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ABSTRACT

The ability to non-invasively visualize spatially-localized maps of
metabolite concentrations in vivo as afforded by Magnetic Reso-
nance Spectroscopic Imaging (MRSI) is an attractive prospect in
clinically-focused biomedical imaging. However, the current gold
standard implementation, known as Chemical Shift Imaging (CSI),
is plagued by various artifacts, due primarily to the limitations dic-
tated through use of the Fourier transform. To counter these imped-
iments, numerous “constrained” reconstruction methods have been
suggested, which typically inject some type of a priori information,
usually with the aid of structural MR images, into the signal model.
While this may be desirable for some applications, it introduces an
assumption which posits a general equivalency between the spatial
and spectral distributions, which may not always be appropriate.
This work examines an alternative formulation in which, with the aid
of statistical techniques and spatial regularization, constituent high-
resolution spatial and spectral components are estimated from the
raw MRSI data. We demonstrate the efficacy of this technique, and
the robustness of the estimated components to alternative sampling
strategies, thereby broadening the applicability of the method and
offering the prospect of reduced acquisition times in more pressed
clinical settings.

Index Terms— Magnetic Resonance Spectroscopic Imaging,
Chemical Shift imaging, Principal Component Analysis, Total Vari-
ation, Constrained Reconstruction

1. INTRODUCTION

In a MRSI experiment, the measured signal at k-space location
ki, i = 1, . . . ,M and time t can be expressed as:

s(ki, t) =

∫ ∞
−∞

∫
FOV

ρ(x, f)e−2πj(ki·x+ft)dxdf (1)

where

ki = k(t′i) =
γ

2π

t′i∫
0

G(τ)dτ (2)

represents the employed sampling trajectory determined by the gra-
dients, G, and ρ(x, f) the spatio-spectral distribution of the imaged
object. For completeness, x denotes position in the spatial domain, f
the temporal frequency, γ the gyromagnetic ratio, and FOV the field-
of-view. In a standard CSI setting [1] in 2D, a free induction decay
(FID) is acquired at each ki, such that the total measurement time
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is Tacq = NxNyTR, where Nx and Ny represent the total number
of encodings in each Cartesian dimension, and TR is the repetition
time. In most clinical settings, the number of encodings are kept low
because of practical time considerations, and typically only values of
ki corresponding to low spatial frequencies are measured. For tradi-
tional Fourier-based reconstructions, this effectively corresponds to
an assumption that the imaged object is band-limited to the extent
of the acquired measurements, which introduces spectral contami-
nation artifacts due to a broadened pointspread function. In order
to reduce these artifacts, numerous alternatives have been proposed
which seek to improve the problem conditioning, using such meth-
ods as sensitivity encoding [2], alternative sampling strategies [3,4],
or modeling the spatio-spectral distribution function with the aid of
additional MR modalities [5–7]. Given that the majority of MR scan-
ning sessions routinely include some type of high-resolution struc-
tural scans, the latter approach may seem particularly attractive, as
it offers the ability to incorporate high-resolution a priori informa-
tion into the reconstruction. However, such an approach can intro-
duce additional artifacts into the reconstruction when the spatial and
spectral data contain contrasting information. To circumvent this
potential pitfall, we propose a variation whereby the signal model is
estimated directly from the MRSI data, relying upon a few general
assumptions and necessitating only a map of the static B0 field as a
supplemental modality. Moreover, we show that our method is ro-
bust to non-Cartesian sampling strategies, which further paves the
way for faster and more efficient acquisitions.

