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The notion of non-invasive, high-resolution spatial mapping of metabolite concentrations has long
enticed the medical community. While magnetic resonance spectroscopic imaging (MRSI) is capable of
achieving the requisite spatio-spectral localization, it has traditionally been encumbered by significant
resolution constraints that have thus far undermined its clinical utility. To surpass these obstacles,
research efforts have primarily focused on hardware enhancements or the development of accelerated
acquisition strategies to improve the experimental sensitivity per unit time. Concomitantly, a number
of innovative reconstruction techniques have emerged as alternatives to the standard inverse discrete
Fourier transform (DFT). While perhaps lesser known, these latter methods strive to effect commensurate
resolution gains by exploiting known properties of the underlying MRSI signal in concert with advanced
image and signal processing techniques. This review article aims to aggregate and provide an overview of
the past few decades of so-called ‘‘superresolution” MRSI reconstruction methodologies, and to introduce
readers to current state-of-the-art approaches. A number of perspectives are then offered as to the future
of high-resolution MRSI, with a particular focus on translation into clinical settings.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Magnetic resonance spectroscopic imaging (MRSI) is a unique
molecular imaging modality that offers simultaneous spatial and
spectral localization, and has become a powerful clinical research
tool. The potential functional or pathological insights that may
be obtained, perhaps even prior to the presentation of any struc-
tural or behavioral aberrations, through non-invasive spatial map-
ping of metabolite concentrations has long captivated the clinical
research community. Yet despite its allure, MRSI has been tradi-
tionally encumbered by a number of practical limitations. The fore-
most impediment stems from the relatively low tissue metabolite
concentrations, producing signals that are often vastly over-
whelmed by those originating from the primary solvent or chemi-
cal background. Furthermore, the need to encode the MR signal
along an additional temporal dimension precludes the use of many
efficient acquisition schemes normally exploited in structural MR
imaging, and leads to greatly protracted exam durations. Taken
in conjunction, these considerations ultimately necessitate com-
promises in the data collection process that may carry significant
consequences with respect to the final reconstructed data.
In most clinical settings, MRSI data are acquired on a rectilinear
k-space grid, where typically only low spatial frequency informa-
tion (which generally accounts for the greatest portion of the total
signal energy) is encoded in order to maximize the experimental
sensitivity while minimizing the overall exam time. This basic
acquisition approach is also commonly referred to as a chemical
shift imaging (CSI) experiment, and will be referred to as such
for the remainder of the text. The data are then customarily recon-
structed by means of the inverse discrete Fourier transform (DFT).
While this type of standardized acquisition/reconstruction proto-
col is often pragmatic, the resultant voxel sizes following DFT are
typically on the order of 0.5–2.0 cm3. Such coarse resolutions pre-
clude the ability to identify subtle spatial features in the spectro-
scopic signal, thereby limiting the overall impact of MRSI.
Moreover, this strategy necessarily entails a broad system point-
spread function (PSF), precipitating so-called spectral leakage
effects whereby local spectra are contaminated by signal contribu-
tions originating from spatially remote regions, for example, the
extra-cranial lipids in 1H studies of the brain. Although standard
pre-processing pipelines often include additional k-space filtering
steps to mitigate these effects, such methods tend to incur further
losses in an already insufficient spatial resolution. Another com-
mon approach is to refrain from exciting/refocusing the signal from
known ‘‘nuisance” components during the acquisition through
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Table 1
Various mathematical notations used throughout the manuscript.

j Imaginary unit such that j2 ¼ �1
z� Complex conjugate of the complex number z
1C Characteristic function of the set C
PC Euclidean projector onto the set C

XH Hermitian transpose of the matrix X

j � j Absolute value of the argument
kfkLp Lp-norm of a continuous-domain function,

kfkLp ¼
R
X jf jpdm

� �1=p 1 6 p < 1
supx2X jf ðxÞj p ¼ 1

�
kxk‘p ‘p-norm of a vector,

kxk‘p ¼
PN

i¼1jxij
p

� �1=p
1 6 p < 1

maxðjx1j; . . . ; jxN jÞ p ¼ 1

(
kXkF Frobenius norm of a matrix, kXkF ¼

P
i;jjXi;j j2

� �1=2
kXkS Absolute sum norm of a matrix, kXkS ¼

P
i;jjXi;jj

� �
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localization methods such as STEAM [1–3] or PRESS [4–7]. How-
ever, such techniques preclude the use of non-rectangular volumes
of interest (VOIs), which may consequently exclude portions of the
anatomy of interest as well.

Over the past few decades, concerted efforts have been made in
order to surmount the aforementioned limitations that have thus
far encumbered MRSI. Although by no means mutually exclusive,
these endeavors can typically be characterized as falling into one
of two categories. The first pertains to the acquisition process,
where a number of accelerated schemes have been developed in
order to probe more distal regions in k-space while maintaining
comparable signal-to-noise ratios (SNR) and sensitivities per unit
time to traditional encoding strategies. The second revolves around
the reconstruction procedure itself, whereby alternative methods
have been sought that aim to circumvent the resolution and geom-
etry restrictions imposed through direct use of the DFT. While the
former have been mostly circumscribed by MR-specific literature
(for reviews, see [8,9]), descriptions of the latter have been some-
what fragmented throughout the biomedical imaging, signal pro-
cessing, as well as MR communities. The aim of this review is to
therefore familiarize readers with these so-called ‘‘superresolu-
tion” reconstruction methods, providing some historical back-
ground while focusing on current state-of-the-art approaches.
We then conclude with some perspectives on the various difficul-
ties that have thus far impeded the translation of such endeavors
into routine clinical settings.
2. What is meant by superresolution reconstruction?

Superresolution in MRSI can essentially be described as the con-
cept of reconstructing a dataset at a higher spatial resolution than
that which would be typically dictated by the nominal measure-
ment voxel size, while simultaneously achieving a similar or higher
SNR. However, contrary to conventional notions of superresolu-
tion, whereby ancillary encoding techniques are employed in order
to transcend fundamental limits imposed by the system PSF, such
enhancements are achieved within the context of the current sur-
vey primarily through the use of sophisticated computational
methods that exploit expected signal characteristics and known
system properties. This could cover, for instance, tailored denoising
schemes that attempt to improve the SNR of high-resolution MRSI
datasets achieved through accelerated acquisitions, or simply
attempts to generate high-resolution spatial metabolite profiles
in the wake of limited k-space data, thereby defining a classical
‘‘inverse problem”. Regardless, such issues are generally
approached by introducing some type of a priori knowledge per-
taining to the acquisition process and/or the imaged object itself,
which forms the basis for a corresponding signal model. Such prior
information may stem from properties ascertained through atten-
dant acquisitions, the set of physical principles governing the mea-
surement process, or may simply reflect a wealth of qualitative
observations and precepts obtained through years of clinical expe-
rience. Whatever the case may be, the fundamental challenge for
any prospective reconstruction scheme is to successfully translate
such knowledge into a quantitative and robust framework. The fol-
lowing sections describe the primary foundations and principles
underlying superresolution MRSI reconstruction, highlighting
some of the key developments leading up to current state-of-the-
art methods. For preliminary definitions and notations, readers
are referred to Table 1.
3. The model-based reconstruction framework

Disregarding relaxation effects, as well as added experimental
confounds such as noise or spatially-dependent inhomogeneities
in the local magnetic field or radiofrequency profile, the MRSI sig-
nal can be expressed as:

sðk; tÞ ¼
Z 1

�1

Z
X�R3

qðr; f Þe�2pjðk�rþftÞ drdf ; ð1Þ

where q is the spatio-spectral distribution of the object, and X its
spatial support. As with any digital imaging system, however, the
MR scanner does not furnish a continuous stream of observations,
but rather samples the observed signal and stores a collection of
discrete measurements. The practicable discrete data can therefore
be expressed as:

~S ¼ Afqg þ N ð2Þ
¼ Sþ N; ð3Þ

where A is a continuous-to-discrete linear mapping that represents
the acquisition scheme – consisting in this case of a forward Fourier

transform evaluated over the set X ¼ K� T , where K ¼ fkmgMm¼1

and T ¼ ftigTi¼1 denote the prescribed k-space and temporal sam-
pling locations, respectively – and N represents additive noise orig-
inating primarily from the coil and scanner electronics. Here,
~S; S;N 2 CM�T are given as complex-valued M � T matrices, where
each row represents the observed temporal signal corresponding
to a particular k-space location, km.

