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Abstract

Magnetic resonance spectroscopic imaging (MRSI) is a rapidly developing
medical imaging modality, capable of furnishing both spatial and spectral
information content, and has become a powerful clinical tool. The abil-
ity to non-invasively observe spatial maps of metabolite concentrations, for
instance, in the human brain, can offer functional, as well as pathological
insights, perhaps even before structural aberrations or behavioral symptoms
are evinced. Despite its lofty clinical prospects, MRSI has traditionally re-
mained encumbered by a number of practical limitations. Of primary con-
cern are the vastly reduced concentrations of tissue metabolites when com-
pared to that of water, which forms the basis for conventional MR imaging.
Moreover, the protracted exam durations required by MRSI routinely ap-
proach the limits of patient compliance.

Taken in conjunction, the above considerations effectively circumscribe the
data collection process, ultimately translating to coarse image resolutions
that are of diminished clinical utility. Such shortcomings are compounded
by spectral contamination artifacts due to the system pointspread function,
which arise as a natural consequence when reconstructing non-band-limited
data by the inverse Fourier transform. These artifacts are especially pro-
nounced near regions characterized by substantial discrepancies in signal
intensity, for example, the interface between normal brain and adipose tis-
sue, whereby the metabolite signals are inundated by the dominant lipid
resonances.

In recent years, concerted efforts have been made to develop alternative,
non-Fourier MRSI reconstruction strategies that aim to surmount the afore-
mentioned limitations. In this dissertation, we build upon the burgeoning
medley of innovative and promising techniques, proffering a novel superres-
olution reconstruction framework predicated on the recent interest in low-
rank signal modeling, along with state-of-the-art regularization methods.
The proposed framework is founded upon a number of key tenets. Firstly,
we proclaim that the underlying spatio-spectral distribution of the investi-
gated object admits a bilinear representation, whereby spatial and spectral
signal components can be effectively segregated. We further maintain that
the dimensionality of the subspace spanned by the components is, in princi-
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ple, bounded by a modest number of observable metabolites. Secondly, we
assume that local susceptibility effects represent the primary sources of sig-
nal corruption that tend to disallow such representations. Finally, we assert
that the spatial components belong to a class of real-valued, non-negative,
and piecewise linear functions, compelled in part through the use of a total
variation regularization penalty. After demonstrating superior spatial and
spectral localization properties in both numerical and physical phantom data
when compared against standard Fourier methods, we proceed to evaluate
reconstruction performance in typical in vivo settings, whereby the method
is extended in order to promote the recovery of signal variations throughout
the MRSI slice thickness.

Aside from the various technical obstacles, one of the cardinal prospective
challenges for high-resolution MRSI reconstruction is the shortfall of reliable
ground truth data prudent for validation, thereby prompting reservations
surrounding the resulting experimental outcomes. Though phantom studies
may serve to provide reassurances, current designs lack the necessary geo-
metrical sophistication and spectral heterogeneity necessary for emulating
complex biological systems. We therefore develop a custom haptic Shepp-
Logan phantom as part of a novel design and testing platform, motivated by
current trends in additive manufacturing, which accords an important link
between the analytically-predicted ideal signal and the acquired real-world
MRSI measurements. We conclude the dissertation through a renewed as-
sessment of the proposed reconstruction method using the newly-contrived
phantom, tendering a number of auspicious results, and thereby presaging
further advances in MRSI reconstruction and analysis.

Keywords: magnetic resonance spectroscopic imaging, chemical shift imag-
ing, constrained reconstruction, low-rank approximation, non-convex opti-
mization, total variation, MR phantoms, 3D printing, spatio-spectral mod-
eling



Résumé

L’imagerie spectroscopique par résonance magnétique (ISRM) est une moda-
lité d’imagerie médicale qui est en train de se développer très rapidement, qui
est capable de conférer à la fois des contenus d’informations spatiales et spec-
trales, et est devenue un outil clinique très utile. La capacité d’observer de
manière non-invasive des cartes spatiales de concentration des métabolites,
par exemple, dans le cerveau humain, peut fournir des perspectives fonc-
tionnelles, ainsi que pathologiques, parfois avant même que des altérations
structurelles ou de symptômes comportementaux se manifestent. Malgré ses
perspectives cliniques uniques, l’utilisation de l’ISRM reste restreinte par un
certain nombre de limitations pratiques. La principale préoccupation est la
faible concentration des métabolites de tissu par rapport à celle de l’eau, sa-
chant que celle-ci constitue la base de l’imagerie par résonance magnétique
classique. En outre, la durée importante de l’examen d’ISRM approche ré-
gulièrement les limites de confort du patient.

Pris conjointement, les considérations ci-dessus circonscrivent efficacement le
processus de collecte de données, qui se traduit par une résolution grossière
de l’image métabolique qui par conséquent diminue son utilité clinique. Ces
lacunes sont aggravées par des artefacts de contamination spectrales dues à
la fonction de dispersion engendrée par l’échantillonnage limité de la trans-
formée de Fourier inverse. Ces artefacts sont particulièrement prononcées à
proximité des régions caractérisées par des écarts importants dans l’intensité
du signal, par exemple, l’interface entre le cerveau normal et le tissu adi-
peux, dans lequel les signaux de métabolites sont altérés par les résonances
de lipides.

Au cours des dernières années, d’importants efforts ont été déployé pour
développer des stratégies alternatives à la transformée de Fourrier, et qui
visent à surmonter les limitations mentionnées ci-dessus. Dans cette thèse,
nous construisons, sur la base de techniques novatrices et prometteuses, un
nouveau cadre de reconstruction super-résolution fondé sur la modélisation
à faible rang du signal, ainsi que sur des méthodes de régularisation connues
dans la littérature. Le cadre proposé est fondé sur un certain nombre de prin-
cipes clés. Tout d’abord, nous stipulons que la distribution spatio-spectrale
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sous-jacente de l’objet étudié admet une représentation bilinéaire, dans la-
quelle les composantes spatiales et spectrales du signal peuvent être séparés.
Nous admettons en outre que la dimension du sous-espace engendré par les
composantes est, en principe, bornée par un nombre restreint de métabolites
observables. Deuxièmement, nous supposons que les effets locaux de sensi-
bilité représentent les principales sources de corruption du signal qui ont
tendance à refuser ces représentations. Enfin, nous affirmons que les compo-
santes spatiales appartiennent à une classe de fonctions réelles, non-négatifs,
et linéaires par morceaux, contrainte en partie grâce à l’utilisation d’une
pénalité de régularisation de la variation totale. Après avoir démontré des
propriétés de localisation spatiales et spectrales supérieures aux méthodes
de Fourier standards, à la fois sur des test-objets numérique et physique,
nous avons procédé à l’évaluation des performances de reconstruction dans
des conditions in vivo typiques, dans laquelle le procédé a été étendu afin
de prendre en compte les variations du signal tout au long de l’épaisseur de
l’IMRS.

Mis à part divers obstacles techniques, l’un des principaux défis futurs dans
la reconstruction de l’IRMS de haute résolution, est l’insuffisance des don-
nées réelle qui permettent une validation pertinente, validant ainsi les résul-
tats expérimentaux obtenus. Bien que les études sur les données fantômes
puissent soutenir les résultats, les modèles actuels n’ont pas la complexité
géométrique et l’hétérogénéité spectrale nécessaires pour simuler les systèmes
biologiques complexes. Nous avons donc développé un fantôme Shepp-Logan
physique et personnalisé utilisant la technologie de l’impression 3D. La nou-
veauté de cette approche tient dans le fait qu’elle apporte un lien unique
entre le signal idéal prédit analytiquement et les mesures de l’IRMS réelle-
ment acquises. Nous concluons la dissertation par une nouvelle évaluation de
la méthode de reconstruction proposée en utilisant le fantôme artificiel nou-
vellement conçu, apportant un certain nombre de résultats de bon augure,
et présageant ainsi de nouveaux progrès dans la reconstruction et l’analyse
dans le domaine de l’ISRM.

Mots clés : imagerie spectroscopique par résonance magnétique, l’imagerie
du déplacement chimique, reconstruction sous contrainte, superrésolution,
approximation à faible rang, l’optimisation non convexe, variation totale,
fantômes RM, l’impression 3D, la modélisation spatio-spectrale
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Chapter 1

Introduction

Since its inception over forty years ago, magnetic resonance imaging (MRI)
has revolutionized the medical field as a versatile clinical tool, providing a
non-invasive platform for both diagnostic and prognostic evaluations in vivo,
without prompting additional concerns over the effects of ionizing radiation
exposure. While traditional structural MRI has been extolled for its ability
to generate a profusion of complementary tissue contrasts, thereby accentu-
ating specific anatomical features or aberrations, it represents but one of the
multifarious modi operandi achievable with modern MR systems. Another
such technique is magnetic resonance spectroscopic imaging (MRSI), which
coalesces the basic principles underlying MRI, and the spectral discrimina-
tion capabilities of nuclear magnetic resonance (NMR) spectroscopy in order
to produce spatially localized distributions of metabolic content.

MRSI has been increasingly acknowledged as a powerful source of supple-
mental information in the study of diseases such as cancer, most notably
in the evaluation and treatment of brain tumors [1, 2]. For example, while
contrast-enhanced structural MRI is a powerful and non-invasive diagnos-
tic aid, its specificity for differentiating between tumor types, neoplastic
and non-neoplastic lesions, and identifying regions of active tumor is min-
imal [3–7]. A number of studies have highlighted the discriminating capa-
bility of MRSI in differential diagnostics, emphasizing its capacity for elu-
cidating tumor heterogeneity [8–12]. Additionally, some studies on high-
grade gliomas reported that the extent of the spatial maps of metabolic
abnormalities derived from MRSI measurements often exceeded the patho-
logical volume defined on the accompanying structural MR images [13–16],
and that correlations with tumor recurrence following radiosurgery could
be observed [17–19]. Such findings consequently impugn the preeminence of
structural MRI in resection planning, and highlight the potential discordance
between tissue and spectral content. The expediency of MRSI has similarly
been demonstrated in the study of breast [20] and prostate cancer [21–25],
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2 CHAPTER 1. INTRODUCTION

psychiatric conditions [26, 27], neurodegenerative disorders [28–30], and in
the localization of epileptogenic networks and foci [31–34].

Despite the extensive list of propitious clinical applications, MRSI has thus
far remained stymied by a number of practical limitations. The foremost
impediment is the paltriness of the metabolite signal, due to both the in-
herent insensitivity of the MR experiment itself, and the low in vivo con-
centrations of the metabolites compared to that of water or lipids. Further-
more, the need to acquire data along a separate spectral dimension leads
to protracted measurement times when compared against those required for
structural imaging. These considerations, along with additional pragmatic
constraints dictated by expected patient compliance, therefore mandate sub-
stantial compromises between the comprehensiveness of the measurement
process and the overall exam duration. Accordingly, the attendant conces-
sions engender a number of consequences for conventional MRSI protocols,
whereby the resultant spatio-spectral data is reconstructed by means of the
inverse discrete Fourier transform (DFT). The first of these pertains to the
resulting coarse reconstruction resolutions necessary to ensure an adequate
signal-to-noise ratio (SNR) within each voxel (the three dimensional analog
of an image pixel), thereby precluding the perusal of fine spatio-spectral fea-
tures. A second ramification is a broad system pointspread function, giving
rise to spectral contamination artifacts between spatially remote locations.
Such artifacts are particularly egregious near regions defined by sharp tran-
sitions in signal intensity, and arise from the implicit assumption underlying
the Fourier transform that the imaged object is band-limited to the extent of
the acquired measurements, which is exceedingly violated as the acquisition
process is further curtailed.

Throughout the years, various efforts have been made in order to overcome
the aforementioned limitations, and typically fall into one of two categories.
The first describes methods that focus on the measurement process itself,
devising accelerated or adapted acquisition schemes that further explore the
associated tradeoffs between measurement duration, achievable spatial res-
olution, and sensitivity. The second is characterized by endeavors to de-
velop alternative reconstruction strategies that aim to circumvent the var-
ious shortcomings following from the direct use of the DFT. Most of these
techniques are predicated on varying degrees of additional prior knowledge,
often furnished through ancillary high-resolution structural reference scans,
thereby promoting the notion of superresolution reconstruction. In this dis-
sertation, we continue further along this latter avenue, proffering both a
novel reconstruction method that identifies and exploits key signal proper-
ties, as well as a flexible platform whereby the attendant reconstructions can
be suitably validated under typical experimental conditions. Our primary
contributions are discussed in the following section.