2. COMPONENT-BASED MRSI RECONSTRUCTION

2.1. Spatio-spectral model

In methods such as SLIM [5], the spatio-spectral distribution func-
tion is modeled as a sum of K spectrally-homogeneous compart-
ments, χk(x) (typically derived from segmented structural images),
times their associated spectrum, qk(f):

ρSLIM(x, f) =

K∑
k=1

qk(f)χk(x), (3)

or when the static inhomogeneity profile, ∆f(x) = γ
2π

∆B0(x), is
known, as the BSLIM model [7]:

ρBSLIM(x, f) =

K∑
k=1

qk(f −∆f(x))χk(x). (4)
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Electing to work with the former expression, the imaging equation
(1) can then be reduced to a linear system of equations:

sSLIM(ki, t) = (5)
K∑
k=1

∞∫
−∞

qk(f)e−2πjftdf

︸ ︷︷ ︸
Qk(t)

·
∫

FOV

χk(x)e−2πj(ki·x)dx

︸ ︷︷ ︸
Kk(ki)

=

K∑
k=1

Qk(t)Kk(ki), (6)

where Qk(t) is the FID originating from the kth compartment, and
Kk(ki) are the SLIM kernels. One immediate advantage of this type
of model is that it obviates the rectangular voxel restriction stipulated
by the Fourier transform by permitting the use of the compartments
as “generalized voxels,” which can be arbitrarily defined.

Assuming the validity of (3), (4) as appropriate signal models, it
is natural to ask whether a decomposition such as (6) could be ob-
tained without imposing an explicit basis set, χk(x). An intuitive
choice of venue would include Principal Component Analysis [8]
(implemented as a singular value decomposition (SVD)), which pro-
duces a bilinear decomposition of the measured data in k and t, such
that the variance of the resulting components is maximized, sub-
jected to an orthogonality constraint, i.e.,

sSVD(ki, t) =

K∑
k=1

σkuk(ki)vk(t), i = 1, . . . ,M. (7)

Here, vk(t) can be regarded as the “eigen-FIDs,” and uk(ki) as their
corresponding spatial distribution (“eigen-maps”).

2.2. Variational Framework for Determining High-Resolution
Components

Ideally, we would like to attain spatial maps ũk(x) at a higher reso-
lution (defined in our case to be that of the acquired inhomogene-
ity profile, discussed further in section 2.3), given only the low-
resolution k-space components, uk(ki). This problem is ill-posed,
and so additional regularization is required. Use of the total variation
(TV) semi-norm has become prevalent in various MR reconstruction
problems, primarily due to its proclivity for retaining sharp edges,
and is quite appropriate for our application. In particular, we adopt
the method of [10], utilizing the total generalized variation (TGV2),
which favors piecewise linear solutions by compromising between
sparsity in the first and second derivatives. Formally, it is expressed
as:

TGV2
α{ζ} = minimize

h
α1

∫
Ω

|∇ζ(x)− h|dx + α0

∫
Ω

|E{h}|dx,

(8)
where E{h} = 1

2
(∇h+∇hT). We therefore formulate the recovery

of high-resolution components as the convex optimization problem:

minimize
ũk

J {ũk} = ‖Aũk − uk‖2`2 + λTGV2
α{ũk}, (9)

k = 1, . . . ,K,

whereA is the so-called “system matrix,” (sampling operator) which
depends on the particular sampling strategy. For our experiments,
values of α1 = 1.0× 10−3 and α0 = 2α1 were determined empiri-
cally.

2.3. Static Field Inhomogeneity Compensation

It is important to note that the components generated in (7) will in-
clude any effects precipitated by imperfect measurement conditions,
primarily those due to local B0 distortions. To compensate, an ad-
ditional measurement of the static field inhomogeneity, ∆f(x), at
high spatial resolution is necessary, e.g., using the method of [9]. In-
spired by BSLIM, we can then define an operator, D∆f , which spec-
trally redistributes the spatial maps along the temporal frequency
axis (chemical shift dimension). The formal definition is given be-
low:

Definition 1 Given a spatial inhomogeneity profile, ∆f(x), the
spectral deformation operator, D∆f , acting upon an image, ϕ, is
given by:

D∆f{ϕ} := h(x, f) = ϕ(x)δ(f −∆f(x)). (10)

As we ultimately work with discrete data, we denote the discretized
version of this operator as:

h[xn, fl] =

(
D∆f{ϕ}(x, f) ∗ β1(f

T

Fs
)

)
[xn, fl], (11)

where Fs is the temporal sampling rate of the acquisition scheme,
T the number of samples collected for each FID, and β1 a first de-
gree B-spline (linear interpolation). We subsequently denote discrete
measurements through the use of square brackets.