On a fundamental level, the aim of the reconstruction is to
obtain a faithful estimate of q from the observed (noisy) measure-
ments. As the noise distribution of standard quadrature-detected
MR signals is generally assumed to be zero-mean additive white
Gaussian (AWGN), i.e., pðNÞ � N ð0;r2Þ, where r2 is the noise vari-
ance, estimates of q in (2) could be found through a maximum like-
lihood framework as:

q̂ ¼ arg max
q

p Afqg þ Nj~S
� �

ð4Þ

¼ arg max
q

p Nð Þ

¼ arg max
q

1
2pr2

� �1=2

e�
~S�Afqgk k2F

2r2

¼ arg max
q

log
1

2pr2

� �1=2

e�
~S�Afqgk k2F

2r2

 !

¼ arg max
q

�k~S�Afqgk2F
2r2

 !
þ C

¼ arg min
q

k~S�Afqgk2F : ð5Þ

In essence, the above procedure amounts to finding an estimate of
q that, under the model and noise assumptions, yields a set of



Fig. 1. Typical MRSI data acquisition and display. Here, the MRSI data (delimited by
the outer white box marking the excitation volume) has been overlaid on a high-
resolution structural image acquired during the same scanning session. The false
color image represents a ZDFT reconstruction visualizing the spatial distribution of
the choline (Cho)/N-Acetylaspartic acid (NAA) ratio. The nominal in-plane voxel
dimensions, however, are delineated by the solid green lines.
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theoretical measurements that are maximally consistent with those
acquired in practice. Expression (5) itself is often referred to as the
‘‘least squares” (LS) or ‘‘linear regression” problem, and is often
regarded as the ‘‘variational formulation” within the wider study
of inverse problems.

Unfortunately, the integral defined by Afqg in (2) can seldom
be evaluated analytically for arbitrary object geometries, and must
therefore be approximated numerically. This is commonly accom-
plished by considering the fully-discretized expression:

~s½ti	 ¼ Ax½ti	 þ n½ti	: ð6Þ

Here, A 2 CM�N represents the discretized encoding scheme:

A ¼

e�2pjk1 �r1 e�2pjk1 �r2 � � � e�2pjk1 �rN

e�2pjk2 �r1 e�2pjk2 �r2 � � � e�2pjk2 �rN

..

. ..
. . .

. ..
.

e�2pjkM �r1 e�2pjkM �r2 � � � e�2pjkM �rN :

0BBBB@
1CCCCA; ð7Þ

where frngNn¼1 denotes the set of sampling points in the spatial
domain, while,

x½ti	 ¼

x1½ti	
x2½ti	
..
.

xN ½ti	

0BBBB@
1CCCCA; ð8Þ

contains the corresponding signal amplitude coefficients at each
temporal sample point, ti. For completeness, ~s½ti	 and n½ti	 represent
individual columns of ~S and N in (2), respectively. The resulting
reconstruction problem is then given by:

x̂½ti	 ¼ arg min
x½ti 	

~s½ti	 � Ax½ti	k k2‘2 ; ð9Þ

which admits a closed-form solution:

x̂½ti	 ¼ AHA
� ��1

AH~s½ti	 ¼ Aþ~s½ti	; ð10Þ

where ð�Þþ denotes the Moore–Penrose pseudoinverse.

4. Model-based reinterpretation of the DFT

In the case where (7) is square (M ¼ N), the matrix inversion in
(10) reduces to identity, thereby reproducing the standard inverse
DFT reconstruction. While a familiar and prominent tool, addi-
tional insights surrounding the DFT may be gained through the
above model-based formulation that carry a number of implica-
tions for MRSI reconstruction. First, although the DFT is often
regarded as an unbiased and generalized reconstruction procedure,
it does prescribe an implicit object model. This can be seen more
clearly by rewriting (6) as:

~s½ti	 ¼ A AHs½ti	
� �

þ n½ti	: ð11Þ

In other words, the DFT implicitly posits that the underlying object
is strictly band-limited (and periodic). A second and closely related
observation is that the precise ‘‘band-limitedness” of the model, and
consequently, the resulting reconstruction grid, is ultimately dic-
tated by K. Therefore, as the measurement protocol becomes more
stringent and fewer k-space encodings are permitted, the DFT
model will expectedly represent the underlying object by increas-
ingly coarse approximations (i.e., at lower spatial resolution).
Clearly, a much more accurate description of the measurement pro-
cess would follow by effectively decoupling the acquisition and
reconstruction grids, allowing N 
 M in (7), which can be consid-
ered as the crux of ‘‘superresolution” reconstruction. This actualized
as such, however, would customarily endow A with a large null
space, making the reconstruction in (10) ill-posed. To counter this
limitation, preliminary attempts at ‘‘superresolution” proceed by
appending the data with zeros prior to DFT, thereby artificially
inflating M up to the desired N. Commonly known as the ‘‘zero-
filled DFT solution” (ZDFT), this procedure generally produces more
visually appealing results (see Fig. 1), but does not introduce any
additional information content, and merely reflects spatial interpo-
lation of the low resolution data by the system PSF (the Dirichlet
kernel), which is fundamentally determined by K.
5. Reconstruction by Explicit Parametric Modeling

In light of the above discussion, it is natural to question whether
alternative parametrizations of the underlying signal, especially
those that exploit prior object knowledge, may be elected over
the discrete Fourier representation intimated by (11). Indeed,
although MRSI represents an ultimately unique modality, certain
properties of the MRSI signal may be shared among other modali-
ties for which resolution and SNR constraints are not as stringent.
One of the earliest methods to explore these relationships was the
spectral localization by imaging (SLIM) technique [10]. Standing in
the vanguard of so-called ‘‘constrained reconstruction”
approaches, SLIM postulated that the spatial distribution of chem-
ical species of interest tends to parallel that of water in biological
samples. Therefore, knowledge of anatomical features derived
from high resolution structural 1H MRI images – which are typi-
cally acquired as part of any standard scanning regime – could
be used as a priori information during spectroscopic image recon-
struction. In a typical SLIM experiment, the underlying object is
modeled as a superposition of K anatomically-defined compart-
ments, which are assumed to be spectrally-homogeneous, such
that:

qslimðr; f Þ ¼
XK
j¼1

1jðrÞqjðf Þ; ð12Þ
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where qj is the unknown spectrum, and 1j the characteristic func-
tion for the jth compartment:

1jðrÞ ,
1 r 2 compartment j
0 otherwise:

�
ð13Þ

Disregarding noise, and substituting (12) for q in (1), the unper-
turbed (i.e., theoretically predicted) MRSI signal can be expressed
as:

sðk; tÞ ¼
Z 1

�1

Z
X�R3

XK
j¼1

1jðrÞqjðf Þe�2pj k�rþftð Þdrdf

¼
XK
j¼1

Z
X�R3

1jðrÞe�2pjk�rdr|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
XjðkÞ

�
Z 1

�1
qjðf Þe�2pjftdf|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cjðtÞ

¼
XK
j¼1

XjðkÞcjðtÞ: ð14Þ

Echoing the previous discussion, while the theoretical signal is here
presented in the continuous domain (as will generally be the case
for the remainder of the text), the integral expressions in (14) can
be seldom evaluated analytically, leading to the following
discretization:

s½ti	 ¼ Xc½ti	; ð15Þ

where

X ¼

X1½k1	 X2½k1	 � � � XK ½k1	
X1½k2	 X2½k2	 � � � XK ½k2	

..

. ..
. . .

. ..
.

