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Data-Driven MRSI Spectral Localization
Via Low-Rank Component Analysis

Jeffrey Kasten*, Francois Lazeyras, and Dimitri Van De Ville

Abstract—Magnetic resonance spectroscopic imaging (MRSI)
is a powerful tool capable of providing spatially localized maps
of metabolite concentrations. Its utility, however, is often depre-
ciated by spectral leakage artifacts resulting from low spatial
resolution measurements through an effort to reduce acquisition
times. Though model-based techniques can help circumvent
these drawbacks, they require strong prior knowledge, and can
introduce additional artifacts when the underlying models are
inaccurate. We introduce a novel scheme in which a generative
model is estimated from the raw MRSI data via a regularized vari-
ational framework that minimizes the model approximation error
within a measurement-prescribed subspace. As additional a priori
information, our approach relies only upon a measured field
inhomogeneity map at high spatial resolution. We demonstrate
the feasibility of our approach on both synthetic and experimental
data.

Index Terms—Chemical shift imaging, constrained reconstruc-
tion, low-rank approximation, magnetic resonance spectroscopic
imaging, total variation.

I. INTRODUCTION

INCE the ability to encode spatial information through the

use of magnetic field gradients was introduced nearly 40
years ago, the notion of simultaneous spatial and spectral local-
ization, achieved by magnetic resonance spectroscopic imaging
(MRSI), has served as an attractive concept in the field of med-
ical imaging. The ability to noninvasively observe spatial maps
of metabolite concentrations, for example, in the human brain,
can offer functional, as well as pathological insights, perhaps
even before structural aberrations or behavioral symptoms are
made manifest (e.g., see [1] and [2]).
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The most basic MRSI technique, and that which remains the
gold standard, is the chemical shift imaging (CSI) experiment
[3], which acquires a free induction decay (FID) at each phase-
encoded position in the spatial Fourier domain (henceforth re-
ferred to as “k-space”), and then reconstructs localized spectral
maps via the inverse spatial Fourier transform. This technique,
however, suffers from a number of significant drawbacks. Per-
haps the foremost is that practical restrictions on the total mea-
surement time, as well as the available signal-to-noise (SNR),
in a typical clinical environment limit the number of encodings,
and generally only the lowest spatial frequencies (i.e., those typ-
ically containing the highest signal energy) are acquired. As the
resolution of the reconstructed images is limited by the Fourier
pixel size, which cannot adopt an arbitrary shape to match the
underlying anatomical structure, the reconstructed maps tend to
be rather low resolution, precluding the probing of fine struc-
ture. A related consequence is the broad spatial pointspread
function (PSF), leading to spectral contamination between spa-
tially distal regions, known as the “spectral leakage” artifact.
This results from the implicit assumption underlying the Fourier
transform that the object is indeed band-limited to the extent of
the acquired measurements, which for most biological samples
is increasingly violated as a greater subset of high-frequency
encodes is disregarded. Though these PSF effects can be miti-
gated through additional filtering in the spatial Fourier domain,
for example using a Hanning window in order to attenuate the
side lobes, such measures are necessarily accompanied by an
additional loss of spatial resolution.

Throughout the years, various approaches have been sug-
gested which seek to surmount these limitations. Some of these
are based on removing nonsignificant points in k-space [4]-[6],
employing alternate sampling strategies [7]-[9], using higher-
order gradients to adjust the PSF [10], and applying sensitivity
encoding (SENSE) [11]. Another approach is through the use
of model-based techniques to circumvent the explicit use of the
Fourier transform in image reconstruction. In this work, we are
primarily interested in extending those techniques falling into
this last category.

One of the earliest model-based techniques is spectral local-
ization by imaging (SLIM) [12]. In a SLIM experiment, the
observed MR signal is modeled as a sum of signals originating
from distinct and spectrally-homogeneous anatomically-de-
fined compartments. Once the compartment geometry has been
specified, normally with the aid of additional high-resolution
anatomical images, finding the original spectra amounts to
solving a linear least squares (LS) problem. A number of
extensions to SLIM have since been proposed, including [13],
which extends the basic SLIM model as a generalized series,
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and BSLIM [14], which seeks to compensate the estimated
spectra for local variations in the static magnetic field (Bg) due
to tissue susceptibility. Other recent model-based approaches
include [15], [16], which further exploit notions such as sparsity
and more flexible basis sets.

One drawback of the original SLIM concept, however, is
that it hinges upon the compartmental homogeneity assumption,
which is very rarely achieved in practice. Moreover, the notion
that the spectrally homogeneous compartment geometry indeed
corresponds to the structural anatomy may not be valid, in which
case the most effective method for determining the compart-
ments prior to the reconstruction is unclear.

In this work, we continue in the spirit of SLIM, yet proceed
without the use of a priori compartment or spectral informa-
tion. Instead, high-resolution components are estimated directly
from the low-resolution MRSI data itself, requiring only a mea-
sured local field inhomogeneity map (for example, using the
method described in [17]) as an additional imaging modality.
Our contribution originates from the notion that despite the rela-
tively low dimensionality of the acquired measurements, the in-
herent signal often resides within a yet lower-dimensional sub-
space. In other words, the underlying spatio-spectral distribu-
tion admits a low-dimensional representation in a well-chosen
basis. There are a burgeoning number of methods within the
MR community which seek to explicate the input data by ex-
ploiting this very principle, most recently in the field of dynamic
imaging [18]-[21]. Similarly, [22] posed the MRSI reconstruc-
tion problem as a hierarchical nonnegative matrix factoriza-
tion, assuming a limited basis set in the temporal frequency do-
main. The originality of our method lies in the fact that infor-
mation derived from a high-resolution By inhomogeneity map
is used to circumvent a number of system and sample-dependent
factors which tend to thwart or disallow otherwise straightfor-
ward low-dimensional representations that are better suited for
MRSI reconstruction and interpretation when considering lim-
ited sample sets. Moreover, we employ state-of-the-art image
regularization to further guide the recovery of high-resolution
components. We demonstrate our approach on both synthetic
and experimental data.