1.1. CONTRIBUTIONS 3

All research endeavors presented in this dissertation were conducted in col-
laboration between the Medical Image Processing Laboratory (MIPLab) at
the École Polytechnique Fédérale de Lausanne, and the Center for Biomed-
ical Imaging (CIBM) at the University Hospital of Geneva.

1.1 Contributions

1.1.1 MRSI Reconstruction by Low-Rank Component Anal-
ysis

By and large, reconstruction methods for MRSI can be classified according
to whether or not parametric models are specified for the underlying spatio-
spectral distribution. Those that do adopt this route typically appeal to
structural MR modalities in order to partially specify the model parameters
in advance, the remainder of which are estimated during the reconstruction
procedure. The often high-resolution nature of this supplemental informa-
tion facilitates translation to high-resolution reconstruction frameworks, but
may render the method particularly susceptible to additional artifacts when
discrepancies exist between the reference data and the MRSI signal con-
tent. Alternatively, methods that refrain from such parametrizations permit
more data-centric investigations, but generally lack the necessary problem
conditioning for high-resolution settings.

We aim to exploit the advantages of both approaches in a single recon-
struction framework, which prescribes an intrinsic bilinear model for the
spatio-spectral distribution, thereby enabling spatial and spectral behavior
to be effectively dissociated. Using this paradigm, only the model order (i.e.,
the dimensionality of the subspace spanned by the constituent components)
is pre-determined, which is assumed to be bounded by a modest number
of observable metabolites. We further assert that the primary sources of
signal distortion are due to static inhomogeneity effects, the spatial con-
tributions of which are estimated from high-resolution reference scans, and
explicitly accounted for by the employed measurement model. Lastly, we
posit that the comprising spatial components belong to a class of piecewise-
linear, real-valued, and non-negative functions, encouraged through the use
of state-of-the-art total variation regularization. We demonstrate in vari-
ous experimental scenarios that the proposed framework affords the neces-
sary problem conditioning for high-resolution MRSI reconstruction, and even
enables the restoration of through-plane spatio-spectral variations that are
otherwise irrecoverable when considering single-slice MRSI acquisitions.



4 CHAPTER 1. INTRODUCTION

1.1.2 Haptic Phantoms for MRSI Testing and Validation

While a number of innovative and propitious reconstruction methods have
been proposed in recent years, both for MRSI and other MR modalities, ef-
forts to inspire the necessary alacrity for widespread adoption within the clin-
ical community have been characterized by limited success. These perceived
shortfalls may be attributable to the fact that unlike established Fourier
methods, the various artifacts and biases accompanying these new method-
ologies are not fully characterized or understood. Though such misgivings
may be palliated by contrasting reconstruction performance with ground
truth or gold standard measurements, results obtained in the absence of any
such reference data may remain contentious, as is certainly the case when
considering high-resolution MRSI undertakings.

One of the prevailing means for validating pioneering methodologies is
through the use of phantoms, i.e., objects of known structure that serve
as proxies for in vivo scenarios. While a plurality of phantoms have been
developed for structural MRI evaluations, these typically lack the degree of
spectral heterogeneity or sophistication necessary for emulating biological
samples. To address this apparent deficiency, we develop a custom MRSI
phantom as part of a novel design and fabrication platform, motivated by
current trends in additive manufacturing (3D printing). We demonstrate
the expedience of the proposed framework for producing a class of versatile,
low cost, and easily transferrable phantom designs, which additionally ad-
mit closed-form continuous-domain Fourier transforms. Using our completed
prototype, we further illustrate that this latter advantage enables a direct
connection between the theoretically-predicted signal and the observed MR
measurements, and that such phantoms serve as an effective channel for
identifying the primary potencies or shortcomings of a given reconstruction
strategy.

1.2 Thesis Outline

This dissertation is organized as follows: In chapter 2 we introduce the vari-
ous theoretical underpinnings surrounding basic MRSI signal formation and
data acquisition. We begin by chronicling a number of key principles and
discoveries that motivated the development of modern nuclear magnetic reso-
nance spectroscopy (NMR). After enumerating the salient aspects governing
a basic NMR experiment, we introduce the concept of MRI as a means of
spatially localizing the MR signal, as well as address a few of the practical
considerations underlying real-world acquisitions. We conclude by portray-
ing MRSI as a unification of NMR and MRI, furnishing both spatial and
spectral content, and describe a number of proposed acquisition techniques.
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In chapter 3, we detail the assorted limitations afflicting MRSI, such as the
strong spectral contamination due to nuisance signals, and review some of
the standard compensatory mechanisms and pre-processing routines. We
then delve into the vast arena of MRSI reconstruction methodology, survey-
ing and contrasting some of the key developments over the last thirty years.
With this background, we proceed to chapter 4, where we introduce a novel
superresolution reconstruction framework that parallels the current interest
in low-dimensional signal representations. Following a comprehensive expo-
sition of the principal tenets, we demonstrate the efficacy of this method in
both numerical simulations, and in typical clinical settings. In chapter 5, we
aim to compensate for the dearth of suitable validation platforms for high-
resolution MRSI reconstruction by developing a custom phantom with the
aid of 3D printing. We begin by illustrating that the 3D printing platform
is compatible with a class of analytical Fourier transforms, thereby bear-
ing an important link between the theoretical MR signal and the collected
measurements. We then utilize the successfully fabricated phantom to fur-
ther validate the proposed reconstruction technique, providing a number of
promising results. Finally, in chapter 6, we offer a brief summary of the
presented work, and discuss a number of additional considerations as well as
potential avenues for future research.
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Chapter 2

Magnetic Resonance
Spectroscopic Imaging:
Background

2.1 Introduction

On a basic level, magnetic resonance spectroscopic imaging (MRSI) repre-
sents the convergence between two pivotal and rapidly-evolving techniques
in the biomedical sciences. The first, nuclear magnetic resonance (NMR)
spectroscopy, utilizes powerful magnetic fields and radiofrequency pulses in
order to investigate the structure and chemical composition of a given sam-
ple. The second, magnetic resonance imaging (MRI), extends these ideas to
furnish spatially-localized images, and has become an indispensable diagnos-
tic tool within the medical field. Although these modalities have arisen out
of elegant theoretical foundations, reflecting a rich and captivating history,
this chapter solely aims to present an overview of the fundamental principles
and breakthroughs that have motivated this propitious yet intricate field.

2.2 Spin of Elementary Particles

In 1925 two physicists, George Uhlenbeck and Samuel Goudsmit, working
at the University of Leiden under Paul Ehrenfest introduced the concept of
the electron spin [35] as a means for explaining the anomalous splitting pat-
terns previously observed in atomic spectra. Their discovery came just a few
months after Wolfgang Pauli’s publication of the now famed exclusion prin-
ciple [36], roughly stating that no two electrons may share the same values
of the four quantum numbers. This concept of spin was later incorporated

7
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by Paul Dirac into a relativistic description of quantum mechanics [37], and
was eventually formalized as a property of all elementary particles by Pauli
in 1940 [38].

Though similar in certain aspects, the electron spin should not be confused
with its classical counterpart as the sum of the orbital angular momentum
of its constituent elements. Rather, spin is a fundamental intrinsic property
of elementary and composite particles, proscribing for each a particular set
of rules and behaviors. Protons, neutrons, and electrons, for example, are
instances of fermions, and all have spin 1/2. Photons and mesons, on the
other hand, are examples of bosons, which possess integer spin.

Because the spin is fixed for any given particle, so are the number of
possible states, dictated by the “spin quantum number”, ms, where for
s = 0, 1/2, 1, 3/2, 2, ..., ms = −s,−s + 1, . . . , s − 1, s. In the case of spin
1/2 (by far the most common for MRI applications), there are only two
eigenstates, referred to as “spin up” for ms = +1/2, and “spin down” for
ms = −1/2, which according to convention are represented vectorially as:

α =

(
1
0

)
(spin up) , β =

(
0
1

)
(spin down) . (2.1)

Observable quantities such as the components of the spin in any of the Carte-
sian directions (represented by linear operators in the statistical interpreta-
tion of quantum mechanics) can then be expressed as:

Ŝx =
~
2
σx, Ŝy =

~
2
σy, and Ŝz =

~
2
σz, (2.2)

where

σx =

(
0 1
1 0

)
, σy =

(
0 −j
j 0

)
, σz =

(
1 0
0 −1

)
(2.3)

are the Pauli spin matrices.

The discovery and formulation of the nuclear spin paved the way for further
studies by Isidor Rabi, who postulated that the Stern-Gerlach experiment
[39] could be extended so as to measure the properties of the atomic nucleus,
successfully measuring the magnetic moments of lithium using a molecular
beam device [40]. The utilization of an oscillating magnetic field for these
experiments effectively laid the foundation for nuclear magnetic resonance
(NMR), and would later motivate the works of Felix Bloch [41] and Edward
Purcell [42], who successfully measured NMR signals from water and paraffin,
respectively. For his molecular beam experiments, Rabi received the Nobel
prize in physics in 1944. The same prize was shared by Bloch and Purcell
eight years later.
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2.3 Protons in a Magnetic Field

For charged particles, the intrinsic spin accords the properties of a magnetic
dipole – similar to that produced by a closed electric current loop in macro-
scopic settings. Regarding the latter, considering a charge q, its position r,
and velocity v, the expression for the dipole is:

µ =
q(r× v)

2
. (2.4)

Given the classical angular momentum L = r × p, with p = mv, (2.4) can
also be expressed as:

µ =
q

2m
L. (2.5)

Assuming a single proton, and replacing L with its spin equivalent, S,

µ = gN
q

2mN
S = gNβNS = γS, (2.6)

where gN is the “nuclear g factor,” and βN = q
2mN

the nuclear magneton. The
constant γ = gNβN is called the “gyromagnetic ratio,” which is characteristic
for each particular nucleus.

When immersed in an external magnetic field, B, a magnetic dipole will
experience a torque that acts to align it, with an associated potential energy
given by:

V = −µ ·B. (2.7)

Adopting the convention that B = B0 = 0̂i + 0ĵ + B0k̂, where î, ĵ, and
k̂ are unit vectors pointing along the x, y, and z Cartesian dimensions,
respectively, (2.6) can be substituted for µ in (2.7) to obtain:

V = −γB0Sz. (2.8)

If Sz is supplanted by its corresponding quantum mechanical operator, Ŝz,
we obtain the Hamiltonian operator (the quantum mechanical analogue of
the classical Hamiltonian, i.e., the sum of the potential and kinetic energies)
for the isolated proton as:

Ĥ = −γB0Ŝz. (2.9)

The eigenfunctions of the time-independent Schrödinger equation,

Ĥψ = −γB0Ŝzψ = Eψ (2.10)

are simply the eigenfunctions of Ŝz, with energies given by:

Eα = −~γB0

2
(spin up, parallel) (2.11)

Eβ =
~γB0

2
(spin down, anti-parallel), (2.12)
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such that ∆E = Eβ − Eα = ~γB0. Transitions from the lower energy state
(2.11) to the high energy state (2.12) can then be effectuated by irradiating
the proton with photons carrying an energy ∆E = ~γB0 = ~ω, correspond-
ing to a radial frequency of

ω0 = γB0, (2.13)

referred to as the “Larmor frequency.”

It is important to note throughout the preceding that the conferral of a
magnetic moment occurs only in the case of non-zero spin. For example, in
nuclides containing even numbers of both protons and neutrons, the Pauli
exclusion principle mandates that the total spin vanishes, leading to zero
magnetic moment. Consequently, only certain nuclei may be observed by
NMR; some common choices are listed in Table 2.1 along with their associ-
ated gyromagnetic ratios.

Nucleus Gyromagnetic Ratio
γ/2π (MHz/Tesla)

1H 42.576
7Li 16.546
13C 10.705
14N 3.0766
15N -4.3156
17O -5.7716

23Na 11.262
31P 17.235
19F 40.052

129Xe 11.777
3He 32.434

Table 2.1: Gyromagnetic ratios for commonly investigated NMR nuclei [43, 44].