X1½kM	 X2½kM	 � � � XK ½kM	

0BBBB@
1CCCCA: ð16Þ

In other words, the specified object model effects a change of basis
from A (see (7)) to X for the observed signal. The corresponding
amplitude coefficients at each time point, c½ti	, can then be esti-
mated using the standard LS scheme as:

ĉ½ti	 ¼ arg min
c½ti 	

~s½ti	 � Xc½ti	k k2‘2 : ð17Þ

When contrasting (16) and its DFT counterpart ((7) with
M ¼ N), a number of important distinctions can be made. First
and foremost is that unlike the DFT, the number of basis elements
(columns of (16)) remain independent of the number of encoding
steps. In other words, reconstructed volumes are no longer circum-
scribed by the nominal voxel dimensions as dictated by the col-
lected k-space measurements. Rather, the compartments can be
said to define so-called ‘‘generalized voxels”, the geometries of
which can be adapted to local anatomical features and discretized
on the same high-resolution grids as those realized by structural
imaging. Secondly, the linear system defined by (15) remains
over-determined as long as the number of compartments does
not exceed the number of k-space measurements, thereby raising
the prospect of estimating the associated compartmental spectra
from as few as K phase encoding steps. Such reduced sampling
requirements could therefore translate to drastically reduced exam
times for certain applications where the compartmental model is
deemed appropriate. Other characteristics of the SLIM framework,
which are discussed in depth in [11,12], are that the noise sensitiv-
ity is inversely proportional to compartmental volume, and that
estimated spectra converge to the true compartmental average as
k-space coverages increases.

Since SLIM’s inception, a number of extensions have been pro-
posed that exploit the various advantages afforded by the basic
framework, some of which have been previously discussed in an
early review by Liang et al. [13], but which are included here for
convenience. For example, although the theory states that in
principle only K encoding steps are necessary to ensure a unique
solution to (17), certain choices for K may be more judicious than
others. The spectral localization with optimal pointspread function
(SLOOP) method [14] suggested a means for optimizing experi-
mental sensitivity while minimizing the potential for signal con-
tamination in a SLIM experiment. This was accomplished by
establishing a criterion for selecting K so as to tailor the spatial
response function (SRF) to the geometry of each compartment,
where:

SRFjðrÞ ¼
XM
m¼1

Xþ
j ½km	e�2pjkm �r: ð18Þ

Here, the SRF represents the spatial origin of all contributions to the
estimated signal associated with a particular basis element (i.e., the
compartments in the SLIM framework). Similar efforts include that
of [15], which sought to optimize K by minimizing the expected LS
error given the image support region. Another key advantage of the
SLIM framework’s dissociation from the elected k-space samples is
that it remains fully compatible with the bevy of accelerated acqui-
sition techniques that have been developed contemporaneously. For
example, [16] assessed the spectral contents of small lesions in
stroke patients by combining SLIM with sensitivity encoding
(SENSE) [17], allowing for even further reductions in scan time.

One of the most contentious aspects of the SLIM technique,
however, is its reliance upon the spectral homogeneity assumption
within each compartment. While appropriate or beneficial for cer-
tain applications, such expectations are rarely met in common clin-
ical settings. In reality, additional experimental confounds such as
field inhomogeneities, inappropriate designations for the number
or geometry of the compartments, registration errors, or any other
factors that may lead to discrepancies between the signal model
and the acquired measurements will engender additional artifacts.
In order to add flexibility to the basic model, the GSLIM method
[18] was proposed as a compromise between SLIM and traditional
Fourier reconstructions, profiting from both the implicit high-
resolution information furnished by the former while capturing
unanticipated spatial variations through the use of Fourier-type
spatial harmonics. In GSLIM, the spatio-spectral distribution is
modeled as:

qgslimðr; f Þ ¼
XL
l¼1

XK
j¼1

1jðrÞqjðf Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
qslimðr;f Þ

alðf Þe2pjkl �r; ð19Þ

such that the resulting signal becomes:

sðk; tÞ ¼
XL
l¼1

XK
j¼1

Z
X�R3

1jðrÞe�2pj k�klð Þ�rdr

�
Z 1

�1
alðf Þqjðf Þe�2pjftdf : ð20Þ

As qj and 1j are pre-determined using the original SLIM framework,
the GSLIM coefficients, al – designed to absorb any residual
spatially-dependent spectral variations – can be calculated by
expressing (20) in the temporal Fourier domain:

F tfsgðk; f Þ ¼
XL
l¼1

alðf Þ
XK
j¼1

qjðf Þ
Z
X�R3

1jðrÞe�2pj k�klð Þ�rdr|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
G k�kl ;fð Þ

; ð21Þ

and solving the ensuing (discrete) linear system.
To specifically address the contribution of local (static) field

inhomogeneities, the BSLIM method [19] relies on an additional
measured field map, Df ðrÞ, in order to correct for any concomitant
spectral shifts, which manifest as spurious spectral peaks or



J. Kasten et al. / Journal of Magnetic Resonance 263 (2016) 193–208 197
distorted lineshapes in the estimated SLIM spectra if unaccounted
for. The object model then becomes:

qbslimðr; f Þ ¼
XK
j¼1

1jðrÞqj f � Df ðrÞð Þ; ð22Þ

leading to a measured signal:

sðk; tÞ ¼
Z 1

�1

Z
X�R3

XK
j¼1

1jðrÞqjðf � Df ðrÞÞe�2pj k�rþftð Þdrdf

¼
XK
j¼1

Z
X�R3

1jðrÞe�2pj k�rþDf ðrÞtð Þdr|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Hjðk;tÞ

�
Z 1

�1
qjðf Þe�2pjftdf|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

cjðtÞ

¼
XK
j¼1

Hjðk; tÞcjðtÞ: ð23Þ

It is clear when contrasting (23) with (14) that the principal differ-
ence between the methods lies in the acquired time dependence of
the basis, Hj, which subsumes the position-dependent phase shifts
induced by Df ðrÞ. In other words, BSLIM fully subscribes to the com-
partmental homogeneity precept under the assumption that any
intra-compartmental spectral heterogeneities are solely attributa-
ble to local field variations. For a visual guide contrasting the vari-
ous SLIM-type basis functions, see Fig. 2.

Throughout the development of MRSI reconstruction method-
ologies, SLIM has remained a perennial force owing to its concep-
tual ease and extensibility. In addition to the above examples,
SLIM and/or its variants have also been utilized for 1H applications
using pre-clinical models of stroke [20], post-acquisition suppres-
sion of extramyocellular lipids in the human calf [21], as well as
for 31P studies of the human myocardium [22–24]. Nevertheless,
SLIM-type methods remain reliant upon explicit knowledge of
the underlying compartments, and are therefore fundamentally
circumscribed by the accuracy of the spatial priors. Furthermore,
Fig. 2. Example spatial basis functions employed by each of the SLIM variants. (a) Arch
matter (WM), and cerebrospinal fluid (CSF) as derived from accompanying high-resoluti
introduces additional Fourier-type harmonic basis functions, which are confined to the sp
the temporal frequency domain in accordance with a separately acquired high-resolu
components over the resulting manifold.
general difficulties in obtaining accurate segmentation data,
let alone possible inaccuracies in the basic presumption that
metabolite distributions parallel that of the structural anatomy,
have thus far limited SLIM’s utility in general clinical MRSI
applications.
6. Reconstruction via regularized approaches

The aforementioned concerns surrounding reconstruction bias
in the face of inaccurate or overly-constraining priors prompted
the reconstruction community to consider whether such knowl-
edge could be incorporated into the reconstruction procedure in
a ‘‘softer” or more flexible manner. Out of this dialogue grew an
increasing number of regularized methods, which allowed greater
control over the influence of the selected priors. Mathematically,
regularization typically assumes the form of an additional penalty
in conjunction with the standard quadratic term in the LS
framework:

x̂ ¼ arg min
x

~s� Axk k2‘2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
data consistency

þ RðxÞ|ffl{zffl}
regularization

; ð24Þ

where R (known as the ‘‘regularizer”) is a suitable metric for eval-
uating the chosen constraints. In this case, superresolution is
achieved not by explicitly parametrizing the basis functions com-
prising the object model as detailed in the previous section, but
by selecting the regularizer so as to ensure a well-posed reconstruc-
tion problem.