II. THEORETICAL BACKGROUND

A. The SLIM Framework Revisited

In a standard CSI experiment, the measured signal at k-space
location k;, i = 1,..., M and time ¢ can be expressed as

s(ks, 1) = 7 / p(x

—oc FOV

fle2mitke X1 gy if

(1

Here, p(x, f) represents the spatio-spectral distribution of the
imaged object, where x specifies position in the spatial domain,
f the temporal frequency, and FOV the field-of-view.

The original SLIM concept was impelled by the postulate that
the distribution of metabolites of interest is often linked with
the distribution of water protons in biological samples. There-
fore, a priori knowledge of anatomical features derived from
structural 'H MRI could be used to inform the reconstruction of
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spectroscopic images, an idea which can be considered within
a broader framework of “constrained imaging” [23]-[25]. With
SLIM, high resolution anatomical MR images are used to de-
fine spectrally homogeneous compartments, which can be con-
sidered as generalized “voxels,” and can assume arbitrary shape
to match anatomical structure. This represents a significant de-
parture from standard Fourier imaging, in which the acquisition
volume is traditionally limited to be rectangular. The imaged
object is modeled as

PSLIM X, f 2)

ZQk

where ¢ (f) is the spectrum associated with compartment &,
and the x(x) are indicator functions such that

(x) = 1, x € compartment &
XS = 0, otherwise.

Generally speaking, the x need not be strictly limited to binary
indicator functions. In principle, any x.(x) € C as may be
deemed appropriate for a given application can be used.

The BSLIM model, in which local field inhomogeneities are
explicitly taken into account, can be similarly expressed with
the addition of a spatially-dependent frequency shift term

K

=3 0/ - AFCOG0)

k=1

G3)

ABSLIM (Xv f)

where A f(x) = (v/27)ABy(x), with v as the gyromagnetic
ratio. By inserting the above equation into (1), we obtain
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where Q(¢) is the FID originating from the kth compartment,
and Hy(k;. t) are the so-called BSLIM kernels. Similarly, in the
homogenous case (Af(x) = 0), the resulting measurements
remain separable in k; and ¢

ZQk JK(k

with K,(k;) = Hi(k;, 0). In both cases, the resulting system
of linear equations is overdetermined so long as the number of
measurements exceeds the number of compartments, which is
usually the case in practice, and can be solved via standard LS
regression.

sspn(ki, t)
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Though extensions to the SLIM framework such as BSLIM
add versatility to the basic model, they still adhere to the
original assumption that the spatio-spectral distribution should
somehow parallel the corresponding anatomy. While this may
be a reasonable expectation in some applications, it places a
significant restriction on the set of plausible support regions and
accordingly on the capacity of the model to uncover the “true”
distributions or unexpected solutions. Furthermore, a robust
framework for determining the appropriate number of compart-
ments is lacking, especially if the salience of segmentation data
from high-resolution scans is contentious. It is therefore natural
to ask whether the MRSI data itself may be able to provide
some of these basic yet crucial model parameters.

B. MRSI Component Analysis

We begin with the basic assumption that the data fundamen-
tally yields a low-dimensional bilinear decomposition in the
form of (2), yet we have neither a priori access to the compart-
ments, nor to their associated spectra, i.e.,

K

px.t) =) up(x)vx(t)

k=1

O]

when expressed in the time domain for some uy, vy, and un-
known K < M. Hence, the acquired measurements can be ex-
pressed as

where F,, is the spatial Fourier transform, {-},, represents a
spatial downsampling operator which retains those measure-
ments corresponding to the {k; }}£, prescribed by the chosen
k-space trajectory, and 7n(k;, ) is additive measurement noise
(which we assume to be i.i.d. Gaussian).

1) Inhomogeneity Compensation: It should be clear from
expressions (3)—(5) that the existence of local field inhomo-
geneities tends to impede the separability of the basic model
(7). Though separable solutions could be found given a suitable
decomposition of s(k;, 1), for example using the singular value
decomposition (SVD), they would necessarily reflect any inho-
mogeneity-induced perturbations.