2.3.1 Precession

The time-independence of the Hamiltonian operator allows us to construct
the general solution to the time-dependent Schrödinger equation as a linear
combination of the stationary states:

Ψ(t) = cαe
−jEαt/~

(
1
0

)
+ cβe

−jEβt/~
(

0
1

)
=

(
cαe

jγB0t/2

cβe
−jγB0t/2

)
, (2.14)

where ‖Ψ(t)‖2 = 1. The physical behavior of this system is revealed by
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Figure 2.1: Spin precession in an external magnetic field.

calculating the expectation value of the x, y, and z components of the spin:

〈Sx〉 = Ψ(t)HSxΨ(t)

=
(
c∗αe
−jγB0t/2 c∗βe

jγB0t/2
) ~

2

(
0 1
1 0

)(
cαe

jγB0t/2

cβe
−jγB0t/2

)
=

~
2
|cα||cβ| cos (γB0t− (ϕβ − ϕα)) . (2.15)

Allowing cα,β = |cα,β|ejφα,β , such that |cα| = cos(θ/2), |cβ| = sin(θ/2), and
defining ϕ0 = ϕβ − ϕα, (2.15) can be written as:

〈Sx〉 =
~
2

sin(θ) cos (γB0t− ϕ0) . (2.16)

Similarly,

〈Sy〉 = −~
2

sin(θ) sin (γB0t− ϕ0) (2.17)

〈Sz〉 =
~
2

cos(θ), (2.18)

implying that 〈S〉 precesses clockwise around B0 at the Larmor frequency
with a constant azimuthal angle θ.

2.3.2 Magnetization

Though up to this point only single spins have been considered, typical
NMR samples contain Avogradro’s number of protons, representing many
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spins. Given the energy discrepancy between the two possible spin states, the
parallel state will be slightly overrepresented, in accordance with Maxwell-
Boltzmann statistics: (

Nα

Nβ

)
= e

~ω
kT , (2.19)

in which (Nα/Nβ) represents the population difference between state α and
β, k is the Boltzmann constant and T the sample temperature. Note that
even for a large number of spins, this population difference remains small. For
example, the population difference for a sample at room temperature placed
in a 3 Tesla field would amount to approximately 0.001% of the available
spins, illustrating the relative insensitivity of NMR.

The net magnetization produced by a given sample consisting of N spins is
simply the vector sum of the individual magnetic moments:

M =

N∑
n=1

µn. (2.20)

At equilibrium, however, there is no phase coherence among the spins,
thereby producing no net magnetization in the transverse (xy) plane.
Nonetheless, the population difference does give rise to a net magnetization
along the field direction (commonly referred to as the “longitudinal axis” in
NMR nomenclature), with magnitude:

M0 =
N∑
n=1

(
µn · k̂

)
=
γ~
2

(Nα −Nβ) . (2.21)

Assuming that ~ω � kT, Nα − Nβ can be approximated as (N~ω/2kT),
leading to

M0 = (γ~)2

(
NB0

4kT

)
. (2.22)

It is this magnetization that ultimately determines the NMR signal. Expres-
sion (2.22) illustrates that in addition to the external magnetic field strength
and the sample size, γ plays a central role in determining the sensitivity of an
NMR experiment – one of the reasons that proton (1H) NMR has remained
the most popular choice. Furthermore, the relatively small values of γ for
nuclei (when compared to that of the isolated electron) along with clinical
static magnetic field strengths of around 1.0-3.0 Tesla place the Larmor fre-
quency within the radiofrequency (rf) range, rendering in vivo NMR as a
clinically safe and non-invasive modality.
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Figure 2.2: Precessing magnetization tipped onto the transverse plane following
irradiation with a radiofrequency pulse.

2.3.3 RF Spin Tipping and Relaxation

Prior to 1966, NMR spectra were collected by continuously varying the rf
frequency while holding the magnetic field strength fixed, or vice versa. This
method of data collection was largely supplanted by the techniques proposed
by Richard Ernst [45], in which wide-band rf pulses were used in conjunction
with the Fourier transform, greatly improving sensitivity and reducing ac-
quisition times. In order to produce the NMR signal, the net magnetization
must first be rotated onto the transverse plane. This can be accomplished
most efficiently through the application of an additional circularly-polarized
rf pulse, B1, at the Larmor frequency:

B1(t) = B1

(
cos(ω0t)̂i− sin(ω0t)̂j

)
. (2.23)

During the pulse, transitions between the high and low-energy states are
effectuated, reducing the population difference maintained at equilibrium.
Furthermore, the spins gain greater phase coherence as they precess around
both the static field (B0), and the applied field (B1), ensuring a net mag-
netization. Once the magnetization has been transferred to the transverse
plane, it can then be detected using specialized receiver coils via Faraday’s
law of electromagnetic induction.

As the total magnetization represents a sum of the individual spin magnetic
moments, the equation of motion can be generalized as:

dM(t)

dt
= M(t)× γBtot(t), (2.24)
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where Btot represents the combined contributions of both the static and
radiofrequency fields. Expression (2.24) simply reinforces the fact that when
only the static field is present, dM(t)/dt = 0.

Once the application of the radiofrequency pulse has ended, the system will
tend towards its equilibrium state. This process is known as “relaxation,”
and is governed by two sample-specific time constants known as T1 and T2,
described below.

Longitudinal Relaxation - T1

Also known as “spin-lattice” relaxation, longitudinal relaxation describes the
process whereby energy from the spins is transferred to the surrounding
lattice, with which the spins are assumed to be in thermal contact. As such,
the system will tend towards its lowest energy configuration, leading to a re-
growth of the magnetization along the longitudinal axis. The rate at which
this process occurs is determined by the time constant T1, such that:

dMz(t)

dt
= −Mz(t)−M0

T1
. (2.25)

Transverse Relaxation - T2 and T ∗2

Also known as “spin-spin” decay, transverse relaxation is a consequence of the
spins’ interaction with their local environments. Energy exchange between
spins and their neighbors leads to a loss of phase coherence, reducing the
available transverse magnetization. The time scale for this process is reflected
by the value T2 as:

dMxy(t)

dt
= −Mxy(t)

T2
, (2.26)

where Mxy represents the magnetization in the transverse plane.

Although up until this point the static field has been considered to be purely
homogeneous, small variations may exist, leading to a distribution of pre-
cessional frequencies across the sample. This causes an additional loss of
coherence among the spins, hastening the decay of the transverse magneti-
zation. The combined effects are reflected by the parameter T ∗2 :

1

T ∗2
,

1

T2
+

1

T ′2
, (2.27)

where T ′2 encompasses the additional dephasing due to local field inhomo-
geneities. Although the processes governing T2 represent an inherent loss in
magnetization, as will be shown later, the signal loss due to T ′2 is recoverable.
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Figure 2.3: Phase decoherence due to T ∗2 processes leads to a decaying transverse
magnetization. Here, the magnetization is displayed in a rotating reference frame,
which precesses around B0 at the Larmor frequency.

2.4 The NMR Signal

2.4.1 The Free Induction Decay

The equation of motion for the precessing magnetization and the relaxation
effects mentioned above can be combined into the well-known Bloch equa-
tions [46]:

dMx(t)

dt
= γ (My(t)B0(t)−Mz(t)B1,y(t))−

Mx(t)

T2
(2.28)

dMy(t)

dt
= γ (Mz(t)B1,x(t)−Mx(t)B0(t))− My(t)

T2
(2.29)

dMz(t)

dt
= γ (Mx(t)B1,y(t)−My(t)B1,x(t))− Mz(t)−M0

T1
. (2.30)

Assuming only a static field component, the Bloch equations can be solved
to yield:

Mx(t) = e−t/T2 (Mx(0) cos(ω0t) +My(0) sin(ω0t)) (2.31)

My(t) = e−t/T2 (My(0) cos(ω0t)−Mx(0) sin(ω0t)) (2.32)

Mz(t) = Mz(0)e−t/T1 +M0

(
1− e−t/T1

)
, (2.33)

whereMx(0),My(0), andMz(0) represent initial values of the magnetization
in each of the x, y, and z-directions, respectively. The expression for the
transverse components of the magnetization may be further simplified by
adopting the polar form:

Mxy(t) = |Mxy(0)|e−t/T2e−j(ω0t−ϕ0), (2.34)

where ϕ0 is the initial phase at t = 0.

Following an initial rf pulse, the produced transverse magnetization gener-
ates a magnetic flux, Φ(t) in the receive coil. The measured signal is then
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Figure 2.4: Regrowth of the longitudinal magnetization (M0) and the accompany-
ing decay in transverse magnetization (Mxy) following a 90◦ radiofrequency pulse.

proportional to the time-derivative of this flux, i.e., the induced electromo-
tive force:

−dΦ(t)

dt
= − d

dt

∫
Ω⊂R3

M(r, t) ·Brec(r)dr, (2.35)

where Ω represents the sample domain, and Brec the receive field of the
coil. The most basic NMR experiment, where all the available longitudinal
magnetization is transferred to the transverse plane following a 90◦ pulse
applied on resonance, is referred to as a “free induction decay” (FID). As-
suming ω � (1/T1, 1/T2) such that the time-derivatives of the corresponding
exponential terms can be disregarded, the measured signal is given by:

s(t) ∝ ω0

∫
Ω⊂R3

e−t/T
∗
2 Mxy(r, 0)Brec

xy (r)ej((ωref−ω(r))t+ϕ0(r)−φrec
B (r))dr. (2.36)

Here, ωref is a reference frequency used for signal demodulation, effectively
removing the rapid oscillations at the Larmor frequency, and φrec

B is the field
angle of Brec.

For most NMR applications, the FID itself is seldom investigated directly.
Of primary interest is the spectral content of the measured signal, which can
be assessed with the aid of the Fourier transform. Neglecting T ∗2 effects, and
assuming a small homogeneous sample such that the spatial dependencies
arising in the exponential term of (2.36) can be disregarded:

s(t) = Ce−t/T2ejω
′t, (2.37)

where the time-independent terms and hardware-dependent factors have
been absorbed into the constant C, and ω′ is the demodulated frequency.
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Figure 2.5: The absorption and dispersion components of a Lorentzian lineshape
centered at ω′.

The Fourier transform of this signal is:

F{s}(ω) =

∞∫
−∞

(
Cejω

′te−t/T2

)
e−jωtdt

=

∞∫
0

Ce−(j(ω−ω′)+(1/T2))tdt

= − C

−j(ω − ω′) + (1/T2)

=
C(1/T2)

(ω − ω′)2 + (1/T2)2︸ ︷︷ ︸
absorption spectrum

−j C(ω − ω′)
(ω − ω′)2 + (1/T2)2︸ ︷︷ ︸

dispersion spectrum

. (2.38)

Expression (2.38) is referred to as a “Lorentzian” lineshape function, centered
at frequency ω′. The real-valued component is known as the “absorption”
spectrum, and the imaginary part as the “dispersion” spectrum. One com-
mon metric for classifying Lorentzian lineshapes is the full width at half max-
imum (FWHM), which has the value 2/T2 rad/s (1/πT2 Hz). In practice, T ∗2
effects lead to amalgamated lineshapes that can no longer be described by
pure Lorentzians, however, the standard FWMH criterion is often adopted
for simplicity.
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2.4.2 Chemical Shift

Though the formation of a measurable magnetization is an interesting phe-
nomenon, the use of NMR would be rather limited if all spins simply res-
onated at the Larmor frequency. Indeed, if such were the case, NMR would
be unable to provide any further insights into the molecular composition or
local environments of a particular sample, and would simply function as a
means of testing for the presence of the investigated nucleus. Fortunately,
the precessional frequency of a particular nucleus depends not only upon
the associated gyromagnetic ratio and the external field, but also upon its
local magnetic environment. The latter is determined by the magnetic field
produced by the local electron configuration, effectively “shielding” the nu-
cleus from the effects of the external field. These environments are reflected
through a dimensionless constant known as the “chemical shift,” σ, and were
first noted by Proctor and Yu [47], and by Dickinson [48] in 1950. The ef-
fective field for a given chemical compound, l, can therefore be expressed
as:

Beff(l) = (1− σl)B0. (2.39)

Nuclei in different chemical environments will therefore resonate at slightly
different frequencies given by:

ωl = γB0(1− σl), (2.40)

permitting a robust investigation of the various physical and chemical prop-
erties of the sample. Allowing C(σ) to represent the density of spins with
chemical shift σ, the (simplified) signal model in (2.37) becomes:

s(t) ∝ e−t/T ∗2
∞∫
−∞

C(σ)ejγσB0tdσ, (2.41)

or,
s(t) ∝ e−t/T ∗2

∑
l

Cle
jγσlB0t (2.42)

if only a finite number of discrete nuclear species are considered.

Equation (2.40) implies that spectrometers employing different field
strengths will lead to different resonance frequencies for the same com-
pound. Thus, in order to enable comparisons between spectra recorded by
different spectrometers, a standardized metric is needed, giving rise to the
so-called “ppm scale,” in which the measured resonance is normalized to a
pre-determined reference frequency:

δppm ,
ωl − ωref
ωref

× 106. (2.43)
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Normally, ωref is taken to be that of tetramethylsilane - Si(CH3)4. According
to convention, NMR spectra are usually displayed with the chemical shift
(ppm) axis increasing from right to left (smaller chemical shifts imply greater
shielding).