One early example using regularization is that of [25], in which
the sole a priori information is the spatial support region of the
entire imaged object. Adapting the well-established Papoulis–
Gerchberg (PG) algorithm [26,27], the reconstruction, dubbed as
the ‘‘finite support solution” amounts to minimizing the total
energy added by any extrapolated k-space coefficients, given the
high frequency content implicitly carried by the support region:
etypal SLIM basis functions, here consisting of segmented gray matter (GM), white
on structural reference scans (top, left) reflecting the water distribution. (b) GSLIM
atial support of the original SLIM basis functions. (c) BSLIM warps the SLIM bases in
tion local field inhomogeneity map (bottom, left), fitting the unknown spectral
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ĉ½f l	 ¼ arg min
c½f l 	

jj~s½f l	 � Fc½f l	jj
2
‘2
þ k c½f l	

HXc½f l	
� �

; ð25Þ

where ff lg
L
l¼1 is the set of discretized measurements in the temporal

frequency domain, X is a binary diagonal matrix specifying the
support region, and k 2 R is a parameter mediating the tradeoff
between data consistency and regularization bias. In this case,
improvements in the resulting PSF were reported throughout the
entire reconstructed volume when compared to ZDFT solutions,
but were primarily localized to the periphery of the support region
(where the prior information is strongest). As with the SLIM and
SLOOP methods, the advantages of the finite support solution
opened additional avenues for tailored acquisition strategies, for
example in [28], where k-space sampling locations were selected
so as to minimize leakage artifacts arising from intensity differences
between tissue types.

As a natural transition from the SLIM-type frameworks, the
method of [29] aimed to exploit the versatility afforded by
regularization-based reconstruction while retaining salient object
features identified by high-resolution structural MRI scans. In this
case, the primary GSLIM model is supplemented by local B-spline
basis functions such that:

qimbrðr; f Þ ¼
XL
l¼1

XK
j¼1

1jðrÞcj;lðf Þe2pjkl �r|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
compartmental basis functions

þ
XP2
p¼1

dpðf Þb3 r � rp
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
local basis functions

; ð26Þ

where b3 is a cubic B-spline function. Due to their compact support,
such functions maintain a greater capacity for representing local
intensity variations that would otherwise require significant Fourier
expansions, such as those attributable to small punctate lesions.
The signal model, which also accounts for static field inhomo-
geneities as well as positional inconsistencies between the struc-
tural and MRSI data, is then given by:

sðk; tÞ ¼
Z 1

�1

Z
X�R3

qimbrðT frg þ b; f Þe�2pj k�rþðfþDf ðrÞÞtð Þdrdf ; ð27Þ

where T frg þ b is an affine transformation. The reconstruction is
then formulated as the following optimization problem:

ĉ½f l	; d̂½f l	; T̂; b̂ ¼ arg min
c½f l 	;d½f l 	;T ;b

~s½ti	 � s½ti	k k2‘2

þ k kc½f l	k‘1 þ kd½f l	k‘1
� �

; ð28Þ

where T is the matrix representation of the linear operator compris-
ing the affine transformation. Here, the aim of the regularizer is to
promote solutions in which only a small subset of basis functions
are ‘‘active” at a given temporal frequency location, i.e., c½f l	 and
d½f l	 are ‘‘sparse” vectors in which only a small number of elements
are non-zero. Although the most conceptually straightforward
means of enforcing sparsity would be through the ‘0 pseudo-
norm, which returns the number of non-zero coefficients of an
input vector, this penalty is fundamentally non-convex. Indeed,
problems of the form:

arg min
x

~s� Axk k2‘2 þ k xk k‘0 ; ð29Þ

are NP-hard [30], and global minima can only be obtained through
computationally demanding combinatorial search methods or
heuristic approaches [31,32]. To therefore leverage the wealth of
efficient algorithms that have been developed for convex optimiza-
tion, the ‘0 penalty is often supplanted by the ‘1 norm as the closest
convex approximation. Solutions to (28) can then be found via an
alternating scheme, first estimating the GSLIM and B-spline coeffi-
cients, and then updating the transformation parameters in an iter-
ative fashion.

Although the above method affords greater flexibility to capture
unpredictable spatial variations in the metabolite profiles, there
may be cases where an even greater degree of data autonomy is
desired, thereby suggesting that compartment-based parametriza-
tions be eschewed in favor of those mechanisms whereby anatom-
ical constraints are made more implicit. In [33], an explicit
continuous model for the voxel representation of the underlying
spatio-spectral distribution is proposed:

qhhslðr; f Þ ¼
XN
n¼1

uðrn; f Þ/ r � rnð Þ; ð30Þ

where / is a box-shaped voxel function. The expected signal can
then be expressed as:

sðk; f Þ ¼
XN
n¼1

Z
X�R3

uðrn; f Þ/ðr � rnÞe�2pjk�rdr ð31Þ

¼
XN
n¼1

uðrn; f ÞUðkÞe�2pjk�rn ; ð32Þ

where U is the Fourier transform of /. Following correction for B0

effects, the reconstruction is formulated as the solution to the fol-
lowing regularized problem:

û½f l	 ¼ arg min
u½f l 	

k~s½f l	 � s½f l	k
2
‘2
þ k Lu½f l	k k2‘2 : ð33Þ

In this case, the regularization term consists of a spatial smooth-
ing operator, L, which penalizes local intensity variations
between neighboring voxels using anatomically-derived weighting
factors:

Luk k2‘2 ,
XN
i¼1

X
i<j
j2Xi

wi;jju½ri	 � u½rj	j2; ð34Þ

where the frequency dependence has been dropped for ease of
notation. In (34), Xi denotes the set of voxels that are spatially adja-
cent to ri. The weighting factors, wi;j, are generally pre-computed,
and can be adjusted to reflect confidences in the ascertained bound-
ary information (e.g., see Fig. 3(b)). One clear advantage of this for-
mulation is that it allows users to directly control (via k) the
influence of the anatomically-derived prior information. Moreover,
inconsistencies between structural and spectral content will tend to
manifest as degraded or biased denoising performance, rather than
as additional artifacts.

Until this point, constraints imposed by the methods described
above have been applied solely in the spatial domain, allowing the
estimated spectra to remain maximally consistent with the
observed measurements, given the appointed data model. As has
been discussed, this may result in unexpected spectral behavior
when discordancies exist between the model and the acquired
data. A number of methods have therefore sought to further con-
strain the reconstruction by prescribing models for both the spatial
and spectral components. In [34], the object model given by (30) is
supplemented by a set of box-shaped temporal frequency basis
functions, w:

qejmðr; f Þ ¼
XN
n¼1

XL
l¼1

vðrn; f lÞ/ðr � rnÞwðf � f lÞ; ð35Þ

where / is equivalent to that in (30). The predicted signal can then
be expressed as:

sðk; tÞ ¼ UðkÞWðtÞ
XN
n¼1

XL
l¼1

vðrn; f lÞe�aðrnÞte�2pjðk�rnþf ltÞ; ð36Þ



Fig. 3. Sample reconstructions of the NAA distribution of a healthy mouse brain
using the procedure given by (33). (a) Anatomical image used to derive the
smoothing weights, wi;j (b) used in the quadratic regularization penalty (34). Here,
higher intensities imply stronger spatial smoothing. (c) ZDFT reconstructions from
16� 16 and (d) 32� 32 phase encoding steps. (e) Constrained reconstructions
using the anatomical priors from 16� 16 and (f) 32� 32 phase encoding steps.
[Figure adapted from [33] with permissions from John Wiley and Sons, Inc.]
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where,

aðrnÞ ¼
1

T�
2ðrnÞ

þ 2pj�bðrnÞ; ð37Þ

is estimated from ancillary high-resolution magnitude and phase
images prior to the reconstruction, with �bðrnÞ representing the
mean frequency shift in voxel rn. Analogous with U in (32), W rep-
resents the Fourier transform of the frequency domain voxel func-
tion, w. Given the anticipated MR spectral profile as consisting of
Lorentzian lineshapes as well as smoothly varying baseline compo-
nents (e.g., residual water, lipids, short T2 macromolecules, etc.), the
spectrum in each voxel is modeled as a superposition of Dirac delta
functions (d) and Chebyshev polynomials (Tn):

vðrn; f lÞ ¼
XL
p¼1

wpðrnÞdðf l � pÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
metabolite peaks

