the

electrical sources in the brain at a given time and are a reliable

marker of whole-brain activity. Our study represents the first evi-

dence of haemodynamic correlates of EEG maps describing patho-

logical brain activity. This further highlights the capacity of

combined EEG–functional MRI to reveal focal epileptic activity

not seen on conventional EEG.

In patients with focal epilepsy who are considered for surgery,

concordant results of several localizing techniques are an import-

ant element for the planning of surgical resection or intracranial

EEG electrode placement. We have shown that EEG–functional

MRI combined with topographic information from routine clinical

EEG could help localize focal epileptic activity in 78% of patients

(100% in lateral temporal or extratemporal neocortical epilepsy

and 60% in medial/polar temporal lobe epilepsy), in whom a pre-

vious conventional EEG–functional MRI analysis was negative,

Figure 8 Discordant results in medial/polar temporal lobe epilepsy. Patient 19 with right temporal epilepsy, dysplasia of right uncus.
(A) Long-term EEG. Red arrow = representative spikes used to build the epileptic map; (B) epileptic map derived from long-term EEG,
blue/red cross indicates maximum negativity/positivity; (C) topography-related BOLD changes (P5 0.001, uncorrected for display but
the bilateral opercular activations survived FWE correction, P5 0.05) co-registered with postoperative MRI (right anterior temporal
lobectomy).
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Statistical Validation

Total Activation

1. IEDs from EEG-fMRI
2. Correlation of intra MRI   

EEG with epileptic map

Figure 6.11: Total activation analysis in patients with epilepsy. The region
averaged activity inducing signals are correlated with the IEDs driven ei-
ther from EEG-fMRI or long tern EEG. Non-parametric hypothesis testing
revealed epileptogenic brain regions.
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(a) Localization using IEDs driven by simultaneous EEG-fMRI (Patient 1)

(b) Localization using IEDs driven by topographic map (Patient 1)
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Figure 6.12: Spatial mapping of estimated epileptogenic brain regions of
Patient 1. (a) IEDs were driven from simultaneous EEG-fMRI. (b) IEDs
were driven by topographic map correlation. Both results were concordant
with the target regions.



6.4 Discussion and Summary 99

(a) Accordance with the target area (Patient 2)

(b) Discordance with the target area (Patient 5)
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Figure 6.13: Spatial mapping of detected epileptogenic brain regions of Pa-
tient 2 and 5 using IEDs driven by topography-related correlation. (a)
Patient 2 had IEDs during EEG-fMRI; the map includes left parietal and
fronto-parietal regions, and are concordant with target regions. (b) Patient
5 had no IED during simultaneous EEG-fMRI; the map shows the negatively
correlated DMN.
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Chapter 7

Discussion and Outlook

In this dissertation, we have introduced a novel framework, total activa-
tion (TA), which opens new avenues for the analysis of fMRI data. Our
contributions are two-folds:

1. From a signal processing perspective, we extended the total variation
(TV) regularization to incorporate a linear system.

2. We further developed and applied the generalized TV as a new spa-
tiotemporal regularization for fMRI data analysis.

In what follows, we discuss our main achievements, explore the potential
future research directions, and identify possible extensions of our method.

7.1 Summary

Generalized LLL-Total Variation We extended the TV regularization
concept, which is favoring piecewise constant signals. More complex sig-
nals, such as those composed out of the Green’s functions of differential
operators other than the first-order derivative, could be handled as well.
The regularization was expressed as an analysis prior, thereby, acting di-
rectly on the system’s driving signal through sparsity-promoting `1-norm
in terms of deconvolution an facilitating interpretation. In particular, we
guarantee the sparsity of the ”innovation” signal obtained after applying
the differential operator and access both denoised and deconvolved signals
easily. Simulation results and real audio signal examples highlighted the
improvement of generalized L-TV over existing methods.

Total Activation for fMRI We developed a spatiotemporal regulariza-
tion method for the recovery the activity-inducing signals in fMRI without
requiring prior knowledge of the onsets and durations of the events. TA
overcame the lack of existing methods by incorporating the hemodynamic
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system and an anatomical prior. The variational formulation included gen-
eralized L-TV as a temporal regularization term that inverts the fMRI’s
hemodynamic blur. By that means, specific tuning of the differential op-
erator enforced sparse ”innovation” signals and, consequently, block-type
activity-inducing signals. Furthermore, a spatial regularization was added
to account for voxel dependencies; i.e., the `2,1-norm favored smooth acti-
vations inside anatomically defined regions. The multi-term regularization
problem was solved efficiently, with automatic calibration of temporal reg-
ularization parameter, exploiting state-of-the-art convex optimization tech-
niques. We proved the flexibility of the method to model perturbations,
which, in turn, encouraged us to go forward with real experimental data.