2.4. Solving for Compensated Components

With all the elements now in place, we can solve for the static field
inhomogeneity compensated components in the following way. We
first unwind the effect of ∆f [xn] by applying the spectral deforma-
tion operator with a flip of sign: D−∆f on the initial, high-resolution
spatial maps: ĥk[xn, fl] = D−∆f{ũk}. Next, we generate the full
kernel matrix,

Ĥk[ki, tm] = F−1
t {A{ĥk}}, k = 1, . . . ,K, (12)

where Ft denotes the temporal Fourier transform. We then re-form
the measurement matrix, such that:

s′[ki, tm] =

K∑
k=1

σkĤk[ki, tm]vk[tm], (13)

i = 1, . . . ,M, m = 1, . . . , T.

This new measurement matrix should be devoid of any static field
inhomogeneity effects, and a subsequent SVD should yield undis-
torted components, u′k and v′k, in this respect. Accordingly, a final
determination of the high-resolution spatial components, ũ′k as in (9)
will yield solutions which reflect our two general assumptions: (a)
that the model given by (3) is indeed an accurate description of the
imaged object, and (b) that the χk(x) (or in our decompositions, ũk,
ũ′k) are piecewise linear functions that may exhibit sharp boundaries.

3. SIMULATED EXPERIMENTS

In this section, we demonstrate reconstructions using an implemen-
tation of the above routine on simulated MRSI data. We show that
our method can recover inhomogeneity-compensated components
corresponding to the “true” underlying distributions, and that these
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Fig. 1. Simulated phantom composition and associated static B0

profile. All spectra are shown in magnitude.

components are determined in a robust manner that remains inde-
pendent of acquisition type.

The simulated phantom geometry is shown in Figure 1 (a mod-
ified Shepp-Logan phantom). To each compartment, a unique spec-
trum was associated with fixed temporal resolution (T = 1024 sam-
ple points). A B0 static inhomogeneity profile, chosen to mimic
those typically observed in 1H MRSI experiments using geomet-
rically similar phantoms, was also simulated using a fourth-degree
polynomial model, discretized on the desired spatial grid of the re-
constructed MRSI data (in our case 256 × 256). Simulations were
conducted using two different sampling strategies: standard Carte-
sian and spiral. For the Cartesian sampling scheme, M = 1024
sample points, corresponding to a 32 × 32 sampling grid was cho-
sen, with a FOV of ([−0.14 . . . 0.14] × [−0.14 . . . 0.14]) meters.
For the spiral case, three interleaved constant angular velocity spiral
trajectories were acquired, using the same FOV as in the Cartesian
case, such that the total number of measurements remained equal to
M . As a final step, white Gaussian noise was added to the simulated
k-space measurements, yielding a mean SNR of 21.83 dB.

For each sampling scheme, the forward and adjoint sampling
operators, A, and A∗, respectively, were implemented using the
NUFFT (non-uniform fast Fourier transform), as described in [11],
thereby seeking a compromise between computational speed and nu-
merical accuracy. Furthermore, for the spiral acquisition scheme,
an additional density compensation function (DCF) is needed to ac-
count for non-uniform sampling. In our experiments, we took this
to be the area of the Voronoi cell around each sampling point, as
proposed in [12]. The DCF also enters into the component esti-
mation by the generalized singular value decomposition (GSVD),
where X = ŪΣVH such that ŪHWŪ = I. In our case, W is a
diagonal matrix containing the DCF weightings for each k-space
position. Note that in uniform Cartesian sampling, this reduces to
the normal SVD by setting W = I. Upon initialization of the re-
construction scheme, the number of components (i.e. the working
subspace), must be chosen. An appropriate choice of dimension-
ality is a general ongoing discussion, and in this work we use the
method of [13], which maximizes the Bayesian evidence in a prob-
abilistic PCA model. In each dataset, the initial underlying (non-
inhomogeneity-compensated) dimensionality was determined to be
K = 40.