2.4.3 Spin-Spin Coupling

In addition to the chemical shift, another important feature is observed in
high resolution NMR spectra that amounts to a secondary splitting of the
spectral peaks into multiplets. This phenomenon arises from the fact that
the investigated nucleus will be influenced not only by the local magnetic en-
vironment due to the surrounding electrons, but also by the magnetic dipoles
of adjacent nuclei within the same molecule. This interaction is referred to as
“spin-spin coupling” or simply, “J-coupling.” Though a thorough treatise is
beyond the scope of this text, the underlying mechanisms can be elucidated
by considering the Hamiltonian operator for a simple two spin system:

Ĥ = −γB0(1− σ1)Ŝz,1 − γB0(1− σ2)Ŝz,2 +
2πJ12

~
Ŝ1 · Ŝ2, (2.44)

where the subscripting indexes the particular nucleus, and J12 is the “spin-
spin coupling constant.” When considering the composite wave functions:

ψ1 = α(1)α(2)

ψ2 = β(1)α(2)

ψ3 = α(1)β(2)

ψ4 = β(1)β(2),

solving for the allowed energies yields:

E1 = −γ~B0

(
1− σ1 + σ2

2

)
+
π~J12

2
(2.45)

E2 = −~
2

[
(γB0)2(σ1 − σ2)2 + (2πJ12)2

]1/2 − π~J12

2
(2.46)

E3 =
~
2

[
(γB0)2(σ1 − σ2)2 + (2πJ12)2

]1/2 − π~J12

2
(2.47)

E4 = γ~B0

(
1− σ1 + σ2

2

)
+
π~J12

2
. (2.48)

Because only one spin may transition between energy states at a given time,
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the frequencies associated with allowable transitions are:

ω1,2 =
ω0

2π

(
1− σ1 + σ2

2

)
− J12

2
− 1

4π

[
ω2

0(σ1 − σ2)2 + (2πJ12)2
]1/2
(2.49)

ω1,3 =
ω0

2π

(
1− σ1 + σ2

2

)
− J12

2
+

1

4π

[
ω2

0(σ1 − σ2)2 + (2πJ12)2
]1/2
(2.50)

ω2,4 =
ω0

2π

(
1− σ1 + σ2

2

)
+
J12

2
+

1

4π

[
ω2

0(σ1 − σ2)2 + (2πJ12)2
]1/2
(2.51)

ω3,4 =
ω0

2π

(
1− σ1 + σ2

2

)
+
J12

2
− 1

4π

[
ω2

0(σ1 − σ2)2 + (2πJ12)2
]1/2

,

(2.52)

where ωi,j denotes a transition from state i to state j. The above represents a
so-called “second order spectrum” for the two-spin system for general choices
of σ1, σ2, and J12. However, for ω0|σ1 − σ2| � 2πJ12, the J12 term inside
the square root in (2.49) through (2.52) may be neglected, yielding a “first
order spectrum.” In the example of the two spin system (designated as an
“AX” system), the resulting first order spectrum would then appear as a pair
of doublets, with centers separated by ω0|σ1 − σ2|/2π and an intra-doublet
spacing of 2πJ12. For the hydrogen nucleus, the splitting patterns for first
order spectra can be predicted using the so-called “n+ 1 rule,” which states
that if a proton is coupled to n equivalent nuclei, the multiplicity of the
resulting peak is n + 1. Note that if all protons in a given molecule are
equivalent, no splitting occurs.
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Figure 2.6: Simulated 1H NMR spectrum and chemical structure of Alanine,
demonstrating the predicted peak splitting due to spin-spin coupling. This AX3

system is represented by a doublet centered at 1.47 ppm, and a quartet at 3.78
ppm, which are illustrated in the accompanying magnified subplots.
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Figure 2.7: Schematic diagram representing the formation of a spin echo. Curved
lines at the end of the diagram represent the completion of one TR.

2.4.4 The Spin Echo

Section 2.3.3 introduced the concept of T ∗2 weighting as a combination of the
effects due to spin-spin interactions, and inhomogeneities present in the pri-
mary magnetic field. The magnetization due to the later may be recovered by
a technique known as the “spin echo” method. The success of the technique
rests on the assumption that the field perturbations leading to T ′2 effects are
time-independent. Following the application of a 90◦ pulse, the spins will
begin to lose phase coherence according to B0(r). After a time τ , a second
180◦ pulse is applied, effectively inverting the phase of the spins. Because B0

is time-independent, the inverted phases will regain coherence, culminating
in complete realignment at time TE , 2τ , forming what is known as a “spin
echo” (or “Hahn echo”). Time TE is known as the “echo time” of the experi-
ment. Additional 180◦ pulses, applied at intervals of (2n− 1)τ may be used
to generate multiple echoes at times nTE, until the transverse magnetiza-
tion is sufficiently diminished due to normal T2 processes. The entire pulse
sequence may be repeated as needed, giving rise to a second time constant,
TR, known as the “repetition time.”

2.5 Magnetic Resonance Imaging

In the decades following NMR’s inception, a number of works began to in-
vestigate potential in vivo applications. It wasn’t until 1971, however, when
Raymond Damadian reported that typical relaxation times in malignant tu-
mors differed significantly from those in normal tissue [49], that the diagnos-
tic prospects of NMR began to emerge. Nonetheless, the NMR signal still
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represented the bulk magnetization over the entire sample, and a suitable
means of spatially-localizing NMR signals had yet to be discovered.

In the early 1970s, Peter Mansfield [50] and Paul Lauterbur [51], expanding
upon the earlier work of Herman Carr [52], described how the addition of
spatially-dependent magnetic field gradients could be used to form an image
of the underlying spin distribution, with the first image of a living mouse
being produced in 1974 [53]. The first MRI body scan of a human subject
was conducted a number of years later by Damadian’s group [54]. Since
those early experiments, MRI has evolved into an exceptionally versatile
and widespread imaging modality due to its noninvasiveness, and its ability
to produce a myriad of different tissue contrasts emphasizing a variety of
physiological phenomena.

Again assuming that all available magnetization has been transferred to the
transverse plane, ωref = ω0, and neglecting relaxation effects, (2.36) may
once again be adapted as:

s(t) =

∫
Ω⊂R3

ρ(r)ej(ω0t+ϕ(r,t))dr, (2.53)

where,

ρ(r) = ω0B
rec
xy Cρ0(r)(γ~)2 B0

4kT
(2.54)

functions as an effective “spin density.” Here, ρ0 represents the number
of spins per unit volume, and C is again a constant absorbing hardware-
specific factors. Though Brec is assumed to be homogeneous, any spatial
dependencies can be considered by allowing it to remain inside of the integral
in (2.53). Note that ϕ in (2.53) now carries an explicit time-dependence, the
purpose of which will be made clear in the following.

2.5.1 Spatial Encoding

Typically, MRI images are acquired using applied linear gradients, such that
for an applied magnetic field, BG, the gradient vector is given by:

G(t) = ∇BG
z (r)

= Gx(t)̂i +Gy(t)̂j +Gz(t)k̂, (2.55)

where each Gx, Gy, and Gz represents a linear gradient along the x, y, and
z Cartesian dimension, respectively. The z-component of the total effective
field is then given by:

Bz(r, t) = B0 + r ·G(t), (2.56)
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leading to a position-dependent resonant frequency:

ω(r, t) = ω0 + γr ·G(t). (2.57)

The accumulated phase becomes:

ϕG(r, t) = −

ω0t+ γr ·
t∫

0

G(τ)dτ

 . (2.58)

Letting

k(t) = γ
¯

t∫
0

G(τ)dτ, (2.59)

and substituting (2.58) into (2.53), the 1D spin density along G is given by:

s(k) =

∫
Ω⊂R3

ρ(r)e−2πjk·rdr. (2.60)

The measured signal is therefore revealed as the Fourier transform of the
spin distribution. The values k are commonly referred to as coordinates in
“k-space” in the MR community, and represent “spatial frequencies” in units
of [1/length]. Thus, a specific trajectory through k-space may be traversed
through manipulation of G(t), either by modulating the gradient amplitude,
or by varying the time during which the gradient remains in effect. In prin-
ciple, the spin density may then be recovered by means of the inverse Fourier
transform:

ρ(r) = F−1{s}(r) =

∞∫
−∞

s(k)e2πjk·rdk. (2.61)

2.5.2 Frequency Encoding and The Gradient Echo

Similar to the spin echo method described in section 2.4.4, the gradient echo
method relies upon a manipulation of the transverse magnetization in order
to coerce phase coherence. Following the 90◦ pulse, a constant gradient with
negative polarity is applied at time t1, leading to an accumulated phase given
by: ϕG(r, t) = γr ·G(t− t1), indicating negative values of k. This gradient is
left on for duration τ−, upon which it is momentarily switched off, and then
reapplied with the opposite (positive) polarity at time t2 for a duration of τ+.
The accumulated phase then becomes: ϕG(r, t) = γr ·G(τ−)−γr ·G(t− t2).
It is therefore clear that at time TE = τ− + t2, the accumulated phase will
return to zero, effectively forming a “gradient echo.” The general condition
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Figure 2.8: Schematic diagram for a typical 2D gradient echo sequence. GSS:
slice selection gradient; GPE: phase encoding gradient; GR: frequency encoding
(readout) gradient; ADC: analog-to-digital conversion. For each TR, a different
amplitude is used for GPE in order to achieve proper phase encoding.

for the formation of a gradient echo is that the integrated area under the
gradient waveform, i.e., its zeroth-order moment vanishes:∫

G(t)dt = 0. (2.62)

The times are often chosen so that the echo occurs at the center of the
second gradient waveform, i.e., when τ+ = 2τ−. If data collection be-
gins at t2, this ensures that k-space is sampled symmetrically between
kmin = −(γ/2π)G(τ+/2) and kmax = (γ/2π)G(τ+/2), with the k = 0 point
occurring at the center of the echo.

The above scheme demonstrates that with careful manipulation of the gra-
dients, an entire “line” of k-space may be sampled within one TR, greatly
improving the efficiency of a MRI experiment. Acquiring k-space data in
this manner is referred to as “frequency encoding,” and the direction along
which the gradient is applied the “read direction” (also “frequency encoding
direction”).
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2.5.3 Phase and Slice Encoding

In the most basic MRI acquisition scheme, k-space data are acquired along a
Cartesian grid. Generally, frequency encoding is necessarily reserved for only
one of the these dimensions, say the x-direction. Along each of the remain-
ing two dimensions, short gradient pulses are applied in order to impart a
position-dependent phase shift. This has the effect of moving to a particular
value of ky and kz, upon which frequency encoding may be used to acquire all
the kx points corresponding to that location. This process is repeated until
ky and kz have been sufficiently sampled. According to MR nomenclature,
the y, and z dimensions are said to have been “phase encoded.”

It should be noted that while frequency encoding represents an efficient
means for traversing k-space, phase encoding dictates that generally only
one location per TR may be collected along the remaining Cartesian dimen-
sions. The overall acquisition time for a 3D MR experiment is thus:

Tacq = NyNzTR, (2.63)

according to the aforementioned convention, where Ny and Nz are the num-
ber of phase encoding steps in the y and z directions, respectively.

Often times, it is not necessary to acquire images of the full object, but
only specific “slices” thereof. Slice selection can be accomplished using a
combination of gradients and rf pulses in order to excite only those spins
whose precessional frequencies lie within a certain range. Applying a linear,
constant gradient, G, the range of precessional frequencies is given by:

ω(r) = ω0 + γr ·G. (2.64)

In order to excite a slice with thickness ∆r centered at r0, the spectral profile
of the rf pulse must range from γG · (r0−∆r/2) to γG · (r0 + ∆r/2), which
is accomplished by allowing the rf bandwidth, BWrf = γG ·∆r, or

∆r =
BWrf

γG
, (2.65)

to make the dependence of the slice profile on rf bandwidth and the applied
gradient more apparent.