ðDirac delta functionsÞ

þ
XS
p¼1

wLþpðrnÞTpðrnÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
broad baseline components
ðChebyshev polynomialsÞ

:

ð38Þ
The reconstruction is then formulated as:

ŵ½f l	 ¼ arg min
w½f l 	

k~s½f l	 � s½f l	k
2
‘2
þ k1TVXðw½f l	Þ þ k2 w½f l	k k‘1 ; ð39Þ
Sample reconstructions are provided in Fig. 4. In addition to the
familiar ‘1 penalty, which regulates the sparsity of the weighting
coefficients in (38), (39) makes use of another regularizer often
espoused in the signal and image processing communities known
as the total variation (TV) semi-norm, which was introduced in
[35] as a means of measuring first degree information content in
an input signal. TV is generally defined as:

TVXðf Þ , sup
Z
X
f ðrÞ div vðrÞ dr : v 2 C1

c ðX;RnÞ; kvkL1 6 1
� 


;

ð40Þ

where C1
c ðX;RnÞ is the set of continuously-differentiable vector-

valued functions compactly supported in X. However, if
f 2 C1

c ðX;RÞ, then TV can be equivalently expressed as [36]:

TVXðf Þ ¼
Z
X
rf ðrÞj jdr: ð41Þ

In discrete settings, for a multidimensional signal subscripted by d
indices, x 2 RN1�����Nd , TV is typically expressed as one of either:

TViso
X ðxÞ ¼

X
i1 ;i2 ;...;id2X

Xd
l¼1

jDlfxgj2
 !1=2
������

������ ðisotropic TVÞ; ð42Þ

or;

TVani
X ðxÞ ¼

X
i1 ;i2 ;...;id2X

Xd
l¼1

jDlfxgj
�����

����� ðanisotropic TVÞ; ð43Þ

where Dl represents a discrete difference operator along the lth
dimension, such that:

Dlfxg½ 	i1 ;i2 ;...;id ¼ x½ 	i1 ;i2 ;...;il ;...;id � x½ 	i1 ;i2 ;...;il�1;...;id
: ð44Þ

Much of the allure of TV rests in its proclivity for removing noise-
like artifacts while preserving discerning features of an input signal,
and has gained notoriety due to its versatility in addressing a wide
array of problems such as denoising [37–39], suppression of trunca-
tion artifacts/ deblurring [40,41], and inpainting for sensitivity
maps [42]. The reconstruction given by (39) actually introduces a
slight modification of the classical TV penalty, allowing for the
incorporation of tissue boundary information derived from accom-
panying high-resolution structural images. This is accomplished by
partitioning the accompanying structural scans into K pairwise dis-
joint regions that are each assumed to contain spatially smooth
spectral profiles, such that X ¼ [

j
Xj, thereby leading to the

definition: TVX ,
PK

j¼1TVXj .
Incidentally, the K-Bayes method for MRSI reconstruction [43]

was proposed nearly concurrently with [34], stipulating a similar
voxel-based signal model to (27). However, rather than a regular-
ized optimization problem, the reconstruction is formulated within
a Bayesian framework. In this case, the acquisition model is consid-
ered as a likelihood function, with pre-computed estimates of
relaxation and field inhomogeneity parameters, while the expected
spatial distribution of spectral content within anatomically-
defined tissue boundaries are assimilated into a prior distribution
through Markov Random Field (MRF) models. The reconstruction
then consists of maximizing the posterior distribution via an expec
tation–maximization (EM) approach.

As mentioned previously, one of the benefits of these types of
model-based and variational reconstruction frameworks is that
they remain, by and large, independent of the elected k-space tra-
jectory. This flexibility facilitates partnerships with the wealth of
accelerated acquisition schemes that have been developed along-
side new reconstruction approaches, including those predicated
on parallel imaging techniques such as SENSE and GRAPPA [44],
where multichannel information is exploited in order to correct
for aliasing artifacts incurred through systematic undersampling.



Fig. 4. Sample reconstructed metabolite maps of NAA, creatine (Cr), Cho, and myo-inositol (myo) using the method of [34] for (a) a healthy control, and (b) a clinical case
following resection of a brain tumor. In each case, images in the top row represent the standard ZDFT reconstruction scheme along with post-processing lipid extraction, peak
alignment, and temporal apodization, whereas the bottom rows highlight reconstruction results using the proposed method. The green lines highlight a region of interest
(ROI) used to delimit a priori metabolite-containing areas. Attendant structural reference scans for each case are displayed in the rightmost column. For the clinical case, the
approximate resection area is indicated by the blue circular region. [Figure adapted from [34] with permissions from IEEE.]

200 J. Kasten et al. / Journal of Magnetic Resonance 263 (2016) 193–208
In the particular case of SENSE, where a number of studies have
capitalized on the additional high-resolution information furnished
through coil sensitivity maps, the predicted MRSI signal is given by:

sfðk; tÞ ¼
Z 1

�1

Z
X�R3

1fðrÞqðr; f Þe�2pj k�rþftð Þdrdf ; ð45Þ

where 1f denotes the spatial sensitivity profile associated with the

fth coil. A fully discretized model for the observed measurements
is similarly given by:

~s½ti	 ¼ Ec½ti	 þ n½ti	; ð46Þ

where the terms pertaining to the individual coil elements are con-
catenated along the rows of ~s; E, and n. In the original weak SENSE
formulation [17], compensation for aliasing artifacts is performed at
the center of each reconstructed voxel. While this procedure may
suffice for structural MRI resolutions, variations in the sensitivity
profiles over typical MRSI voxel sizes may preclude proper unfold-
ing, thereby giving rise to additional artifacts. This potential limita-
tion was addressed in [45] by over-discretizing the encoding
operator (E in (46)), and then solving the resulting LS problem,
thereby granting full access to the high-resolution sensitivity maps.
Alternatively, in [46], dubbed ‘‘superresolution SENSE” (SURE-
SENSE), proton echo-planar spectroscopic imaging (PEPSI) [47] data
was collected from central k-space regions at the Nyquist rate, as
well as high-resolution coil sensitivity maps. The reconstruction
was then given by:

ĉ½ti	 ¼ arg min
c½ti 	

k~s½ti	 � Ec½ti	k2‘2 þ k c½ti	k k2‘2 ; ð47Þ

where ĉ½ti	 is estimated on the same spatial grid as the sensitivity
maps (for example reconstruction results, see Fig. 5).

Although the above methods address the limited unfolding
capacity or resolution constraints, they do not directly confront the
lingering truncation artifacts that may undermine the allure of sen-
sitivity encoded spectroscopic imaging. Integrating the over-
discretization approach of [45], the method of [48] ventures to
directly control the SRF by minimizing deviations from a voxel-
specific target function, T (e.g., Gaussian, Dirac, etc.). Here, rather
than invoking the LS framework to directly estimate the metabolite
maps, the encoding scheme (or rather, its adjoint) itself is estimated:

F̂ ¼ arg min
F

FE� Tk k2F þ k FWFH
� �

; ð48Þ

where W is the coil noise covariance matrix of the system. Under
this formulation, the regularization parameter, k, regulates the
tradeoff between conformity with the designated target function
and SNR performance. By choosing target functions that are fairly
compact, the leakage artifacts normally attributable to significant
SRF side lobes can be significantly attenuated. Once the SRF has



Fig. 5. Sample performance highlights of the SURE-SENSE method [46]. Reconstructions were performed by (a) inverse DFT of fully sampled data (64� 64), (b) ZDFT
following 2� spatial undersampling, and (c) SURE-SENSE using the 2� undersampled data. Water and lipid images were generated via full spectral integration, while the NAA
and Cr maps were obtained following spectral fitting procedures. [Figure adapted from [46] with permissions from Elsevier.]
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been suitably optimized, the final reconstruction is achieved by
applying the estimated operator to the measured data:

ĉ½ti	 ¼ F̂~s½ti	: ð49Þ

Thus far, each of the described methods have performed the
reconstruction sequentially, separately estimating spatial maps cor-
responding to each individual sample in the temporal (or temporal
frequency) domain. Given the often large storage requirements for
MRSI datasets, this approach is typically memory efficient, yet inevi-
tably disregards any inherent spatio-temporal correlations by
implicitly asserting that each timepoint is independent. As hardware
and computational power have improved, reconstruction method-
ologies have tended towards more multivariate approaches, seeking
to exploit the full k–f volumetric information.