FMRI Experimental Results FMRI data acquired during event-related
experiment (visual stimuli) were analyzed with TA. The results showed con-
vincingly that TA recovered not only the activation patterns for visual stim-
uli whose timing information was unknown to the model, but also other
plausible resting-state networks, thereby, suggesting great use for studying
non-stationary dynamics in fMRI. Finally, using simultaneous EEG-fMRI
recordings, we obtained promising results for localizing the brain regions that
related (unknown) interictal epileptic discharges in patients with epilepsy.

7.2 Outlook

TA provided compelling results that potentially can lead to new insights
into exploration of brain organization and temporal dynamics. Here, we
discuss future considerations and some emerging directions concerning the
techniques we developed in this thesis.

Model Selection Generalized L-TV framework currently takes in a fixed
differential operator to invert the degradation effect of the underlying linear
system. In its formal definition, a linear differential operator is defined by
poles and zeros from which a discrete filter can be implemented. In this
thesis, we built the simplest (i.e., minimum support) discrete filter of the
continuous differential operator. One future goal would be to improve the
filter implementation better taking into account the frequency spectrum
of the operator. Another aspect worth elaborating in the future is using
this scheme for system identification; i.e., model selection. Specifically, we
could optimize the characterization of the differential operator from model
parameters and sparsity of the innovation signal.

Continuous-Domain Interpretation Despite the fact that generalized
L-TV is inspired by the continuous domain formulation, future research
is needed to tighten the mathematical link between the proposed signal-
processing approach (in the discrete domain) and proper generalization of
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TV in the continuous domain. Our approach is promising in this respect
because in recent work it was shown that the signal-processing approach
for conventional TV (that is, `1-norm of finite differences) can be linked to
proper continuous-domain modeling of stochastic processes [213,214].

Higher-Dimensional Extensions Generalized L-TV can be extended for
image denoising and deconvolution. Specifically, the operators role would
result in efficient representation of the undetermined systems in analysis
formulations [215].

FMRI Deconvolution TA for fMRI took the (linearized) balloon model
for granted in its temporal regularization. It is, however, well known that
this model is limited since high variability of the hemodynamic response
function (HRF) within and across subjects has been noted, and the HRF
identification problem has been well acknowledged [85, 158]. Therefore, a
fundamental step in terms of fMRI analysis is to be able to account for the
hemodynamic variability. In its original form, it is possible to incorporate
different HRF models per regions or voxels as long as they are defined a
priori. Instead, the substantial contribution would be to perform HRF iden-
tification and activity-inducing signal estimation simultaneously within the
TA framework.

Continuous Domain Solution TA adopts the underlying continuous do-
main definition of differential operators, however, instead of considering the
explicit analytical problem, the sampled formulation, which requires dis-
cretized operators, is solved. Recently, in signal processing community, a
new framework, named finite rate of innovation (FRI), that could go beyond
the Nyquist sampling limit was introduced [216]. According to this theory,
the analytical problem can be driven by spike-type signals and solution can
be expressed in continuous domain since HRF is expressed explicitly in a
compact analytical form. To that end, FRI would be a potential candidate
for handling the problem in the continuous domain.

Anatomical Prior TA used an anatomical atlas that is not optimal; i.e.,
not subject-specific and contains course structures (90 regions). Several
interesting ideas could be adapted in the future for improving the spatial
processing: (1) estimating a (functional) data-adaptive atlas [160, 217]; or
(2) incorporating source separation methods (e.g., ICA) to define the regions
instead of an anatomical atlas.

Spatiotemporal Dynamics The recovered activity-inducing signals re-
vealed intriguing properties in terms of spontaneous activity and dynam-
ical brain organization. Current state-of-the-art methods, especially in
functional network connectivity analysis, are moving away from static
analysis and increasingly exploring non-stationary dynamical organization
[190, 218–220]. In that direction, TA-regularized activity-inducing signals
would constitute a substantially better starting point for dynamical anal-



104 Discussion and Outlook

ysis of the data. Indeed, the activity-inducing signals have an increased
temporal “crispness” and are also cleaned from noise.

Clinical Applications We showed that simultaneous EEG-fMRI record-
ings could give an insight into localization of epileptogenic brain regions for
pre-surgical planning. The literature contains a few prominent examples of
fMRI-driven analyses with compelling results [141, 209]. We presented our
preliminary results on detection and localization of interictal epileptic dis-
charges, which are encouraging for future investigations to be confirmed with
more subjects. The underlying dynamics in the BOLD revealed by TA also
enables to study the stimuli’s effect in task-based experiments. One other
example is the study of fMRI data for exposure of olfactory stimuli, where
both the precise timing if the onsets (due to breathing) and habituation are
unknown.
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Appendices

A.1 Proof of Proposition 1

Proof. We make the proof by construction. For the first-order differential
operator L = (D − α1) for which N = 1 and M = 0, the corresponding
discrete operator, ∆L, becomes ∆L {x} [n] = x[n]− eα1x[n− 1], see [221].