To compensate, an additional measurement of the field
inhomogeneity is therefore necessary, primarily reflecting the
sample-specific magnetic susceptibilities. One key element
is that the spatial resolution of this map can be arbitrarily
chosen (within measurement system limitations), and is usu-
ally acquired at the higher resolution of the structural images
(e.g., matrix size 128 x 128). Having direct access to this
information, we introduce an operator “ sy, acting in the
high-resolution space, whose effective action is to shift a
spatio-spectral volume along the temporal frequency axis in ac-
cordance with A f(x). As this operator is ultimately discretized,
it would be beneficial at this point to refer to the discretized
versions of the various continuous-domain functions, notations
for which are summarized in Table I. Hence, (7) becomes

K
PlXn, tim] :Z ue[Xn]ve[tm],n=1,...,N,m=1,...,T

k=1
9)
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TABLE 1
VARIOUS SAMPLING GRIDS AND NOTATIONS
USED BY THE RECONSTRUCTION ROUTINE

SAMPLING GRID

DESCRIPTION

High-resolution spatial domain
Low-resolution k-space
Spectral domain

Temporal domain

Fig. 1. Effect of the spectral deformation operator on a slice of a generic spatio-
spectral volume.

or in matrix form as

P=UV (10)
where U € CV*K v ¢ CEXT,

Definition 1: Given a spatial inhomogeneity profile, A f(x),
the spectral deformation operator, “/a s, acting upon a spatio-
spectral volume, ¢, is given by

“arle) = o(x, )O(f — Af(x)). (11)

The above definition holds discretely given a suitable in-
terpolant in the temporal frequency domain, though /Ay
can also be applied in the temporal domain, such that
OariFTHet = FoHedx e 20 where £ s
the inverse temporal Fourier transform. The effect of ~5 on
a slice of a generic volume, ¢(x, fy), is illustrated in Fig. 1.
With all the operators defined, the discrete set of measurements
for a given CSI experiment can be expressed as

S ={FA{ “as{UVilt}h, + N (12)

with 8, N € CM*T which reduces to (the discretized version
of) (8) when Af(x) = 0.

2) Recovery of High-Resolution Components: ldeally, we
would like to obtain reconstructions at similar resolutions to
those of standard structural imaging. This was achieved within
the SLIM/BSLIM framework by assuming an a priori knowl-
edge of the high-resolution compartment geometry. In the ab-
sence of such information, and thereby remaining limited to
the low-resolution measurements (and an acquired field map),
the same reconstruction problem becomes ill-posed. Further-
more, to the authors’ knowledge, there is no globally-conver-
gent method of simultaneously solving for the individual maps
and spectra, u; and vy, respectively. Nonetheless, we proceed
by formulating the reconstruction as a minimization over a cost
function, 7, consisting of a data fidelity term over the acquired
k-space measurements, and a regularization term based upon
the total variation (TV) semi-norm, which is classically defined
as

V{e = [ 19600l (13
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where D is the image domain. TV has recently gained notoriety
within the MR community due to its versatility in addressing
a wide array of problems such as denoising [26], suppression
of truncation artifacts/deblurring [27], [28], inpainting for sen-
sitivity maps [29], and compressed sensing [30]. Much of the
allure of TV rests in its proclivity for removing noise-like arti-
facts, while preserving sharp edges. However, it has been shown
that use of the TV semi-norm (L norm of the gradient) results
in images exhibiting staircase-like artifacts, which are visually
displeasing or physically implausible in the case of MRI [31].
This is due to the fact that the above TV penalty promotes im-
ages with sparse gradients, i.e., it often leads to piecewise con-
stant solutions. Recently, numerous techniques have been pro-
posed which address this issue, for example, by considering
higher-order functionals [32]-[35]. In this work, we adopt the
method of [32], referred to as the total generalized variation of
second order (TGV?), which offers a compromise between pe-
nalizing on the first and second derivatives, where

TGV2{¢) = min o, / [V¢(x) — hldx + aq / |E{h}]dx
h ) D (14)

or its discrete analog

'TGVi{Z}=:HgnanVth]—’ﬂhl+me5{hHMu

n=1,...,N (15)
and E{u} = (Vu + Vu®)/2 denotes the symmetrized deriva-
tive. In our experiments, the discretized gradient operator is re-
alized using forward finite differences with Neumann boundary
conditions. Following the authors’ suggestion in [32], in our ex-
periments «y and «; were chosen such that g = 2a;. With
these ingredients in place, the reconstruction can be posed as

min J = [[{F{ 22 UV}, - S|2 + TGV {U)
(16)
where 4 is a constant that controls the regularization strength,
and || - || is the Frobenius norm.

At this point, a few words seeking to explicate the assump-
tions behind the %, and v, would be beneficial. Firstly, though
written as a function of x,, alone in (9), the u; can also be con-
sidered as having a temporal dimension, but which remains con-
stant in time so that ug[X,] = wg[Xp; b ] = ve[Xn, t1] Ym =
1,...,T. This can also be seen by considering the vectorized
version of (10)

vee(P) = (I(TXT) ® U) vee(V)

- (VT ® I<KX’<>) vee(U) (17)
where @ denotes the Kronecker product, (-)* the matrix
transpose, and vec(A) € C™*1) is defined by stacking the
columns of a matrix A € C(™*"™)_The later operation can be
similarly extended for higher-dimensional arrays, such that for
A € CUmmxXp) yee(A) € CmmPX1) “and so forth. For ease
of notation, we will henceforth denote vectorized versions of
matrices and multi-dimensional arrays by their corresponding
boldface lowercase letters and a (-), such that vec(A) = &. The
interpretation in (17) is noteworthy because it allows “/ay, a
spatio-spectral operator, to act upon U alone, considered as
a spatio-spectral volume, which in turn allows us to isolate
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U (and hence V) during the minimization. It is, in fact, this
time constancy which ensures the bilinear structure of (9) and
(10), hence maintaining separability amounts to constraining
the uy to lie on the f = 0 plane in the temporal frequency
domain. Secondly, in order to endow the spatial components
with some physical significance, and to better frame the TGV
regularization, we require the u to be real-valued and non-
negative, i.e., uz € RT. We further on refer to the intersection
of the nonnegative and time-constant constraint sets as the set
E. The formulation of (17) can be easily updated for general
Ug[Xp, tm| (i, nonconstant in the temporal dimension).
Letting Ult,,] = (u1[Xn, ] v2[Xn,tn] -+ vr[Xp, b)) for

m=1,....,T
U[tl] O(NXK) O(NXK)
O(NXK) U[t?] O(NXK)
P= . ) v=Tv (18)
O(N.xK) O(JV.XK) U[;fT]
= <VT ® I(KXK)> d = Zd. (19)