In [49], a variable density spiral acquisition scheme
was employed to generate both the MRSI data, as well as a
high-resolution water reference dataset. The latter was used to
derive estimates of the field inhomogeneity profile and coil sensi-
tivity maps, which were then subsumed by the encoding scheme,
E, as well as spatio-spectral support regions (brain metabolites
and extra-cranial lipids in the published manuscript). The full
reconstruction was formulated as:

bC ¼ arg min
C

keS � ECk2F þ k1k
Xd
l¼1

DlCj j2kS|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
spatial smoothness

þ k2 jCj jjS|fflfflffl{zfflfflffl}
sparsity

; ð50Þ

where the two regularization penalties were restricted to the
metabolite support region. Here, Dl denotes the matrix representa-
tion of the discrete differences operator given by (44). For com-
pleteness, ~S ¼ ~s½f 1	;~s½f 2	; . . . ; ~s½f L	ð Þ, and C ¼ c½f 1	; c½f 2	; . . . ; c½f L	ð Þ. In
this case, the first regularizer (controlled via k1) compels spatial
smoothness by promoting spatial maps with sparse gradients,
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whereas the second (controlled via k2) aims to limit any noise pre-
cipitated during the iterative reconstruction procedure.

6.1. From voxel to feature-based interpretations

One of the advantages proffered by working directly with the
full MRSI dataset is that highly correlated measurements can often
be distilled down to a modest number of prominent spatio-spectral
features. Indeed, some of the earliest endeavors in non-traditional
MRSI reconstruction such as SLIM ultimately subscribe to this very
notion, often attempting to improve reconstruction quality or elicit
further gains in other aspects of the measurement process by min-
imizing data redundancy (e.g., SLOOP). While it may be argued that
the SLIM formulation itself often remains too restricted to fully
accommodate the heterogeneities underlying MRSI measurements,
its simplicity and fundamental object characterization have long
maintained their appeal. As testament, a growing number of con-
temporary methods have espoused models of the form:

qbilinðr; f Þ ¼
XK
j¼1

ujðrÞvjðf Þ: ð51Þ

Also referred to as the ‘‘partially separable” model [50], expression
(51) posits a bilinear decomposition of the spatio-spectral distribu-
tion reminiscent of SLIM-type methods, effectively decoupling spa-
tial and temporal behavior. However, contrary to SLIM, where the
objective is to estimate the unknown spectral components (vj)
assuming that the spatial components (uj) are known a priori, the
focus has shifted to finding general decompositions in the form of
(51) that yield low model orders (i.e., small K). This approach can
Fig. 6. Reconstruction results on a phantom using the method of [59]. The phantom cons
50 mmol/L NAA and 50 mmol Cr in doped water. The outer cylindrical compartment was
encoding steps. (c) Reconstruction using the proposed technique. Here, the efficacy of
demonstrates reconstruction outcome when k is set to zero in (58). Magnitude images w
corresponding to the spatial locations denoted by the colored boxes in the spatial imag
be justified for MRSI applications by considering the following lim-
iting cases. In one scenario, each vj could correspond to an individ-
ual resonance peak, with uj its accompanying spatial distribution.
In this case, the model order will be determined by the number of
distinguishable spectral peaks, Kr, which typically only number up
to around 20–30 in common MRSI experimental settings, depend-
ing on the measured nucleus, echo time selection, etc. Alternatively,
the object may be fully described by only Kf unique features, such
as the spectrally homogeneous compartments in the SLIM model,
or spectral signatures associated with commonly observed metabo-
lites. Hence, for a given object, the underlying model order can be
expected to reside somewhere in ½Kf ;Kr	.

Given sufficient sampling conditions, the model order (similarly
labeled as the data ‘‘dimensionality”) can often be inferred from
the measured data through the use of so-called ‘‘rank-revealing”
transforms, such as the singular value decomposition (SVD), by
examining the resulting eigenvalue spectra. The MR community
has recently witnessed an outburst of reconstruction methodolo-
gies seeking to capitalize on the surmised low-dimensional struc-
ture underlying seemingly complex objects and processes by
specifically promoting low-rank solutions, mostly notably in the
field of dynamic MRI, e.g., [51–56]. Although these methods cer-
tainly each carry their own distinctions, approaches have typically
fallen into one of two categories: (I) The reconstruction is per-
formed over the composite spatio-temporal dataset, whereby
low-rank solutions are exacted explicitly, or through the use of
additional regularizing penalties. (II) The temporal basis functions
are first estimated from limited k-space data acquired at high tem-
poral resolution (e.g., using the SVD), which are then used to guide
isted of two compartments: an inner spherical compartment contained a solution of
filled with corn oil. (a) Standard DFT reconstruction from 32� 32 and (b) 64� 64 CSI
the spatial regularization can be clearly seen through comparison with (d), which
ere obtained via full spectral integration. Representative spectra are also provided,
es. [Figure adapted from [59] with permissions from IEEE.]
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the recovery of attendant spatial basis functions from either a sep-
arate, or combined acquisition with greater k-space coverage but
limited temporal sampling.

Despite the reported success of these approaches, a number of
crucial disparities confound straightforward translation to MRSI
settings. Firstly, low metabolite SNR, as well as the decaying expo-
nential envelopes that characterize spectroscopic signals render
rank-based interpolation schemes particularly susceptible to
noise-related artifacts and biases. Secondly, unless explicitly
accounted for, field inhomogeneity or off-resonance effects present
in the estimated temporal basis functions may bias the recovery of
the corresponding spatial components. Nonetheless, approach (I)
has been explored as a part of a general denoising scheme for CSI
acquisitions labeled LORA [57], which can be used to improve
SNR in datasets where sufficient signal averaging is relegated in
favor of measurement time or increased k-space coverage. First,
the data are filtered by finding the nearest (in an ‘2 sense) rank-
K approximation to the acquired measurements:

Ŝ ¼ arg min
S

k~S� Sk2F ; s:t: rankðSÞ ¼ K: ð52Þ

Expression (52) can be solved by first taking the singular value
decomposition of the measurement matrix:

~S ¼ URVH; ð53Þ

where for ~S 2 CðM�TÞ;U ¼ u1;u2; . . . ;uMð Þ 2 CðM�MÞ;V ¼ v1;v2;ð
. . . ;vTÞ 2 CðT�TÞ, are unitary matrices containing the left- and

right-singular vectors of ~S, respectively, and R 2 RðM�TÞ
þ contains

the corresponding singular values, ri along the diagonal. Solutions

to (52) can then be found by approximating ~S using only the first
K singular vectors/values:

Ŝ ¼
XK6minðM;TÞ

j¼1

rjujvH
j : ð54Þ

Following the low-rank approximation scheme (which can be con-
sidered as a global denoising step), the data are then Fourier trans-
formed back into the spatial domain, and additional denoising is
performed on each of the voxel spectra individually. Here, the spec-
tra are assumed to consist of at most P Lorentzian peaks, in principle
leading to a discrete time-domain signal that is Pth-order linearly
predictable, such that:

ŝ½ti	 ¼
XP
p¼1

nps½ti � tp	; ð55Þ

where the spatial variable has been omitted for ease of presenta-
tion. A necessary and sufficient condition for (55) is that the Hankel
matrix formed from its samples:

H0 ¼

ŝ½t1	 ŝ½t2	 � � � ŝ½tL	
ŝ½t2	 ŝ½t3	 � � � ŝ½tLþ1	
..
. ..

. . .
. ..

.