2.5.4 Discretization and Sampling

Equation (2.61) implies that the MR signal is collected continuously, and that
all values of k are infinitely accessible. In common practice, the MR signal
is sampled along the implemented k-space trajectory at regular intervals,
leading to a finite set of discrete measurements. Considering the 1D case, the
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Figure 2.9: The relationship between rf bandwidth, gradient strength, and the
slice selection profile for a given static magnetic field strength.

sampling interval, ∆k, is determined via the gradient strength and duration
as:

∆k = γ
¯
G∆t. (2.66)

Modeling the sampling step as a multiplication with a Dirac comb distri-
bution, Xp(x) ,

∑∞
n=−∞ δ(x − np), the sampled signal can be expressed

as:

sX(k) = s(k) ·X∆k(k)

=
∞∑

n=−∞
s(n∆k)δ(k − n∆k). (2.67)

The inverse Fourier transform of this signal yields:

ρ̂(x) = F−1{sX}(x) =

∞∫
−∞

( ∞∑
n=−∞

s(n∆k)δ(k − n∆k)

)
e2πjkxdk

=
∞∑

n=−∞
s(n∆k)e2πjn∆kx (2.68)

for the reconstructed spin density. The convolution theorem for the Fourier
transform, along with the fact that F{Xp} = (1/p)X(1/p) by the Poisson
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summation formula, allows (2.68) to be re-expressed as:

ρ̂(x) =

(
F−1{s} ∗ F−1{X∆k}

)
(x)

= ρ(x) ∗X( 1
∆k

)(x)

=

∞∑
m=−∞

ρ(x− m

∆k
). (2.69)

The above implies that the inverse Fourier transform of the sampled signal
yields an infinite series of copies of the spin distribution, spaced at intervals
(1/∆k). It is clear, therefore, that the sampling interval plays a fundamen-
tal role in the appearance of the reconstructed spin density. The quantity
(1/∆k) is referred to as the “field of view” (FOV) in MR literature:

1

∆k
, FOV = L. (2.70)

Assuming that the spin distribution is compactly supported within Ω, if
L < Ω, the copies will overlap - a phenomenon known as “aliasing.” Sampling
intervals selected such that L > Ω are said to be in compliance with the
“Nyquist sampling criterion.”

Of course, practical considerations mandate that only a finite number of
k-space samples may be collected. This truncation can be modeled mathe-
matically as a windowing of the sampled data by a rect function:

rectp(x) =


0 |x| > p

2
1
2 |x| = p

2

1 |x| < p
2

(2.71)

such that,

sX,W (k) = s(k) ·X∆k(k) · rectW (k + (∆k/2))

=

N/2−1∑
n=−N/2

s(n∆k)δ(k − n∆k), (2.72)

where W , N∆k defines the width of the truncation window, and N equals
the total number of k-space samples (generally taken to be even by conven-
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tion). Again taking the inverse Fourier transform yields:

ρ̂(x) = F−1{sX,W }(x) (2.73)

=

(
F−1{s} ∗ F−1{X∆k} ∗ F−1{rectW (·+ ∆k/2)}

)
(x)

=

N/2∑
m=−N/2

ρ(x− m

∆k
) ∗W sinc(Wx)e−πj∆kx, (2.74)

where sinc(x) , sin(πx)/πx. Hence, the result of the truncation is a blurring
of the infinitely sampled spin distribution by a sinc kernel. The amount of
blurring is dependent upon W , increasing with narrowing window width.

The final connection between the sampled signal and the reconstructed spin
density can be made by first discretizing the spin density:

ρX,L(x) = ρ̂(x) ·X∆x(x) · rectL(x+ (∆x/2))

=

M/2−1∑
m=−M/2

ρ̂(m∆x)δ(x−m∆x), (2.75)

where L = M∆x. Taking the Fourier transform of (2.75):

ŝ(k) = F{ρX,L}(k)

=

M/2−1∑
m=−M/2

ρ̂(m∆x)e−2πjm∆x. (2.76)

Setting M = N and rewriting (2.74) as ρ̂(x) =
∑N/2

n=−N/2 s(n∆k)e2πjn∆kx

and substituting into (2.76) leads to:

s(
n

L
) =

N/2−1∑
m=−N/2

ρ̂(
mL

N
)e−2πjmn/N (2.77)

ρ̂(
mL

N
) =

1

N

N/2−1∑
n=−N/2

s(
n

L
)e2πjmn/N , (2.78)

thereby forming a discrete Fourier pair.

2.6 Localization Methods in Spectroscopy

In section 2.4, the measured signal was that produced by the bulk magne-
tization generated from the entire sample. While this may suffice for many
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applications, in in vivo situations the ability to localize the NMR signal to
a particular region of interest is often of paramount importance. This may
stem from a need to either limit the spectral analysis to anatomical or func-
tional regions shown to have specific diagnostic or prognostic value, or to
exclude signals emanating from extraneous areas.

2.6.1 Single Voxel Spectroscopy

Single voxel spectroscopy (SVS) achieves the necessary localization by the
same mechanisms described in section 2.5.3. In this case, a frequency-
selective rf pulse in conjunction with slice selection gradients in all three
Cartesian dimensions are employed in order to excite a 3D rectangular vol-
ume of interest (VOI). Two common SVS acquisition schemes for 1H ap-
plications include the stimulated acquisition mode (STEAM) [55–57] and
point-resolved spectroscopy (PRESS) [58–61] sequences. STEAM employs
three 90◦ pulses, generating three FIDs, four spin echoes, and one stimulated
echo. The latter is usually considered the signal of interest, the others being
nulled through the use of additional gradients. STEAM is generally preferred
when short TE times are desired, minimizing T ∗2 effects. However, only half
of the signal is available when compared to traditional spin echo acquisitions,
and remains more susceptible to diffusion effects. In PRESS, one 90◦ and
two 180◦ pulses are applied along with two pairs of “crusher” (signal-nulling)
gradients in order to generate two spin echoes, and to effectively null signal
originating from outside the VOI.

2.6.2 Chemical Shift Imaging

Although single voxel spectroscopy is able to provide data within a spe-
cific VOI at high spectral resolution, its capacity for uncovering the spatial
distribution of spectral content remains limited. Multivoxel spectroscopic
techniques therefore aim to rectify this deficiency by adopting spatial lo-
calization techniques developed for MRI. The most basic MRSI acquisition
scheme is known as chemical shift imaging (CSI) [62, 63], in which spatial
localization is achieved by phase encoding along each Cartesian dimension
(2D or 3D). The encoded signal is then allowed to evolve along an addi-
tional temporal dimension in the absence of gradients, using either FID or
spin-echo methods. Denoting the spatio-spectral distribution of the imaged
object as ρ(r, f), the measured signal can be expressed as:

s(k, t) =

∞∫
−∞

∫
Ω⊂R3

ρ(r, f)e−2πj(k·r+ft)drdf. (2.79)

The measured data is collected by sampling along the temporal axis, and
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Figure 2.10: Schematic diagram of a typical spin-echo-based single-slice CSI se-
quence. At each TR, the desired slice is selectively excited, and subsequently phase
encoded along the two remaining Cartesian dimensions. This type of acquisition
scheme typically requires exceedingly long acquisition times, as only one point in
k-space is collected for each repetition.

is then stored as a Nx × Ny × Nz × T array, where Nx, Ny, and Nz are
the number of phase encodes in the x, y, and z dimensions, respectively,
and T is the number of acquired temporal samples. The resulting spatio-
spectral distribution may then be recovered by applying the inverse Fourier
transform along each array dimension. A common means of subsequent
data visualization is achieved by integrating ρ(r, f) along a particular range
of frequencies, ∆f , generating so-called “metabolic maps.”

Note that given the role of the temporal axis as the “read direction,” the
efficient frequency encoding localization schemes introduced in section 2.5.2
can no longer be exploited, mandating that each location, k, must be sepa-
rately phase encoded (see figure 2.10). The total acquisition time for a CSI
experiment therefore becomes:

Tacq = NxNyNzTR. (2.80)

As an example, consider that a CSI acquisition with Nx = 16, Ny = 16,
Nz = 5, with TR = 1 s would require a total acquisition time of twenty-
one minutes – approaching the limit for clinically-acceptable human imaging
studies.
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2.6.3 Accelerated Acquisition Techniques

Given the long acquisition times associated with traditional CSI measure-
ments, a considerable amount of effort has therefore been put towards the
development of faster acquisition schemes. While many different approaches
have been conceived, most have emerged as analogues to related MRI acquisi-
tion acceleration strategies such as spiral [64–66], steady-state free precession
(SSFP) [67], echo-planar spectroscopic imaging (EPSI) [68–71], rosette [72],
revolving spheres [73], and parallel imaging [74–76]. One of the most en-
during and successful methods is the EPSI method, in which an oscillating
gradient along one spatial dimension (for example, the x-direction) is uti-
lized during data acquisition whereby one temporal sample is collected for
each gradient lobe, effectively sampling an entire plane in the corresponding
Fourier domains. The overall acquisition time is then reduced by a factor of
Nx. Nonetheless, EPSI places a significant burden on the MR gradient sys-
tem in order to achieve the slew rates necessary to achieve sufficient spectral
bandwidth for typical MRSI studies. Furthermore, it has been shown [77]
that the signal averaging necessary in order to achieve similar SNR values
to traditional CSI measurements leads to comparable scan times. Lastly, as
with EPI methods in traditional MRI, EPSI remains particularly suscepti-
ble to field inhomogeneity effects, possibly leading to additional artifacts and
spectral lineshape distortions.
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Chapter 3

MRSI Processing and
Reconstruction

3.1 Limitations in MRSI

While the clinical prospects afforded by non-invasive in vivo investigation
of metabolic concentrations and their spatial distributions are manifold, re-
search in magnetic resonance spectroscopic imaging has remained hindered
by a number of limitations. While many of the involved factors may be
similarly implicated in structural MRI acquisitions, their increased severity
for MRSI measurements mandates deliberate consideration. Though by no
means a fully-exhaustive enumeration, the following represent the salient
obstacles governing MRSI.

3.1.1 Sensitivity

As was discussed in section 2.3.2, for a biological sample at room temper-
ature, NMR remains a relatively insensitive technique. For standard pro-
ton imaging, this insensitivity is countervailed by the nearly 100% natural
abundance of the 1H nucleus, and the large concentration of water (40-45
mol/liter) in biological tissue, thus enabling high SNR structural imaging.
However, in vivo concentrations of other 1H-containing chemical compounds
of interest tend to be orders of magnitude lower, thereby comprising a
much smaller percentage of the overall spin density. Reliable detection of
these compounds may therefore often be achievable only via repeated mea-
surements and signal averaging, leading to further protracted measurement
times. A number of MR-observable metabolites and their literature-derived
concentrations in the human brain [78–80] are provided in table 3.1.

33
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Concentration
(mmol/L)

Acetate 0.0-0.5
NAA 7.5-17.0
NAAG 0.5-2.5
ATP 2.0-4.0
Alanine 0.1-1.5
GABA 1.0-2.0
Ascorbic acid 0.5-1.5
Aspartate 1.0-2.0
Choline (total) 0.5-2.5
Creatine 4.5-10.5
Ethanolamine 0.0-1.5
Glucose 1.0-2.0
Glutamate 6.0-12.5
Glutamine 3.0-6.0
Glutathione 1.5-3.0
Glycerophosphorylcholine 0.5-1.5
Glycine 0.2-1.0
Glycogen 3.0-6.0
Homocarosine 0.1-0.4
Myo-inositol 4.0-9.0
Scyllo-inositol 0.2-0.5
Lactate 0.2-1.0
Phosphocreatine 3.0-5.5
Phosphorylcholine 0.2-1.0
Phosphorylethanolamine 1.0-2.0
Pyruvate 0.0-0.5
Serine 0.2-2.0
Succinate 0.0-0.5
Taurine 2.0-6.0
Threonine 0.0-0.5

Table 3.1: Average concentrations of NMR-observable metabolites in the human
brain. It is important to note that these values represent concentrations that are
typically three to five orders of magnitude smaller than that of water.