For the differential operator L =
∏N
i=1(D−αiI) of order N > 0 and M = 0,

we can obtain the filter ∆L by successive convolutions (leading to support
of N + 1); the z-transform of ∆̂L(z) is then

∆̂L(z) :=
N∑

n=0

∆L[n]z−n =
N∏

i=1

(1− eαiz−1) =
N∏

i=1

pi(z
−1), (A.1)

where pi is a polynomial with 2 coefficients pi,k = (−eαi)k with k ∈ [0, 1].
Note that we can express (A.1) benefiting the polynomial multiplication
which leads to the convolution as

N∏

i=1

pi(z
−1) =

N∑

n=0

PN [n]z−n, (A.2)

where PN = p1 ∗ p2 ∗ . . . ∗ pN and ∗ is the convolution operator. Therefore,
we can express the filter ∆L[n] = PN [n] as

PN [n] =
n∑

kN−1=0

. . .

k3∑

k2=0

k2∑

k1=0

(−eα1)k1(−eα2)k2−k1

. . . (eαN )n−kN−1 , {k1, . . . , n− kN−1} ∈ [0, 1]N ,

with a change of variables m1 = k1,mi = ki−ki−1,mN = n−kN−1 we have

∆L[n] = (−1)n
∑

|m|=n

(eααα)m, m ∈ [0, 1]N , 0 ≤ n ≤ N. (A.3)
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Similarly, for the general differential operator, L, with M > 0 we have in
z-domain

∆̂L(z) = ∆̂Ln(z)∆̂−1
Ld

(z) =

∏N
i=1(1− eαiz−1)

∏M
i=1(1− eγiz−1)

, (A.4)

where ∆Ln [n] is represented explicitly in (A.3). Note that the filter ∆̂−1
Ld

in (A.4) has infinite support in time, therefore stability should be assured.
Depending on the poles γγγ of the operator, we find a combination of causal
(γγγ′) and anti-causal (γγγ′′) filters that guarantee stability; e.g., for M = 1 and
N = 0 we have either ∆L[n] = eγ

′nu[n] or ∆L[n] = −eγ′′nu[−n − 1], where
u[n] is the unit step function. In practice the filter with input x and output
y can be reformulated and implemented as in a recursive way by providing
the realization of causal and anti-causal parts separately. To this aim, we
represent the inverse filter

∆̂−1
Ld

(z) = ∆̂−1
L′d

(z) ∆̂−1
L′′d

(z) e−γγγ
′′
(−z)m2 (A.5)

by the causal and anti-causal filters

∆̂L′d
(z) =

m1∏

i=1

(1− eγ′iz−1)

∆̂L′′d
(z) =

m2∏

i=1

(1− e−γ′′i z), (A.6)

where e = (e, . . . , e) is a vector of length m2. Then the corresponding
recursive algorithm can be easily derived from the z-domain representation.
Here we will concentrate on the anti-causal part (the derivation for the causal

part is similar). To obtain y = ∆−1
L′′d

{
x[n+m2](−1)m2 e−γγγ

′′
}

, we consider

ŷ(z)∆̂L′′d
(z) = e−γγγ

′′
(−z)m2 x̂(z),

from which we find
∑

k

y[n− k] ∆L′′d
[k] = x[n+m2](−1)m2 e−γγγ

′′
.

From (A.3), we can derive the explicit time domain expression for the anti-
causal filter ∆L′′d

as

∆L′′d
[n] = (−1)n

∑

|m|=−n

(e−γγγ
′′
)m, m ∈ [0, 1]m2 ,−m2 ≤ n ≤ 0. (A.7)

Therefore, we obtain

y[n] = x[n+m2]∆L′′d
[−m2]−

−1∑

k=−m2

y[n− k]∆L′′d
[k],
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where we used ∆L′′d
[0] = 1.

Let us give an example for the third-order differential operator L =∏3
i=1(D − αiI). The FIR filter ∆L[n] then becomes

∆L[n] = [1,−(eα1 + eα2 + eα3), e(α1+α2) + e(α1+α3)

+ e(α2+α3),−e(α1+α2+α3)], 0 ≤ n ≤ 3.
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F.I. Karahanoğlu, D. Van de Ville, Generalizing Total Variation for Linear Differential
Operators, February Fourier Talks (FFT), 2011.
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