ŝ½tT�Lþ1	 ŝ½tT�Lþ2	 � � � ŝ½tT 	

0BBBB@
1CCCCA; ð56Þ

for some P < L < T , should be rank K [58]. Additional denoising of
the individual voxel spectra then amounts to solving:

Ĥ ¼ arg min
H

kH0 �Hk2F ; s:t: rankðHÞ ¼ P; ð57Þ

for each row in Ŝ using the same procedure outlined by (53) and
(54). The denoised spectrum is then obtained by extracting the first

row and last column of Ĥ.
Aside from providing a ‘‘natural” infrastructure for the

spatio-spectral distribution, the decoupling between spatial and
temporal characteristics in the bilinear model allows assumptions
surrounding signal characteristics in either domain to be selec-
tively applied. For example, with the aid of a separately acquired
high-resolution static field inhomogeneity map, [59] encourages
the recovery of spatial components that are expressible as real-
valued, non-negative, piecewise linear functions. This is partially
achieved through the use of a total generalized variation penalty
[60,37], which extends the classical TV penalty (40) and (41) to
accommodate higher-order derivative information. Indeed, the
use of higher-order functionals in deblurring and denoising appli-
cations (for additional examples, see [61–64]) has been extensively
researched due to their ability to evade the so-called ‘‘staircasing”
artifacts often encountered when considering only first order
information [65]. In order to ensure access to the individual spatial
and spectral components, the reconstruction is formulated as the
joint estimation problem:

Û; V̂ ¼ arg min
U;V

k~S�FB UVf gk2F þ kTGV2
aðUÞ s:t: U 2 CU ;V 2 CV :

ð58Þ

where F and B are spatio-temporal operators representing the
encoding scheme and the spatially-dependent phase perturbations
introduced by the static field inhomogeneity, respectively. Simi-
larly, U and V are discrete matrix representations of uj and vj in
(51), respectively, TGV2

a is the total generalized variation of second
order, and CU and CV are constraint sets – the significance of which
shall be discussed shortly. The key to the method is that the sepa-
rability of (51) (i.e., of U and V) is strictly enforced during the recon-
struction. This is necessary due to the fact that the presence of field
inhomogeneities may induce coupling between the spatial and
spectral components, which typically results in U subsuming an
additional time dependence. Therefore, in order to effectively segre-
gate the two domains, and to comply with the assumptions that the
spatial components are real-valued and non-negative, the current
estimate of U is projected at each iteration of the reconstruction
onto the set CU , which encompasses two sub-operations such that:

PCU ðUÞ ¼ PRþPRðUÞ; ð59Þ

where,

PRþ ðXÞ ¼ max 0;
1
2
ðXþ X�Þ

� �
; ð60Þ

denotes the projection onto the real-valued, non-negative orthant
and,

PRðXÞ ¼
1
T

XT
i¼1

X½ti	; ð61Þ

a projection onto the mean temporal timecourse. The temporal
components themselves are similarly restricted to the unit Frobe-
nius norm by projecting onto the constraint set CV :

PCV ðVÞ ¼
V
Vk kF

; Vk kF P 1

V; otherwise;

(
ð62Þ

which has been shown to minimize scaling ambiguities during the
reconstruction [66–68]. Sample reconstruction results on a two-
compartment MR phantom can be viewed in Fig. 6.

While independence of acquisition strategy is a laudable trait
that affords flexibility to a reconstruction routine, methods sub-
scribing to approach (II) intentionally build interdependencies in
order to establish a framework that captures the most desirable
characteristics during each stage of the process. As an example,
the Spectroscopic Imaging by Exploiting Spatio-Spectral Correla-
tion (SPICE) method [69], aims to enhance the SNR of accelerated
and extended k-space acquisition schemes by leveraging the
denoising capabilities of low-rank modeling, and consists of two



Fig. 7. Overview of the SPICE acquisition protocol and sample reconstruction results. (Top row), example acquisition strategies for acquiring D1 (top left) and D2 (top right).
Middle row: (a) structural reference image demonstrating the phantom geometry, which consisted of five vials placed in a cylindrical jar filled with doped water. The contents
of the vials were as follows: 1 (20 mmol/L NAA, 15 mmol/L Cr, 10 mmol/L Cho), 2 (20 mmol/L NAA, 10 mmol/L Cr, 5 mmol/L Cho), 3 (10 mmol/L NAA, Cr, Cho, myo), 4
(15 mmol/L NAA, 8 mmol/ L Cr, 5 mmol/L Cho), with vial 5 containing the same solution as vial 3. The NAA maps shown were reconstructed using (b) DFT from CSI data using
60� 60 encoding steps, (c) ZDFT from CSI data using 19� 19 encodings, (d) EPSI data using 100� 100 encoding steps and two averages, (e) the SPICE method using 12� 12
CSI encodings to generate D1, and 45 shifted echoes for D2. Representative spectra originating from vial 4 (denoted by the small red dot in (a)) corresponding to each
reconstruction method are illustrated in the bottom row. [Figure adapted from [69] with permissions from John Wiley and Sons, Inc.]
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main modules. First, a MRSI dataset D1 is obtained with traditional
Cartesian sampling, acquiring only a small central region in k-
space but with high temporal resolution. This dataset is then cor-
rected for field inhomogeneities, whereupon a set of K temporal

basis functions, V̂, are estimated using (53). A second dataset D2

is then collected with extended k-space coverage but reduced tem-
poral sampling, for example via accelerated strategies such as spi-
ral [70–72] or EPSI [47]. The corresponding spatial basis functions
are then estimated by solving:

Û ¼ arg min
U

k~SD2 �FBfUV̂gk2F þ kkLfUV̂gk2F : ð63Þ

Here, ~SD2 are the measurements corresponding to dataset D2, and L

is an anatomically-derived smoothing penalty analogous to L in
(34). F and B are defined equivalently as in (58). Note that unlike
previously described parametric methods that estimate one set of
basis functions from accompanying extra-modal scans, the ‘‘a pri-
ori” information utilized with these type (II) methods is derived in
a data consistent manner from intra-modal acquisitions, thereby
reducing the potential for model mis-match artifacts. A schematic
representation of various acquisition schemes that may be adopted
to acquire D1 and D2, along with sample reconstructions can be
found in Fig. 7. The reconstruction given by (63) was also later
extended to include non-quadratic regularization penalties, which
was reported to lead to improved reconstruction performance [73].

The SPICE method nicely illustrates the potential benefits that
can be attained through a judicious pairing of the acquisition and
reconstruction, and highlights an increasing trend in the MR com-
munity. Other such examples can be found in the compressed
sensing (CS) literature, where alternative acquisition strategies
are required in order to comply with the underlying theoretical
tenets. While CS has typically been regarded primarily as a means
for further reducing k-space sampling requirements (e.g., [74–76]),
it has also shown promise as a potential avenue for spatial resolu-
tion enhancement. In [77], for example, a 3D flyback MRSI
sequence was utilized for hyperpolarized 13C applications, where-
upon spectral domain sparsity was exploited during reconstruction
in order to achieve a twofold increase in spatial resolution.
7. Practical limitations

While the methods outlined above demonstrate a clear capacity
for improved reconstruction quality, it is important to acknowl-
edge any prospective shortcomings or limitations. For example,
with any model-based approach, reconstruction outcome will ulti-
mately be circumscribed by the accuracy of the underlying model.
As such, failure to accommodate potentially obtrusive experimen-
tal confounds such as field inhomogeneity, eddy currents, patient
motion, or non-uniform rf profiles may bias the reconstructions
in an unpredictable or inscrutable manner. Furthermore, any dis-
cordancies between the measured MRSI data and ancillary extra-
modal a priori information, for example those due to segmentation
or registration inaccuracies, may manifest as additional artifacts or
structured noise patterns that may be difficult to distinguish.
Another potential drawback for non-linear reconstruction methods
is that most of the standard tools commonly employed for the
analysis of linear systems, such as direct access to the SRF, are no
longer applicable or available, thereby obfuscating robust method
characterization.

Although the variational/inverse problem formulation is able to
successfully bypass many of the limitations prescribed by the
inverse DFT reconstructions themselves, most of the described
methods rely upon similar data pre-processing measures, such as
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residual water and/or lipid suppression in 1H applications, in order
to achieve reasonable results. This is due to the fact that recon-
struction outcomes are typically driven by the dominant signal
components, which may bias the reconstruction of metabolite
maps of interest if primarily attributable to large nuisance signals.
Similarly, whereas the collection of an auxiliary water reference
scan for eddy current and static field inhomogeneity correction is
feasible at current MRSI resolutions, the additional time required
for such measurements at high resolution far exceed clinically rea-
sonable exam durations.