Though no explicit assumptions are made with regards to the
expected form of the vy, for example concerning the degree of
sparsity or adherence to Lorentzian or Gaussian line shapes,
we do restrict the entries of V such that || V|| p < 1, essentially
enabling the dictionary to depreciate nonessential elements
[36]-[38]. Finally, incorporating the stated constraints, the
reconstruction is given by

min J = ||QFDZiix — §))2 + p TGV {din},
st. dm€E, |[V|2<1 (20)
where 2, F, and D are the equivalent matrices for operators
{-}1a» Fu, and “ay, respectively, and tixg = 2Re{d + d*},
where (-)* denotes the complex conjugate. In order to solve
(20), we adopt an Augmented Lagrangian (AL) approach, oth-
erwise known as the method of multipliers (e.g., see [39]), in
which an alternating minimization is performed over a set of
surrogate variables. We first write (20) as the constrained opti-
mization problem

min J = ||QFDEix — §)3 + pTGV2{i}
st. Um €E, F=im, |[V]2<1

2
which we then solve using the AL formulation
min £ = ||QFDEiign — §||2 + pTGVZ{F}
+ [l — 713
+{Nig —T), stiug€eE, ||[V[]2<1 (22)
where X is an auxiliary variable whose role is similar to that
of a Lagrange multiplier, 3 is the “penalty coefficient,” and {-)

denotes an inner product. Here, we propose a four-step scheme
for solving (22)

g pp1 =arg min |QFDE, dx — §|3
: igck

Xn
+mmmfmf~gm§ (23)

Vupr =arg min [QFDEdx p1 — g2 (24)

¥1l2<
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- . — = Xn 4 4 -

Fpt1 = arg min||tg pq1 — (F— F)H% + I%TGV(ZM{I'}
(25)

An+1 = An + ﬁ(ﬁiﬂ,n+l - I_:'n,—&-l)' (26)

The ¥ subproblem (25) is referred to as the total (generalized)
variation denoising problem, whose solution can be obtained
using the primal-dual method originally proposed in [32]. To
solve the tiy subproblem, we use a projected gradient approach,
whereby at each internal iteration, /, U is updated as

tonges = Pe (s - pVEGER0) @D
where L is an appropriate upper bound on the Lipschitz constant
of'the gradient, and ‘P is the Euclidean projector onto the set C,
which in our case (C' = E) amounts to projecting the solution
onto the f/ = 0 plane, followed by the projection Pr+(z) =
max{0, z}. The gradient, V L(tin ;) is given by

VL(dw,) = 230{ (EHDHFHQHQFDE‘. + m) o

—=HpHFRHQHs ﬁ(f’ 5) } (28)

B

where (-)# represents the Hermitian transpose and I the identity
matrix. For completeness, the adjoint operations 0 and D¥ ,
can be characterized as a zero-filling, and an appeal to Defini-
tion 1 with a flip of sign, respectively. Also worth mentioning
is that the above forward and adjoint matrices need not be ex-
plicitly constructed in practice, as the associated operations may
be applied point-wise along the temporal axis. Finally, the con-
vergence speed of (23) may be significantly improved by em-
ploying a fast projected gradient scheme such as [28], [40].

A solution to the ¥ subproblem may be found after a substi-
tution of (18) into (24)

Vpt1 = arg | n”ﬂn |IQFDIV — 5|3 29)
v 2<1

which can be also solved using projected gradient methods,

where the projection step is given by

Pla) = { B el 21

. 30
x, otherwise (30)

One advantage to using the AL framework is that unlike tradi-
tional penalty methods,  does not need to grow very large in
order to establish equivalence between (20) and (22). Nonethe-
less, we employ a continuation strategy, steadily increasing 3 in
an outer loop once convergence has been reached over the al-
ternating minimization routine, in order to hasten convergence.

III. MATERIALS AND METHODS

A. Synthetic Data

In order to validate the proposed method, we examine
reconstructions made available through the use of synthetic
data. For these experiments, a numerical phantom was utilized
consisting of three compartments (Fig. 2), using a square FOV
([-0.5...0.5] x [-0.5...0.3]) and a 128 x 128 Cartesian
sampling grid. An inhomogeneity map was also simulated at

1857
250
7 A
200 60
150 50
40
100 30
20
50 10
0 0
5 4 3 2 1
m
60 pp
40 po
ool 60 B
50
0 40
Hz o 30
-40 20
10
-60 0
-80 5 4 3 2 1
-100 ppm

Fig. 2. Synthetic phantom composition and simulated static field inhomo-
geneity map (lower left).