Fig. 2. Standard inverse Fourier reconstruction. A few representa-
tive spectra are shown (magnitude), overlaid on a magnitude image
created by plotting the first sample point of each FID.

Cartesian Spiral Spiral
(20% sub-sampling)

ROI1 ROI2 ROI1 ROI2 ROI1 ROI2
Spatial Map 22.64 19.88 23.16 20.65 22.76 20.14

Spectrum 26.71 25.76 27.83 27.18 27.12 26.29

Table 1. PSNR values for composite spatial maps and spectra (dB)

4. RESULTS AND VALIDATION

Because the SVD operates under an orthogonality constraint, the
spatial and spectral components generated by the reconstruction
may in fact remain linear combinations of the true spectrally-
homogeneous compartments. Hence, further treatment will likely
be application-specific. For example, an operator may view the
resultant components, and wish to examine the spectrum within a
particular region of interest (ROI). Once defined, the ROI may be
used for linear regression in order to determine the required spa-
tial component weightings, which may in turn be applied to the
corresponding spectral components to achieve the best within-ROI
spectrum.

In order to validate the method, and having access to the true
spatio-spectral distribution, we defined as ROI1 regions A+B in Fig-
ure 1 and ROI2 as region C. For the linear regression, we selected
the first five estimated spatial components, {ũ′1, ũ′2, . . . , ũ′5}, for
each sampling scheme, corresponding to the largest singular values.
Composite high-resolution spatial maps and spectra were then cre-
ated from the components using the regression weightings, and were
subsequently scaled to have unit `2 norm. As an initial reference,
results generated by standard inverse Fourier reconstruction are pro-
vided in Figure 2. The results for each sampling strategy using the
proposed method are displayed in Figure 3 along with the associated
k-space trajectories. As further validation, the defined ROIs were
also scaled to unit `2 norm, and the PSNR for each composite spa-
tial map and spectrum was computed. The same analysis was also
completed for a sub-sampled version of the spiral trajectory, such
that the outer 20% of k-space measurements were discarded. The
results are collected in Table 1.
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Fig. 3. Reconstruction results for Cartesian (top) and spiral (bottom) trajectories. All images and spectra are displayed in magnitude.

5. DISCUSSION AND CONCLUSION

The results in Figure 3 clearly show that the proposed method is able
to recover the underlying spatio-spectral distribution of the imaged
object. Moreover, the composite spectra are located at their correct
resonance positions, though some lineshape distortion can be seen,
especially in ROI2. This result can likely be explained by both the
fact that the inhomogeneity profile is particularly pronounced within
this ROI (at the phantom periphery), and by observing that a large
proportion of the energy in the Fourier domain lies well beyond the
sampled region. A small contamination in the ROI1 spectrum from
ROI2 can also be seen, though minimal given the amplitude discrep-
ancy between the ground truth spectra in the two regions.

Both a visual comparison in Figure 3 and the results in Table 1
indicate superior reconstruction quality is achieved when using a spi-
ral trajectory. This is not an unexpected outcome, as spiral trajecto-
ries offer a number of advantages over traditional Cartesian sampling
schemes [14], such as more efficient k-space coverage by not spend-
ing time covering the corners. Thus, given a measurement budget of
M points, the spiral sampling scheme is able to probe more distal
regions in k-space and improve the reconstruction problem condi-
tioning. A further benefit of the proposed reconstruction method is
that it remains compatible with other accelerated imaging techniques
such as SENSE and GRAPPA [15], offering the possibility of yet im-
proved reconstructions through the use of multiple receiver coils.

In this work we have presented a reconstruction method for
MRSI data that circumvents a number of shortcomings associated
with traditional inverse Fourier reconstructions, as well as the am-
biguity in selecting appropriate a priori compartmental information
in SLIM-like approaches. The geometric assumptions made on the
recovered spatial distributions are general enough to accommodate
most biological samples of interest, and the approach is flexible
enough to be used in conjunction with a wide array of acquisition
and measurement acceleration techniques.
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