Finally, it should be noted that while absolute quantitation has
typically been considered as a separate issue beyond the scope of
the majority of the discussed works, and by extension, of the pre-
sent survey, the accurate recovery and preservation of spectral fea-
tures is paramount. Indeed, although many studies often eschew
absolute quantification altogether, instead reporting significant
alterations or aberrations in metabolite ratios, most superresolu-
tion reconstruction paradigms currently lack robust mechanisms
for safeguarding such interrelationships, thereby carrying the risk
of biased results. It is therefore imperative to ensure that certain
resonances are not over or under-represented by the reconstruc-
tion procedure during validation stages.
8. Translation of superresolution reconstruction methods into
clinical settings

Despite the profusion of promising methodologies, the clinical
and clinical research communities seldom deviate from traditional
inverse DFT reconstructions. While the rationale underlying such
indispositions may stem from a complex and diverse array of fac-
tors, a number of key potential explanations are provided in the
following.

Ultimately, despite their limitations, standard DFT (including
ZDFT) reconstructions remain the most popular due to their com-
putational ease and simplicity. In point of fact, in contrast to many
of the superresolution methods described earlier, standard DFT
reconstruction outcome is neither reliant upon exact knowledge
of the elected acquisition scheme, nor the congruity of the mea-
sured data with externally derived prior information, thereby
avoiding complications related to issues such as segmentation
and registration. Moreover, DFT reconstructions require little user
interaction and no special parameter tuning, perhaps one of the
more arcane and daunting aspects of the regularization-based
reconstruction frameworks for non-experts. Indeed, such reserva-
tions are defensible, as the regularization parameter (k) ultimately
regulates the bias-variance tradeoff, effectively determining the
overall behavior of a given reconstruction method. Although a con-
siderable body of research has been dedicated towards establishing
robust criteria for selecting k, universal consensus is thus far lack-
ing. Nonetheless, established approaches – mostly envisioned for
use with quadratic penalties – include the discrepancy principle
[78,79], generalized cross validation [80], and the L-curve method
[81], with more detailed discussions found in [82,83]. More recent
studies have explored alternative means for selecting k in non-
linear reconstruction settings, such as those marked by their use
of ‘1 [84] and TV penalties [85–87], as well as through more gen-
eral adaptive frameworks such as Stein’s unbiased risk estimate
(SURE) [88–91]. In general, an appropriate choice of k follows from
careful deliberations involving the data noise variance, and the
(eigen) spectral properties of the encoding operators, neither of
which may be known a priori. Similar obstacles beleaguer selection
of the model order in the aforementioned rank-minimization
reconstruction schemes, where robust estimation of the underly-
ing data dimensionality from a series of noisy measurements rep-
resents an ongoing challenge in statistics, information theory, and
machine learning. Again, while no technique can boast complete
infallibility, several methods have been shown to be robust in
effectively segregating the signal and noise subspaces, including
the minimum description length (MDL) [92], Akaike information
criterion (AIC) [93], Scree test on residual variance [94], cross-
validation approaches [95–97], and the Bayesian information crite-
rion (BIC) [98,99] – including a number of probabilistic principal
component analysis (PCA) approaches [100–102]. Further details,
as well as a more general discussion on the problem of model order
selection can be found in works such as [103].

Another factor encumbering the advancement of superresolu-
tion reconstruction methods for MRSI is the difficulty in method
validation. Unlike many structural MR modalities, where suitable
gold standard measurements are available for validating new tech-
niques, as is the case with parallel imaging or compressed sensing
[104,105], MRSI offers a fundamentally unique set of information
that lacks a referential counterpart. This distinctiveness portends
a number of challenges when considering techniques that allege
to transcend current resolution capabilities, especially given the
stringency required in order to meet clinical standards. Although
a few studies have reported on regional metabolite distributions
in the human brain at enhanced spatial resolution (e.g.,
[106,107]), the general dearth of high-resolution gold standard
data for in vivo MRSI necessarily arouses a degree of skepticism
at the clinical level when viewing superresolution reconstruction
outcomes. Such misgivings are also often compounded by inade-
quate method characterization. For example, whereas the proper-
ties and potential artifacts associated with DFT reconstructions
are well-established, and therefore easily identified by a trained
reviewer, such claims generally cannot be made with regards to
the various idiosyncrasies defining non-traditional approaches.
This deficiency may arise either due to hitherto insufficient exper-
imentation, to impediments raised by the underlying theory, or
simply to the often times discordant priorities set by the image
reconstruction and clinical research communities. One common
avenue for addressing difficulties in both validation and character-
ization is the use of phantoms, i.e., objects with known geometrical
and spectral properties. While unable to fully capture the inherent
complexities of living biological systems, such objects – especially
those designed to emulate the spatio-spectral heterogeneities and
sophistication normally encountered in in vivo applications (e.g.,
[108,109]) – may provide a reliable and reproducible means for
assessing the high resolution capabilities of a given method,
thereby allaying a number of key clinical concerns.

Finally, it should be mentioned that despite sophisticated mod-
ern hardware, the computational burden imposed by many of the
aforementioned methods often leads to reconstruction times on
the order of tens of minutes to hours. While such requirements
may not present a problem for clinical research studies, they do
currently preclude the use of such advanced reconstruction proce-
dures in time-sensitive clinical applications.
9. Conclusion

MRSI has always been regarded as a challenging topic due to the
considerable endeavors in both promoting favorable measurement
conditions, and employing the necessary post-processing routines
so as to yield practicable data. Moreover, even if sufficient data
quality can be achieved, resolution limitations have thus far
remained the foremost impediment to the widespread clinical util-
ity of MRSI. Over the past few decades, research efforts have been
primarily directed towards hardware improvements, including
higher field strength scanners to achieve the accompanying sensi-
tivity gains, more sensitive coil arrays, and more sophisticated
shimming systems, as well as accelerated acquisition techniques
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in order to maximize the k� f coverage per unit time. Equally
valuable to the advancement of MRSI, such techniques aim to
leverage any improvements in the data SNR to ostensibly augment
M (and N) in the DFT matrix (7). While this approach may further
align the reconstruction conditions with those surrounding tradi-
tional structural MR, it still does not take into account any poten-
tially beneficial prior information regarding the specifics of the
acquisition, or the measured object itself. It is the command of this
knowledge that forms the foundation for the plenitude of superres-
olution reconstruction methods that have been developed in paral-
lel, alternatively increasing N by exploiting known geometrical
properties, or proposing alternative bases that may more accu-
rately or efficiently capture salient spatio-spectral features.

Although the acquisition and reconstruction are often dissoci-
ated, perhaps the most significant advances will be ushered in by
a successful partnership between the two. Indeed, while most
MR experiments are conceived in a linear fashion – considering
the reconstruction only after hardware and acquisition protocols
have been established – it is clear that a pipeline that is able to
fully capitalize on the strengths offered by each module may lead
to significantly improved outcomes. For example, improved nui-
sance signal suppression or improved sensitivity at the acquisition
level would enable variation-based reconstruction frameworks to
be fully driven by the metabolic signal of interest, whereas more
robust a priori information may allow acquisition protocols to be
relaxed in order to further reduce sampling requirements and/ or
exam durations.

Currently, the primary obstacle when translating superresolu-
tion methods into more applied or clinical settings is the shortfall
of validation and characterization work, thereby arousing appre-
hensions and reservations when reviewing reconstruction results.
Admittedly, such misgivings may be difficult to overcome, espe-
cially considering the uniqueness of the spatio-spectral informa-
tion furnished by MRSI. Extensive testing across scanner vendors
and institutions, focus on the development of fully automated
reconstruction procedures as well as comprehensive and robust
analytical tools for suitably characterizing non-traditional (espe-
cially non-linear) techniques, and close collaborations with the
clinical community are therefore vital steps. Such endeavors, cou-
pled with modern hardware and computational advances (e.g. par-
allel computing) will be needed in order develop the necessary
confidences required to propel superresolution MRSI beyond its
current confines.
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