the same resolution, using a fourth-degree polynomial model
along each Cartesian dimension, which was then thresholded by
the combined spatial support of the compartments. To emulate
changes in magnetic susceptibility between the compartments,
additional Laplacian-of-Gaussian filtered images (Gaussian
kernel full width at half maximum: three pixel units) for each
compartment were added to the final By map. To each com-
partment, a unique spectrum with fixed temporal resolution
(T = 1024) was associated. The final synthetic dataset was
obtained by constructing the kernels for each compartment,
Hilk;, t,,] [see (4)] from the high-resolution compartment
images and the By map, and multiplying by the corresponding
FID. The measurement process was simulated by selecting
the central phase encodes of the resulting dataset, which we
took to be a 32 x 32 Cartesian sampling grid in %k-space, and
adding Gaussian white noise to the simulated MRSI data. To
examine the robustness of the reconstruction to various noise
conditions, five realizations for each of three noise scenarios
were generated, corresponding to mean SNR values of 13.98,
10.02, and 7.03 dB, to which we further refer as Case 1, Case 2,
and Case 3, respectively.

B. Phantom MRSI Data

To test the performance of our algorithm using actual MR
scanner data, we acquired two CSI datasets on a 3.0T Siemens
Trio (Siemens Healthcare, Erlangen, Germany), using a two-
compartment phantom (Fig. 3). The inner compartment (A) con-
sists of a sphere (diameter = 8.7 cm), containing a solution of 50
mmol/L N-acetyl-aspartate (NAA) and 50 mmol/L creatine (Cr)
in doped water. The outer cylindrical compartment (B) (height =
13.5 cm, diameter = 10.5 cm) is filled with corn oil. Single-voxel
spectra were acquired for each compartment using a PRESS se-
quence (voxel size = 15 x 15 x 15 mm, TR = 1700 ms,
TE = 288 ms, bandwidth = 2 kHz). As abrief caveat, the NAA
and Cr resonances in the inner compartment PRESS spectrum
[Fig. 3(A)] should display roughly equal peak heights. Though
the integrated peak areas are indeed equivalent, the amplitude
discrepancy is due to variations in linewidth. Water-suppressed
CSI data were acquired from a 10 mm slice thickness positioned
at the center of the inner compartment (FOV = 160 x 160 mm,
TR = 1700 ms, TE = 288 ms, bandwidth = 1.5 kHz, number
of FID sampling points = 1024) using both 32 x 32 and 64 x 64
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Fig. 3. 'H Phantom composition and acquired static field inhomogeneity map
(lower left).

sampling grids. During the same scanning session, a map of
local static By field variations was estimated by acquiring two
spoiled gradient echo sequences corresponding to the FOV of
the CSI (grid size = 128 x 128), each chosen with different echo
times such that their difference, ATE, ensured that the water
and fat resonances were in phase. Though two different CSI grid
sizes were acquired, reconstructions were performed only using
the lower resolution (32 x 32) data.

Prior to reconstruction, an initial estimation must be made for
the dimensionality of the working subspace, K. For both the
synthetic and 'H phantom datasets, K was determined from
the raw measurement matrix, S € CM*T) using the method
of [41]. Though a detailed exposition is beyond the scope of this
paper, the method effectively parametrizes a conjugate prior dis-
tribution on the set of bases, and selects the dimensionality of the
probabilistic PCA model that maximizes the Bayesian evidence.
Ultimately, as K is selected based upon the inhomogeneity-
corrupted measurements, we consider it as an upper-bound on
the true underlying data dimensionality, K, such that Ky > K.
In our case, K was chosen as 25 and 32 for the synthetic and 'H
phantom datasets, respectively. For the synthetic data, the regu-
larization parameter, 1+, was determined empirically to minimize
the PSNR between the reconstructed data and the ground truth,
allowing us to find an € such that |QF A {UV} — S||r <
¢||S||F- In our experiments, we found for Case 1 an ¢ = 0.067
(e = 0.163 and € = 0.314 for Case 2 and Case 3, respectively),
which was then in turn used to compute p for the 'H phantom
dataset. In all scenarios, qualitatively and quantitatively supe-
rior reconstructions were obtained when initializing U and V
as random matrices, as opposed to, say, the first Ky components
resulting from a SVD of the adjoint solution (see below). All
computations were carried out in MATLAB 8 (The Mathworks
Inc., Natick, MA, USA) on an Intel Xeon 3.33 GHz six-core
processor under Mac OSX 10.8.2 with 32 GB RAM. For the
presented experimental data, computation times ranged between
100-130 min, though significant speedups are anticipated upon
migrating to GPU-based implementations.
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IV. RESULTS

A. Synthetic Data

Representative spectra (Case 1) from each reconstruction
method are displayed in Fig. 4. The reconstruction in column
II was generated by sequentially applying each of the adjoint
operators, QH, F¥ and D¥ to the raw MRSI measurements.
For quantitative evaluation, each of the given spectra, as well
as the reconstructed spatio-spectral volume as a whole, was
compared to the ground truth data. The resulting mean PSNR
values across realizations for each SNR scenario are collected
in Table II. Following reconstructions, the SVD was computed
for representative datasets in each case; the resulting singular
value spectra are provided in Fig. 6(a)—(c).

B. Phantom MRSI Data

As with the synthetic case, a few representative spectra re-
constructed by each method are shown in Fig. 5. In this case,
the 64 x 64 reference CSI data has replaced the adjoint recon-
structions presented in Fig. 4. The final singular value spectrum
is given in Fig. 6(d).