3.1.2 Resolution and Pointspread Function

Within most clinical settings, practical restrictions on the total measurement
time effectively limit the number of procurable phase encoding steps, and
generally only the lowest spatial frequencies are acquired (i.e., those typically
containing the highest signal energy). This curtailed measurement process
engenders a number of consequences for reconstructed volumes produced by
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the inverse discrete Fourier transform. For standard 3D CSI implementations
utilizing sampling intervals in accordance with the Nyquist criterion, the
corresponding voxel dimension are given by:

∆x =
1

Nx∆kx
, ∆y =

1

Ny∆ky
, ∆z =

1

Nz∆kz
. (3.1)

Timing considerations often yield choices for Nx, Ny, and Nz that trans-
late to nominal voxel dimensions on the order of 0.5 - 2.0 cm3, representing
considerably coarser resolutions than seen in standard structural MRI. More-
over, in the absence of any additional spatial filtering, the (1D) pointspread
function (PSF) is given by:

PSF(x) = F−1{rectW }(x) = W sinc(Wx), (3.2)

or when considering the sampling procedure by:

PSF(x) =

(
F−1{rectW } ∗ F−1{X∆k}

)
(x)

=

N/2∑
n=−N/2

e2πjn∆kx

= DN (x), (3.3)

where DN is the Dirichlet kernel. A broadening of the PSF is therefore
effectuated as a greater number of phase encodes are discarded, reducing the
width of the sampling window. As this PSF is convolved with the spatial spin
distribution, the actual voxel size is then taken to be the FWHM of the main
lobe of the PSF – 21% larger than the nominal voxel size. Furthermore, as a
result of residual phase dispersal, only 87% of the reconstructed voxel signal
is contained within the nominal dimensions – the remainder being distributed
along adjacent voxels [81]. This phenomenon is often referred to as signal or
spectral “leakage,” though is also known by the more nefarious appellation of
“voxel bleeding.” This spread is most conspicuous near regions characterized
by large discrepancies in spin density, and is particularly problematic for
1H MRSI of the brain, where cortical spectra are frequently contaminated
by strong peripheral signals produced by the extra-cranial lipids. At the
acquisition level, numerous efforts have been made in order to mitigate these
PSF effects, either by utilizing the accelerated acquisition schemes described
in section 2.6.3 to traverse more distal regions of k-space, employing higher-
order magnetic field gradients [82], or applying density weighting [83].

3.1.3 Field Inhomogeneity

Although the external field may in general be considered as homogenous,
the introduction of a sample may give rise to spatially-dependent inhomo-
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geneities, largely due to variations in material susceptibility across the object.
In this case, the acquired signal may be re-expressed as:

s(k, t) =

∞∫
−∞

∫
Ω⊂R3

ρ(r, f)e
−2πj

(
k·r+

(
f+γ

¯
∆B0(r)

)
t
)
df. (3.4)

Equation (3.4) implies that the measured spectrum at position r will be
shifted by an amount ∆f(r) = γ

¯
B0(r) in the temporal frequency domain.

Furthermore, a significantly varying B0(r) across the voxel volume leads to
an additional loss of phase coherence, shortening T ∗2 . While these effects may
be negligible for structural MRI, they are particularly disadvantageous when
considering the large voxel dimensions normally encountered in MRSI, where
attendant T ∗2 reductions lead to significant spectral lineshape broadening and
distortions. While most modern MR systems are equipped with active shim-
ming systems, whereby additional gradients are utilized to compensate for
sample-induced perturbations, corrections may generally be applied only up
to first or second order. Strong residual inhomogeneity effects can therefore
considerably reduce data quality, and remain pervasive in numerous aspects
of the MRSI acquisition process.

3.2 Standard Acquisition and Pre-processing
Pipeline

Given the aforementioned limitations, a number of important acquisition and
data processing steps have become necessary in order to ensure adequate 1H
MRSI data quality for subsequent processing and analysis. While by no
means fully comprehensive, the following addresses the principle concerns.

3.2.1 Water Suppression

To reliably isolate and detect the metabolite signals of interest, the dominant
water resonance must first be suppressed. This is normally accomplished
during the MRSI acquisition with the aid of additional pulse modules that
aim to either selectively excite the metabolite resonances while confining the
water magnetization to the longitudinal axis, or by selective rephasing of
the metabolites following wide-band excitation. Techniques belonging to the
first category include the use of binomial pulse sequences [84–88], chemical
shift selective (CHESS) excitation [89], and variable pulse powers and opti-
mized relaxation delays (VAPOR) [90], while the latter includes MEGA [91]
and water suppression by gradient-tailored excitation (WATERGATE) [92].
Additional methods that achieve suppression by exploiting the differences
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in T1 relaxation between the metabolites and water include DEFT [93] and
WET [94].

3.2.2 Volume Selection

As mentioned previously, the broad pointspread function often leads to severe
contamination of the metabolite spectra by the extra-cranial lipid signals in
in vivo 1H MRSI studies of the human brain. Though these artifacts are eas-
ily recognizable by a trained reviewer, they are problematic due to both their
magnitude and overlapping chemical shifts with a number of metabolites of
interest. The latter precludes the repurposing of the aforementioned tech-
niques for removing the unwanted water resonance, and generally obfuscates
reliable quantitation and processing. In most cases, lipid suppression is at-
tempted during acquisition either by designating a VOI by means of selective
excitation, or by actively nulling signals originating from lipid-containing re-
gions. The former includes previously discussed methods such as STEAM or
PRESS for selecting the VOI, yet care must be taken when determining the
corresponding rf pulse shapes and durations due to so-called “chemical shift
displacement” errors. These can be understood by recalling equations (2.64)
and (2.65), and considering the frequency bandwidth between two separate
compounds, i and j, ωi,j . Forming the ratio of these two bandwidths yields:

∆x′ =
ωi,j
BWrf

∆x, (3.5)

implying a relative displacement between the localized volumes. Considering
the large voxel sizes in MRSI, and the addition of phase-encoding not present
in single voxel methods, if ωi,j is large, considerable shifts may ensure which
become spatially-resolved unless BWrf is sufficient large, and may therefore
lead to poorly localized or distorted spectra.

Improved localization can be achieved by employing methods that use adi-
abatic full passage (AFP) refocusing pulses [95], such as localized adiabatic
spin-echo refocusing (LASER) [96]. In the basic LASER routine, the entire
sample is excited with a single adiabatic pulse, after which 3D localization is
achieved by three pairs of AFP pulses to selectively refocus three orthogonal
slices. LASER is particularly advantageous due to its relative B1 insensitiv-
ity when compared to other localization methods. However, the increased
sequence duration due to the large number of refocusing pulses makes it
less suitable for short TE measurements. The semi-LASER [97] sequence
addresses this limitation by replacing the initial AFP pulses with a normal
excitation pulse, suppressing spurious FIDs or echoes with optimized crusher
gradients.

An alternative strategy to selective excitation is through outer volume sup-
pression (OVS) [98–102], where numerous slices positioned over the offending
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Figure 3.1: Sample single-slice CSI acquisition protocol of the human brain, in-
cluding volume pre-selection (white box) and outer volume selection (crosshatched
slabs).

regions are selectively excited and then dephased using crusher gradients,
leaving the water and metabolite signals unperturbed for subsequent mea-
surement. These modules can often be inserted into existing PRESS or
STEAM sequences, though are often sensitive to B1 and T1 effects as with
water suppression methods, and remain an active area of research in MRSI.
An example of VOI selection and OVS slab placement during a typical scan-
ning session is displayed in figure 3.1.

3.2.3 Pre-processing

In spite of the compensatory mechanisms employed in order to circumvent
or abate the various detrimental factors affecting raw data quality, most
MRSI measurements require a degree of additional pre-processing prior to
analysis. This may be necessary due to the presence of static or dynamic field
inhomogeneity effects, residual water or lipid signals, low SNR, or severe data
truncation artifacts. A typical MRSI pre-processing pipeline (e.g. [103,104])
may therefore include the following steps:

1. Residual Water Removal

A number of the techniques outlined in section 3.2.1 have been shown
to achieve excellent water suppression under favorable measurement
conditions. However, many remain sensitive to T1, B1, or B0 effects,
which may result in either incomplete or failed water suppression, or
unintentional suppression of the metabolites if the excitation band-
width is not chosen carefully. To address the former, post-processing
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tools have been developed that attempt to estimate and remove resid-
ual water or other nuisance components. Popular approaches include
the use of low-pass finite impulse response (FIR) filters [105, 106],
wavelets [107], and state-space methods. One prevalent method com-
prising the latter category is the Hankel singular value decomposition
(HSVD) [108], a time-domain subspace approach that models an input
signal as a sum of exponentially-damped sinusoids. The water signal is
then approximated as a mixture of overlapping Lorentzian peaks, and
subtracted from the input. This procedure has since inspired numer-
ous variants such as HLSVD [109], HTLS [110], HTLS-PK [111], and
KNOB-SVD [112], which exploit varying degrees of prior knowledge
during the estimation procedure to fit spectroscopic data.

2. Temporal Apodization and Zero-Filling

Normally, the data acquisition duration for each phase encoding step
is sufficiently long such that the acquired signal has decayed well below
the noise level by the end of sampling. Given the incoherence between
the temporal and spectral domains, the SNR in the latter may be im-
proved by multiplying the time-domain signal by an appropriate choice
of apodization function, which aims to preserve high SNR portions of
the signal near the beginning of the FID (or echo) while attenuating
the primarily noise-containing regions at the end. Two routinely used
filters are based on Gaussian and exponential functions:

hGauss(t) = e−
t2

σ2 (3.6)

hexp(t) = e−Γt. (3.7)

Optimal sensitivity may be attained using the latter filter with Γ =
1/T ∗2 , i.e., by matching the decay envelope of the signal. This sensitiv-
ity gain, however, is accomplished at the expense of a doubling of the
spectral linewidth. Other values of Γ or σ may be selected to achieve
different effects. For example, selecting a negative value of Γ in (3.7)
will cause hexp to assume the role of an inverse or deconvolution filter,
reducing the overall spectral linewidth, but resulting in an additional
loss of SNR. The effects of various temporal apodization filters on the
reconstructed spectrum is illustrated in figure 3.2.
Zero filling the time-domain data, whereby a sequence of zeros is ap-
pended to the end of the sampled signal, may be used to improve the
overall appearance of a spectrum, interpolating intermediate points
between the spectral samples. This is often used in conjunction with
(3.6) or (3.7) when working with truncated data in order to circumvent
the associated spectral artifacts, or to improve digital resolution when
visualizing narrow spectral peaks.
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Figure 3.2: The effect of temporal apodization on a FID and its corresponding
spectrum (black) using various filter functions (gray). (Row a) The original FID
and its associated spectrum after Fourier transformation. (Row b) The effect of
multiplying the FID with an exponential function matched to the decay envelope
of the time-domain signal; the resultant spectrum illustrates an increase in SNR,
accompanied by a doubling of the spectral linewidths. (Row c) Electing a filter
that decays too rapidly leads to a significant increase in SNR at the expense of
severely reduced spectral resolution. (Row d) Effect of temporal apodization using
a Gaussian, rather than exponential, filter.
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3. Phase Correction and Eddy Current Compensation

It is often the case that the first collected sample point does not corre-
spond to zero phase points in the acquired echo or FID, which will lead
to a reconstructed spectrum in which the real-valued component (typ-
ically used for quantitation) does not correspond to a pure Lorentzian
absorption or dispersion lineshape. To correct for these deviations,
the complex time-domain data must be multiplied by an additional
complex phase factor, ejϑ, where

ϑ = ϑ0 + ϑ1(ω − ωc). (3.8)

Here ϑ0 represents a “zeroth order” phase correction, and is frequency-
independent. The ϑ1 term denotes a “first order” correction, which
applies a linearly-varying phase shift centered at a reference frequency,
ωc. For single voxel spectra, zero and first order phase correction is
often performed interactively, which becomes less feasible for MRSI
datasets due to the large number of spectra. A number of automated
phase correction algorithms have therefore been developed, for example
by employing the Hilbert transform [113], optimizing the baseline [114],
estimating phase distortions from prominent spectral peaks [115], ex-
ploiting lineshape symmetries [116], and adopting maximum likelihood
(ML) approaches [117].

Figure 3.3: Example of a poorly phased (left), and correctly phased (right) MR
spectrum.

A further source of lineshape distortions are residual eddy currents
produced in conducting media during gradient switching, which pro-
duce time and position-dependent phase shifts throughout the acqui-
sition. These currents may be counterbalanced at the hardware level
through active shielding and gradient pre-emphasis, yet residual effects
are common, often necessitating additional post-processing of the ac-
quired spectra. One of the earliest proposed techniques for automatic
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eddy current compensation is that of [118], where the phase of the
acquired spectrum is corrected point-wise with the aid of a reference
signal – often an unsuppressed water signal collected contemporane-
ously with the MRSI data. Other methods include the QUALITY
routine [119], whereby a reference signal is used to estimate and cor-
rect for deviations from Lorentzian lineshapes, and techniques based
on the continuous wavelet transform (CWT) [120].