V. DISCUSSION

A. Synthetic Data

The limitations associated with MRSI reconstructions by
low-resolution inverse Fourier transform are clearly visible in
Fig. 4 (I). The spectral leakage artifacts, while expectedly severe
near the compartment interface [I(d)], propagate even through
the FOV center [I(b)], demonstrating the profound effects of
the PSF. Concomitant lineshape distortions and spectral shifts
are also apparent throughout the reconstructed data. Similarly,
though the adjoint reconstruction (II) effectively compensates
for the inhomogeneity-induced shifts, it is unable to exploit
the full high-resolution information from the field map, and to
mitigate the PSF effects. In contrast, reconstructions using the
proposed method (IIT and IV) best approximate the ground truth
spatio-spectral distribution, offering vastly improved spatial
localization and spectral lineshapes. Though the merits of the
TGV penalty can be clearly recognized via improved spectral
quality in IV(a), IV(b), and markedly reduced spectral leakage
from the outer-most compartment [IV(c), IV(d)], it can intro-
duce slight partial-volume effects, which are most pronounced
around areas containing differing spectral signatures which
are small in comparison to the nominal CSI voxel size [IV(c)
versus III(c)]. Nonetheless, Table II shows that by and large,
the TGV regularization provides the best reconstruction quality
by abating the most degrading influences.

B. Phantom MRSI Data

Looking to the 'H MRSI phantom data (Fig. 5), one notices
many of the same artifacts in the standard Fourier reconstruc-
tion (I) that were also prevalent in the synthetic case, namely,
those due to spectral leakage, especially near the compartment
interface. Spectral shifts and lineshape distortions due to the
static field inhomogeneity (whose profile is shown in Fig. 3)
are also readily seen. For comparison, corresponding spectra
taken from the 64 x 64 Fourier reconstructed data are shown
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TABLE II
SYNTHETIC DATASET MEAN PSNR VALUES PLUS STANDARD DEVIATIONS FOR THE SELECTED SPECTRA AND FULL RECONSTRUCTED DATASETS (dB).
FINAL ROW REFLECTS MEAN VALUES OVER ALL VOXELS ACROSS REALIZATIONS

RECONSTRUCTION METHOD
SPECTRUM IFFT ADJOINT PROPOSED (NO TGV) PROPOSED
Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3
(a) 17.55+0.02 | 17.334+0.04 | 17.04 £0.05 | 21.60+£0.03 | 21.04+0.08 | 20.34 £0.06 | 38.21 £3.28 | 31.42+4.84 | 26.56+1.22 | 41.99£3.23 | 37.85+£1.93 | 35.68+1.68
(b) 15.01+£0.03 | 14.714+0.05 | 14.25£0.04 | 21.12+£0.07 | 20.17+0.09 | 18.72£0.04 | 35.31 £1.80 | 29.27+£0.71 | 24.89+£0.67 | 36.62+1.10 | 32.91£0.39 | 30.41£0.19
() 17.61£0.04 | 17.30+£0.07 | 16.89+£0.07 | 21.224+0.04 | 20.52+£0.05 | 19.75+0.06 | 36.53 +£2.02 | 27.97+ 1.87 | 27.07 £ 1.50 | 36.30 £2.59 | 32.29+1.81 | 30.51 +1.39
[GY] 18.30 £0.04 | 18.14+£0.04 | 17.86+0.04 | 20.82+0.03 | 20.54 £0.04 | 20.04 £0.05 | 38.13+1.57 | 33.844+2.09 | 30.10£1.72 | 40.98 £3.16 | 39.04+2.44 | 36.62+ 1.51
() 18.32+0.00 | 18.314+0.01 | 18.30£0.01 | 24.64+£0.01 | 24.62+0.03 | 24.56 £0.01 | 48.27 £2.01 | 41.69+£2.75 | 38.55£2.42 | 48.29+4.11 | 46.31 £0.82 | 4445+ 1.19
(f) 19.50 £0.00 | 19.4940.01 | 19.47£0.01 | 23.39+0.01 | 23.374+0.01 | 23.33£0.03 | 51.67£1.20 | 45.57+0.68 | 4047+ 1.73 | 48.79£1.83 | 47.92+£0.63 | 43.99+1.91
FULL - - - 20.61 £0.00 | 18.26+0.00 | 16.414+0.00 | 44.88+4.85 | 31.77+£0.27 | 27.214£0.26 | 48.994+1.04 | 43.81+1.29 | 38.35+4.21
I II III v
Adjoint Proposed (no TGV) Proposed

bl Ll
5 4 1
()
60 60 [
50 50 |
40 40|
30 30|
o o L
10 10
60 60 -
40 40| ‘ _._._.....A._J\.JMU\
2 A A = 2 A A N/
6 5 4 3 2 1 6 5 4 3 2 1 6 5 4 3 2 1
© G (d)
200 200 200 200[ 200 200 200 200f ]
150 150} 150 150 150 150 150 150 |
100 wui 100 100 100 100 100 100
50 )UL =f 1l 501 M 50 M 50 50 50 50|
= | 120 120 A 4 s 1
150 150 4 |
2 | Y I K )\ AN 2L Y LN
64 @ 2 1 6 5 4 3 2 1 5 4 3 2 1 3 2 1 5 4 8 2 1 6 5 4 3 2 1 5 4 3 2 1 6 5 4 3 2 1
(® ® © ® © ® © ®

Fig. 4. Reconstructed images for synthetic MRSI data (Case 1) along with representative spectra (real part shown) for each of the described methods: (I) standard
inverse Fourier transform, (II) direct application of the adjoint operators, (III) proposed method with ;2 = 0, (IV) proposed method with TGV regularization.
The absolute error between each spectrum and the ground truth is plotted in red (note the changes in vertical axis scaling). Images were generated by taking the
magnitude of the first FID sample point at each spatial location. Horizontal axis units for spectra are ppm.

in (II), where improved spatial localization and reduced spec-
tral leakage can be observed at the expense of SNR. Unlike the
synthetic case, in which the forward model was used to sim-
ulate the MRSI measurements, the 'H reconstructions using
the proposed method (III and IV) underscore the indispens-
ability and efficacy of the TGV penalty. While the proposed
method without the TGV regularization (III) is able to recover
the general phantom geometry, the lack of additional spatial
constraints render the method incapable of recovering uncon-
taminated spectra, and hence little is gained by way of spectral
quality over standard Fourier reconstruction. Though null-space
contributions are presupposed given the ill-posedness of the
nonregularized reconstructions, a possibly incomplete measure-
ment model, as discussed in greater detail further on, may ex-
plain the observed and seemingly exacerbated phase perturba-
tions, as well as the inaptitude of the synthetic data in antici-
pating such artifacts. Alternatively, visual comparison between

(IT) and (IV) encourages the notion that the TGV penalty pro-
vides the necessary conditioning to recover the true underlying
spatio-spectral distribution. Indeed, though some influence from
the outer compartment can be discerned in IV (a)-IV(d), the
severity is greatly attenuated over reconstructions (I-I1II).

It is important to consider throughout these analyses that the
desired outcome in the synthetic MRSI dataset would be such
that the final reconstructed dataset lie completely within a three-
dimensional subspace corresponding to the three ground-truth
compartments, i.e., a SVD would yield only three nonzero sin-
gular values. Likewise, the ideal reconstructed ' H MRSI dataset
would lie within a 2-D subspace, corresponding to the inner and
outer phantom compartments. In practice, however, such cov-
eted outcomes are necessarily precluded by both the discrete
nature of the data acquisition process, and to the ill-posedness
of the reconstruction itself in the face of limited measurements.
Nonetheless, the proposed method does produce reconstructions
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Fig. 5. Reconstructed images for ! H MRSI data along with representative spectra (real part shown) for each of the described methods. (I) standard inverse Fourier
transform (32 x 32). (I) standard inverse Fourier transform (64 x 64). (III) proposed method with ¢ = 0. (IV) proposed method with TGV regularization.
Images were generated by taking the magnitude of the first FID sample point at each spatial location. Horizontal axis units for spectra are ppm.
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Fig. 6. Singular value spectra for reconstructed datasets. (a) Synthetic data
(Case 1). (b) Synthetic data (Case 2). (c) Synthetic data (Case 3). (d) *H MRSI
phantom.

in which the energy is primarily captured by just a few singular
values, thereby suggesting ultimately low dimensional repre-
sentations (Fig. 6). Although this apportioning plainly promotes

the first three components in the synthetic case (which in turn
best represent the ground truth spectral distribution), the situ-
ation clearly becomes more complicated in experimental set-
tings [Fig. 6 (d)]. This is likely due to the presence of addi-
tional dynamic field perturbations, such as residual eddy cur-
rents caused by the gradient coils, which cannot be captured
by a static By inhomogeneity profile. Additionally, an inappro-
priate choice of ATE, insufficient SNR, or significant varia-
tions along the through-slice dimension can lead to an inac-
curate measured By map, which would thereby be unable to
fully account even for the static inhomogeneities. Furthermore,
variations in the By field, additional off-resonance effects, mo-
tion-induced artifacts, or dynamic susceptibility variations due
to flow phenomena in in vivo settings may introduce additional
complexities which are unaccounted for by the basic acquisition
model (8). A number of challenges therefore remain, coinciding
with numerous active areas of research in MR spectroscopy and
spectroscopic imaging. With regards to residual eddy current
correction, several postprocessing methods have been devel-
oped, many of which use some type of reference signal (internal
or external, e.g., [42], [43]), self-deconvolution [44], or even
wavelets [45]. Most of these methods, however, were envisaged
with regards to single voxel measurements, and their application
to MRSI datasets would represent a significant increase in com-
putation or acquisition time. In [46], a dynamic field camera
[47], [48] monitors the field evolution during a given acquisi-
tion. The signal phase evolution is then estimated by fitting a set
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of solid spherical harmonic basis functions (up to third order) to
the phase time courses of an array of NMR probes positioned
around the sample.

Also worthy of mention is the fact that in the presented 'H
experiments, a relatively long echo time of 288 ms was chosen
for the CSI acquisitions. Alternatively, short TE measurements
are warranted in certain applications for which spectral infor-
mation from shorter 75 species is desired, which occasion ad-
ditional encumbrances such as a less efficient water suppres-
sion, an increased lipid/metabolites ratio, and a more complex
background spectral profile. Accordingly, commensurate com-
pensatory mechanisms, for example, additional outer volume
suppression (OVS) pulses to reduce the lipid signal, more ro-
bust water suppression techniques, or even explicit modeling of
nuisance components, may be required in order to ensure accu-
rate reconstruction.