4. Spatial Filtering

Although precautions are taken during acquisition so as to suppress
undesirable signals such as those due to peripheral lipids in 1H MRSI,
these measures may yield imperfect outcomes. Coupled with the broad
PSF, these residual signals still hold the potential to contaminate more
remote regions of the VOI, further frustrating clinical interpretation
and quantitative analysis. To mitigate these truncation artifacts, the
k-space data is multiplied by a smooth apodizing function, which mit-
igates the influence of the PSF side lobes by further sacrificing spatial
resolution. These functions are normally chosen to be symmetric, par-
alleling common k-space acquisition schemes. Some popular choices
include the Cosine, Hanning, Hamming, Gaussian, and Kaiser-Bessel
windows:

cos

(
πk

2kmax

)
(Cosine) (3.9)

0.54 + 0.46 cos

(
πk

kmax

)
(Hamming) (3.10)

cos2

(
πk

2kmax

)
(Hanning) (3.11)

e
− (2k)2

kmax2 (Gaussian) (3.12)

fkmax(k)
I0 (bfkmax(k))

I0(b)
(Kaiser-Bessel), (3.13)

where I0 is a modified Bessel function of the first kind, kmax is the
largest acquired spatial frequency, and

fkmax(k) ,


(

1−
(

k
kmax

)2
)1/2

, |k| < kmax

0, otherwise.
(3.14)

Figure 3.4 displays the effects of various windowing methods on a sim-
ulated object designed to mimic the extra-cranial lipids in the human
brain, illustrating both the profound effects of the PSF as well as the
accompanying losses in spatial resolution incurred when employing ad-
ditional k-space filtering.
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Figure 3.4: The effect of various symmetric k-space apodization windows on the
the spatial signal. (Top row, left) The original object, representing a simplification
of the extra-cranial lipids in the human brain. (Top row, right) The original ob-
ject following apodization of the k-space data with a rectangular window function,
whereby all but the central 32 × 32 phase encodes are discarded. The remaining
rows depict an enhanced cross-section of the object following the application of
various window functions, illustrating the tradeoff between spatial resolution and
signal contamination. The original object is superimposed (gray) as a reference.
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3.3 Non-Fourier Reconstruction

While the Fourier transform has been often lauded as a technique that re-
mains impartial to the acquisition method employed to produce the observed
data, it implicitly assumes that the underlying object is band-limited to the
extent of the acquired spatial frequencies. The monumental success of struc-
tural MRI can be partially ascribed to its capability to sufficiently satisfy
this requirement, providing the necessary sensitivity to traverse remote re-
gions in k-space. Unfortunately, the protracted acquisition times required
for MRSI, as well as the low inherent sensitivity as described in section 3.1,
create circumstances under which violations of the band-limited assump-
tion are progressively exacerbated as fewer spatial frequencies are collected.
Aside from the complications surrounding inhomogeneity effects, the result-
ing coarse voxels have a reduced capacity for representing fine anatomical
structures, thereby limiting clinical utility. Moreover, the need to marginal-
ize extra-cranial lipid signals in 1H applications in the brain due to concomi-
tant truncation artifacts often entails the usage of rectangular VOIs, which
ineluctably exclude the lateral cortices from subsequent analyses. These con-
siderations challenge the appositeness of the direct use of the inverse Fourier
transform in MRSI reconstruction, and an area of research entirely dedicated
to the investigation of alternative reconstruction strategies has therefore de-
veloped in parallel to the measurement acceleration endeavors described in
section 2.6.3.

3.3.1 Model-Based Reconstruction

Fundamentally, the MRSI measurement process can be described as a linear
system, whereby the input function, f , is encoded by the acquisition system,
represented as a linear mapping, A, and then corrupted by additive noise, η:

s̃ = A{f}+ η (3.15)
= s+ η.

Here, s denotes the expected system output, and s̃ the noisy observed output.
The principle aim of the reconstruction is therefore to produce a faithful
estimate of the original function, f̂ , which yields expected measurements
that are maximally-consistent with s̃. One common means of satisfying this
criterion is through a variational framework, minimizing the squared residual
error between the acquired and theoretically-predicted measurements, also
known as the “least squares” (LS) method:

f̂ = arg min
f
‖s̃−A{f}‖2L2 . (3.16)
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The LS formulation can also be considered from a statistical perspective as
maximizing the probability of the observed data given the acquisition model:

f̂ = arg max
f

p(A{f}+ η|s̃) = arg max
f

p(η). (3.17)

The predominant sources of noise in an MR experiment are primarily at-
tributable to random thermal fluctuations produced by the coil electronics
and the sample, and are generally considered to be zero-mean additive white
Gaussian (AWGN), i.e., η ∼ N (0, σ2), where σ2 is the noise variance. Hence,
expression (3.17) can be expanded as:

f̂ = arg max
f

(
1

2πσ2

)1/2

e−
‖s̃−A{f}‖2

L2

2σ2

= arg max
f

log

((
1

2πσ2

)1/2

e−
‖s̃−A{f}‖2

L2

2σ2

)
(3.18)

= arg max
f

(
−
‖s̃−A{f}‖2L2

2σ2

)
+ C

= arg min
f
‖s̃−A{f}‖2L2 , (3.19)

where (3.18) follows from the fact that the logarithm of a function attains
its maximum at the same point as the function itself, and C is a constant.

Although the system input usually represents continuous real-world objects
or phenomena, the collected data are most often acquired through sampling,
and are both digitally stored and processed. In this case, letting X denote
the set of acquired sampling locations, the discrete measurements can be
expressed as:

s̃
∣∣
X

= A{f}
∣∣
X

+ η
∣∣
X
, (3.20)

or,
s̃ = s + n, (3.21)

in vector notation, where s̃, s,n ∈ CM , with M = |X |. Viewed in this light,
expression (3.20) necessarily engenders a continuous-discrete LS problem of
the form:

arg min
f

∥∥s̃−A{f}∣∣
X

∥∥2

`2
. (3.22)

In practice, (3.22) cannot be investigated directly, as analytical continuous-
domain expressions for s (and likewise, f) are typically unavailable. Rather,
a discrete approximation of the mapping A{f} is sought, thereby leading to
the fully discretized signal model:

s̃ = Ax + n

= ŝ + n, (3.23)
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where x ∈ CN , ŝ ∈ CM and A ∈ CM×N . Though the ramifications of this
approximation may be far from trivial, we shall defer a more thorough expo-
sition to later chapters, dropping the ˆ and assuming implicit discretization
in the interim. The resultant LS problem is then given by:

x̂ = arg min
x
‖s̃−Ax‖2`2 , (3.24)

which admits a closed-form solution:

x̂ =
(
AHA

)−1
AH s̃ = A+s̃, (3.25)

where A+ denotes the Moore-Penrose pseudoinverse.

In the case of MRSI, given a set X = {K ,T }, where K = {km}Mm=1,
T = {ti}Ti=1 denote the set of acquired samples in the spatial Fourier (k-
space) and temporal domains, respectively, the discrete measurements are
given by:

s̃
∣∣
X

= s̃[km, ti] =

∞∫
−∞

∫
Ω∈R3

ρ(r, f)e−2πj(km·r+fti)drdf + η[km, ti],

m = 1, . . . ,M, i = 1, . . . , T. (3.26)

In typical reconstruction settings, the spatial integral in equation (3.26) is
generally discretized such that:

s̃[km, ti] =
N∑
n=1

Fn[km]cn[ti] + η[km, ti], (3.27)

or in matrix/vector notation:

s̃[ti] = Fc[ti] + n[ti], (3.28)

with

s̃[ti] =


s̃[k1, ti]
s̃[k2, ti]

...
s̃[kM , ti]

 , n[ti] =


η[k1, ti]
η[k2, ti]

...
η[kM , ti]

 , (3.29)

Under this formulation, the encoding scheme, F, contains the Fourier expo-
nentials:

F =


e−2πjk1·r1 e−2πjk1·r2 · · · e−2πjk1·rN

e−2πjk2·r1 e−2πjk2·r2 · · · e−2πjk2·rN

...
...

. . .
...

e−2πjkM ·r1 e−2πjkM ·r2 · · · e−2πjkM ·rN .

 , (3.30)
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while

c[ti] =


c1[ti]
c2[ti]
...

cN [ti]

 , (3.31)

are the corresponding amplitude coefficients at each time sample, ti. More-
over, if F is assumed to be square (N = M), the LS solution is given by:

ĉ[ti] =
(
FHF

)−1
FH s̃[ti] (3.32)

= FH s̃[ti], (3.33)

since F is unitary, yielding the familiar standard inverse discrete Fourier
transform (DFT) as covered in section 2.5.4.

Although the above exposition has simply established congruence with earlier
descriptions, an interesting observation follows when considering (3.33) in the
absence of noise, and substituting into (3.28) such that,

s̃[ti] = F
(
FHs[ti]

)
+ n[ti]. (3.34)

When viewed in this context, the term within the parentheses in (3.34) pre-
scribes a parametric form for the underlying spatio-spectral distribution,
which for the above standard reconstruction scheme is simply its Fourier
representation. It is therefore natural to contemplate whether alternative
parametrizations could yield improved reconstruction performance, and mit-
igate the seemingly ineluctable artifacts associated with inverse DFT recon-
structions. Hence, a renewed interpretation within the linear system frame-
work has unearthed a plenitude of new possibilities.

3.3.2 Use of Explicit Prior Knowledge

MRSI measurements are commonly performed as part of a scanning regime
that routinely includes high-resolution structural imaging among other MR
modalities. A question therefore arose regarding the extent to which such
supplemental information could be exploited to compensate for the dearth of
high-frequency content, and to influence the MRSI reconstruction process.

One of the earliest such methods to explore this possibility, standing in
the vanguard of so-called “constrained reconstruction” approaches for MR
[121–123], was the spectral localization by imaging (SLIM) technique [124],
positing that the spatial distribution of chemical species of interest tends to
parallel that of water in biological samples. Therefore, knowledge of anatom-
ical features derived from structural 1H MRI could be used as a priori in-
formation in the reconstruction of spectroscopic images. In a typical SLIM
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experiment, high-resolution structural images are partitioned into a set of
K anatomically-defined compartments that are considered to be spectrally
homogeneous. In this case, the spatio-spectral distribution of the object can
be decomposed as:

ρSLIM(r, f) =

K∑
κ=1

1κ(r)qκ(f), (3.35)

where qκ is the unknown spectrum associated with compartment κ, and 1κ
are binary spatial basis functions such that

1κ(r) ,

{
1 r ∈ compartment κ
0 otherwise.

(3.36)

Substituting (3.35) for ρ(r, f) in (2.79):

s(k, t) =

∞∫
−∞

∫
Ω⊂R3

K∑
κ=1

1κ(r)qκ(f)e−2πj(k·r+ft)drdf

=
K∑
κ=1

∫
Ω⊂R3

1κ(r)e−2πjk·rdr

︸ ︷︷ ︸
Xκ(k)

·
∞∫
−∞

qκ(f)e−2πjftdf

︸ ︷︷ ︸
cκ(t)

(3.37)

=
K∑
κ=1

Xκ(k)cκ(t). (3.38)

Echoing the discussion in section 3.3.1, the spatial integral defining the for-
ward encoding scheme in (3.37) generally requires discretization, as neither
the basis functions nor their Fourier transform tend to concede readily ac-
cessible analytical descriptions. The expected discretized signal model is
therefore given by:

s[km, ti] =
K∑
κ=1

Xκ[km]cκ[ti], (3.39)

or in matrix/vector notation:

s[ti] = Xc[ti], (3.40)

where

X =


X1[k1] X2[k1] · · · XK [k1]
X1[k2] X2[k2] · · · XK [k2]

...
...

. . .
...

X1[kM ] X2[kM ] · · · XK [kM ]

 , (3.41)
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c[ti] =


c1[ti]
c2[ti]
...

cK [ti]

 . (3.42)

It is clear that (3.39) represents an over-determined linear system of equa-
tions as long as the number of acquired phase encodes, M , exceeds the
number of compartments, K. The compartmental spectra, cκ[ti] may then
be estimated on a point-by-point basis via the LS criterion:

ĉ[ti] = arg min
c[ti]
‖s̃−Xc[ti]‖2`2 , (3.43)

or in closed form,

ĉ[ti] = (XHX)−1XH s̃[ti] = X+s̃[ti]. (3.44)

Part of the allure of the SLIM method lies in the prospects of recovering
compartmentally-localized spectra with as few as K phase encodes, provided
K is chosen non-trivially. Such reduced sampling requirements could trans-
late to drastically-reduced acquisition times so long as the compartmental
model befits the specific application. Furthermore, the interpretation of the
compartments as “generalized voxels”, which may assume arbitrary geome-
tries, effectively circumvents the rectangular voxel restrictions imposed by
traditional inverse Fourier reconstructions. Secondary analyses of the SLIM
technique [122, 125, 126] demonstrated that the noise sensitivity is inversely
proportional to compartmental volume, and that inter-compartmental sig-
nal leakage is completely annulled so long as the homogeneity assumption
remains valid. This requirement, however, is rarely satisfied in practice, re-
sulting in spectral contamination dictated by the frequency content of the in-
homogeneities, the measured k-space data, and the compartment geometries.
It should be mentioned, however, that estimated SLIM spectra converge to
the true average compartmental spectra as M →∞.