A few words are merited with regards to the modeling
assumptions behind the reconstruction framework. In essence,
our scheme seeks a compromise between two broad general-
izations about the problem geometry. The first, as has already
been discussed, adheres to the validity of a bilinearly-repre-
sentable functional form for the spatio-spectral distribution,
whose dimensionality is ultimately low. We constrain our
solutions to those matching this criteria by effectively placing
an upper-bound on the data dimensionality, and restricting
the reconstruction process to the circumscribed subspace.
Though the nonconvexity of the problem undermines the
uniqueness of the decomposition (in the absence of additional
assumptions), the components themselves may undergo any en-
ergy-preserving reparametrization, which affords the user some
flexibility with visualization. The SVD, for example, represents
a parametrization enabling a user to view uncorrelated high-res-
olution spatial eigen-maps or eigen-spectra sorted by explained
variance, though many other matrix factorizations may be
conceived. The second, enforced via the total generalized vari-
ation-based spatial regularization, is that spatial components
are represented as piecewise linear functions (piecewise con-
stant with classical TV penalties), thereby restricting solutions
to those that would be considered as physically plausible.
Consequently, the regularization plays an important dual role
which underlies the method’s efficacy. In the absence of the
regularization term, the reconstruction would consist entirely
of linear operations, and the circumstances would revert back
to those where explicit a priori models are needed in order
to improve the problem conditioning. The nonlinearity of TV,
however, intrinsically prescribes the geometrical framework
for the high-resolution model, leaving remaining parameters
to be estimated in the most data-consistent manner within the
established subspace. Nonetheless, it is the synergy between the
TV regularization and the high-resolution field map which fur-
nishes the necessary problem conditioning for high-resolution
MRSI reconstruction. Though TV is an important ingredient,
its efficacy in extrapolating high-frequency information is
diminished when considering higher degrees of sub-sampling.
By not only stipulating the geometrical framework, but also
injecting the implicit high-resolution information contained in
the field map, the ill-posedness of the reconstruction is signifi-
cantly abated. This obviates the spatial and spectral distribution
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equivalency posited by SLIM and its variants, and hence the
need for supplementary structural MR images and the dilemma
of optimally determining the compartments.

We note that similar spatial constraints were employed in
[16] using classical TV penalties, though reconstructions were
achieved on a lower resolution sampling grid. Minimization was
also performed over the joint variable, P [see (10)]. While this
formulation restores convexity, it compels the use of spatial reg-
ularization at each temporal sample point, thereby increasing the
computational burden, especially if more sophisticated regular-
ization or processing is later desired. Furthermore, the virtue of
TV-based spatial regularization may diminish along the tem-
poral dimension due to 7% decay, whereby noise tends to dom-
inate the signal. In contrast, the bilinear model confines the
needed spatial regularization operations to those maps lying
within the working subspace of dimensionality K, where often
times K < min{M,T}. Another important distinction is that
whereas [16] limits the admissible spectra to sparse combina-
tions of Diracs and polynomials, we refrain from such explicit
spectral parametrizations in order to observe the full temporal
dynamics of the signal. As a final merit, it should be noted that
our method remains fully compatible with non-Cartesian sam-
pling strategies, thereby broadening its suitability for a wide
array of MRSI acquisition types.

From a clinical standpoint, the potential utility of such
data-driven spectral localization procedures is extensive. One
particularly befitting application, and one for which MRSI
has gained notoriety as a promising adjuvant diagnostic or
prognostic tool, is in the study of brain tumors (for a review,
see [49]). For example, while contrast-enhanced structural MRI
is a powerful and noninvasive diagnostic aid, its specificity
for differentiating between tumor types, neoplastic and non-
neoplastic lesions, and identifying regions of active tumor is
minimal [50]-[54]. A number of studies have highlighted the
discriminating capability of MRSI in differential diagnostics,
emphasizing its capacity for elucidating tumor heterogeneity
[55]-[59]. Additionally, some studies on high-grade gliomas
reported that the extent of the spatial maps of metabolic abnor-
mality derived from MRSI measurements often exceeded the
pathological volume defined on the accompanying structural
MR images [60]-[63], and that correlations with tumor recur-
rence following radiosurgery could be observed [64]-[66]. Such
findings consequently impugn the adequacy of structurally-de-
fined spatial models such as SLIM, which can be even further
confounded by the difficulty in segmenting the types of diffuse
and poorly-defined border regions characteristic of high-grade
gliomas [67], [68]. The use of more data-driven approaches
therefore serves as an attractive alternative in extracting de-
lineating spatial information offered by MRSI, which can be
crucial in determining appropriate patient-specific treatment
strategies.

VI. CONCLUSION AND FUTURE WORK

In this work, we have developed a novel approach for the re-
construction of MRSI data which overcomes a number of limi-
tations associated with standard inverse Fourier methods, most
notably spectral leakage artifacts and rectangular pixel sizes,
and requires only a By inhomogeneity map as an additional
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measurement. What’s more, the method does not require an ex-
plicit spatial model, perhaps the most tendentious aspect of the
SLIM approach, which thereby allows for the analysis of MRSI
data on a much more general level. We demonstrated improved
reconstructions in both synthetic and * H MRSI phantom studies
over their standard inverse Fourier counterparts. Currently, our
method is able to effectively nullify the impact of static By inho-
mogeneities only, and the effect of dynamic phase perturbations
will be studied in future work. With the aim to further improve
reconstruction quality, we also plan to extend our approach to
multi-slice MRSI acquisitions, and to explore alternative sam-
pling strategies tailored to our reconstruction formulation.
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