A number of extensions have since been proposed to the SLIM method, ei-
ther as attempts to improve reconstruction performance by enriching the
underlying signal model, or to better exploit the various advantages afforded
by the framework. Soon after the publication of the original SLIM tech-
nique, the spectral localization with optimal point spread function (SLOOP)
method [127] suggested a means for optimizing sensitivity and minimizing the
potential for signal contamination in a SLIM experiment. This was achieved
by establishing a criterion for selecting K so as to tailor the spatial response
function (SRF) to the shape of each compartment, where:

SRFκ(r) =

M∑
m=1

X+
κ [km]e−2πjkm·r, (3.45)
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where the spatial variable has been expressed in the continuous domain in
order to emphasize resolution independence. The SRF can be considered
to represent the spatial origin of all elements contributing to the estimated
signal associated with a particular basis element (i.e., the individual com-
partment in the SLIM framework). In general, for a designated linear ac-
quisition scheme, A ∈ CM×N , under which a set of N basis functions are
encoded using {km}Mm=1 spatial frequencies, the SRF corresponding to the
nth basis function can be expressed as:

SRFn(r) =
M∑
m=1

A+
n [km]e−2πjkm·r. (3.46)

A generalized series model approach labeled GSLIM [128] was also proposed
as a compromise between SLIM and traditional Fourier constructions, profit-
ing from both the high-resolution information imparted by the former while
capturing unanticipated spatial variations through the use of Fourier-type
spatial harmonics. In GSLIM, the spatio-spectral distribution is given by:

ρGSLIM(r, f) =
L∑
l=1

K∑
κ=1

1κ(r)qκ(f)︸ ︷︷ ︸
ρSLIM(r,f)

al(f)e2πjkl·r, (3.47)

such that the measured signal becomes:

s(k, t) =
L∑
l=1

K∑
κ=1

∫
Ω⊂R3

1κ(r)e−2πj(k−kl)·rdr ·
∞∫
−∞

al(f)qκ(f)e−2πjftdf. (3.48)

As qκ and 1κ are pre-determined using the original SLIM framework, the
GSLIM coefficients, al can be computed by expressing (3.48) in the temporal
Fourier domain:

Ft{s}(k, f) =

L∑
l=1

al(f)

K∑
κ=1

qκ(f)

∫
Ω⊂R3

1κ(r)e−2πj(k−kl)·rdr

︸ ︷︷ ︸
G(k−kl,f)

, (3.49)

and solving the resulting linear system of equations.

One of the primary transgressors undermining the compartmental inhomo-
geneity assumption is the presence of local field inhomogeneities, which if
omitted from the signal model may lead to shifted spectral peaks appearing
as spurious resonances in the reconstructed SLIM spectra. These field in-
homogeneities are accounted for explicitly in the natural linewidth chemical
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shift imaging (NL-CSI) [129] and BSLIM methods [130], where an additional
measured static field map is acquired and incorporated into the reconstruc-
tion process. The former defines compartments to match the Fourier pixel
size in traditional CSI reconstructions, such that K ≈M . The BSLIM tech-
nique adheres more closely to the original conception of anatomically-defined
compartments, defining the spatio-spectral distribution as:

ρBSLIM(r, f) =
K∑
κ=1

1κ(r)qκ(f −∆f(r)), (3.50)

thereby leading to a measured signal:

s(k, t) =

∞∫
−∞

∫
Ω⊂R3

K∑
κ=1

1κ(r)qκ(f −∆f(r))e−2πj(k·r+ft)drdf

=

K∑
κ=1

∫
Ω⊂R3

1κ(r)e−2πj(k·r+∆f(r))dr

︸ ︷︷ ︸
Hκ(k,t)

·
∞∫
−∞

qκ(f)e−2πjftdf

︸ ︷︷ ︸
cκ(t)

=
K∑
κ=1

Hκ(k, t)cκ(t). (3.51)

Contrasting (3.51) with (3.37), it is apparent that the difference lies in the
newfound time-dependence of Hκ, which absorbs the position-dependent
phase shifts specified by the field inhomogeneity map, ∆f(r). Many of
the same algorithmic considerations for SLIM equally apply to the BSLIM
method, indicating that spectral contamination artifacts are minimized as
long as the measured field map accurately represents the underlying effective
field, and that the spectral homogeneity assumption holds once these effects
have been accounted for.

An additional virtue of the SLIM framework is that it remains independent of
the elected MRSI acquisition strategy, assuring its congruence with a variety
of additional acceleration techniques. For example, in [131], SLIM was com-
bined with sensitivity encoding (SENSE) [132] to assess the spectral contents
of small lesions in stroke patients. SLIM and/or its variants have also been
utilized for 1H applications using pre-clinical models of stroke [133], post-
acquisition suppression of extramyocellular lipids in the human calf [134], as
well as for 31P MRSI studies of the human myocardium [135–137].

3.3.3 Regularization

While methods such as SLIMmay be adequate for applications where average
or compartmental spectra are sufficient, they are ultimately circumscribed
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by the spectral homogeneity requirement, which greatly limits their clin-
ical admissibility. This constraint is further confounded by the non-trivial
segmentation problem, as well as by the lack of established criteria for select-
ing the number of compartments. Moreover, the very supposition equating
structural anatomy and the spatio-spectral distribution of non-water res-
onances may be overly presumptuous or application-dependent, in which
case a universal means for determining a priori compartment geometries be-
comes elusive. The avail of such methods utilizing explicit prior knowledge
is therefore brought into contention, thus establishing the need for more flex-
ible procedures that are better able to assimilate prior information and data
heterogeneity.

Mathematically, additional assumptions or prior knowledge can also be in-
tegrated into the reconstruction through regularization, which assumes the
form of an additional penalty term in conjunction with the data consistency
criterion in the variational formulation,

arg min
f
‖s̃−A{f}‖2L2︸ ︷︷ ︸
data consistency

+ R(f)︸ ︷︷ ︸
regularization

, (3.52)

where R represents additional criteria used to enforce the designated con-
straints. Regularization is often indispensable for obtaining unique solutions
when considering ill-posed inverse problems, where a significant nullspace
exists for the forward operator, A : X → Y , i.e.,

kerA ,
{
f ∈ X : A{f} = 0

}
6= {0}, (3.53)

which is akin to a system matrix A ∈ CM×N where M < N in the
finite-dimensional case. One prevailing regularizer for these scenarios is
R = λ‖Γ{f}‖2L2

, in which (3.52) is termed “Tikhonov regularization,” where
Γ is a continuous linear operator that extracts desirable information from an
input (e.g., weightings, derivatives, etc.), and λ ∈ R is a parameter control-
ling the relative weighting between the data consistency and regularization
penalties. When Γ = ι, where ι is the identity operator, Tikhonov regular-
ization tends to favor smooth solutions possessing low total signal energy
(small L2 norm). Quadratic norms have remained popular as regularizers as
they admit closed form solutions, thereby providing unfettered access to the
SRF (3.46). Indeed, considering the discrete problem (Γ = I):

arg min
x
‖s̃−Ax‖2`2 + λ ‖x‖2`2 , (3.54)

the solution can be expressed as:

x̂ =
(
AHA + λI

)−1
AH s̃. (3.55)
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Another important concept that often plays a role in discretized regulariza-
tion problems is the notion of sparsity, whereby a signal can be considered
as “sparse” if it primarily consists of a minimal number of non-zero elements.
Depending on the application, an input signal may often be assumed to be
itself inherently sparse, or admit a sparse representation when expressed in
a particular basis. Within the framework of (3.52), the most straightforward
sparsity-promoting selection for R is the `0 pseudo-norm, which returns the
number of non-zero coefficients for an input vector, leading to problems of
the form:

arg min
x
‖s̃−Ax‖2`2 + λ ‖x‖`0 . (3.56)

Unfortunately, the `0 penalty is non-convex, and solutions to (3.56) can
only be obtained through computationally-demanding combinatorial search
methods or heuristic approaches [138,139]. Therefore, the `0 penalty is often
supplanted by the family of convex `p-norms (p ≥ 1) to yield a relaxation of
the original sparse recovery problem, thereby providing access to a wealth of
efficient algorithms that exist for convex optimization. In many instances,
the topology induced by the `1 norm has been shown to favor sparse solutions,
leading to a class of problems of the form:

arg min
x
‖s̃−Ax‖2`2 + λ ‖x‖`1 , (3.57)

collectively referred to as basis pursuit (BP) [140] or least absolute shrinkage
and selection operator (LASSO) [141,142] problems. Though widely used in
a variety of scientific disciplines, `1-penalized reconstruction methods have
been pivotal to the success of compressed sensing (CS) [143, 144] and its
applications to MR (e.g., see [145–148]).

Another espoused and auspicious regularizer is the total variation (TV) semi-
norm, which was introduced in [149] as a means of measuring first degree
information content in an input signal:

Definition 1 (Total Variation). The total variation of a continuous-
domain function f on interval [a, b] ⊂ R, is defined as the
supremum of absolute differences over the set of partitions, P =
{P = {x0, x1, . . . , xP } : P is a partition of [a, b]} on its domain:

TVb
a(f) , sup

P

∑
n

|f(xn)− f(xn−1)| . (3.58)

If Ω is an open subset of Rn, for a function f ∈ L1(Ω), the total variation
is defined as:

TVΩ(f) , sup


∫
Ω

f(r)div v(r)dr : v ∈ C1
c (Ω,Rn), ‖v‖L∞ ≤ 1

 , (3.59)
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where C1
c (Ω,Rn) is the set of continuously-differentiable vector-valued func-

tions compactly supported in Ω.

Morever, if f ∈ C1
c (Ω,R), then the total variation can be equivalently ex-

pressed as [150]:

TVΩ(f) =

∫
Ω

|∇f(r)| dr. (3.60)

In discrete settings, for a multidimensional signal subscripted by d indices,
x ∈ RN1×···×Nd , TV is typically expressed as one of either:

TViso
Ω (x) =

∑
i1,i2,...,id∈Ω

∣∣∣∣∣∣
(

d∑
l=1

∣∣Dl{x}
∣∣2)1/2

∣∣∣∣∣∣ (isotropic TV), (3.61)

or,

TVani
Ω (x) =

∑
i1,i2,...,id∈Ω

∣∣∣∣∣
d∑
l=1

∣∣Dl{x}
∣∣∣∣∣∣∣ (anisotropic TV). (3.62)

Here, Dl represents a discrete difference operator along the lth dimension,
such that:

[Dl{x}]i1,i2,...,id = [x]i1,i2,...,il,...,id − [x]i1,i2,...,il−1,...,id
. (3.63)

Much of the allure of TV rests in its proclivity for removing noise-like arti-
facts while preserving discerning features in an input signal, and has gained
notoriety within the MR community due to its versatility in addressing a
wide array of problems such as denoising [151–153], suppression of truncation
artifacts / deblurring [154,155], and inpainting for sensitivity maps [156].

While the GSLIM method was conceived in order to address the potential
shortcomings of SLIM, practical implementations have typically been able
to accommodate only low frequency intra-compartmental variations. Aban-
doning the compartmental formulation altogether, [157] devised a modifi-
cation of the well-established Papoulis-Gerchberg (PG) algorithm [158, 159]
by considering only the expected support region of the imaged object. The
reconstruction was posed as a Tikhonov regularization problem, whereby the
spatio-spectral distribution was estimated at high-resolution by minimizing
the energy of the extrapolated high spatial frequencies:

c[fl] = arg min
c[fl]
‖s̃[fl]− Fc[fl]‖2`2 + λ

(
c[fl]

HTc[fl]
)
, (3.64)

where {fl}Ll=1 is the set of discretized measurements in the temporal fre-
quency domain, and T is a binary diagonal matrix specifying the support
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region. Improvements in the resulting PSF were reported throughout the
entire reconstructed volume when compared to zero-filled inverse DFT, but
were primarily localized to the periphery of the support region.

Alternatively, an early contribution towards the next generation of
anatomically-driven MRSI reconstruction algorithms was proposed in [160],
which aimed to exploit the versatility afforded by regularization-based recon-
struction while retaining salient object features furnished by high-resolution
structural MRI. To accomplish this, the basic GSLIM model was supple-
mented by local B-spline basis functions in order to capture local intensity
variations such as those due to lesions or model mis-match errors, which
would normally mandate significant Fourier expansions:

ρIMBR(r, f) =
L∑
l=1

K∑
κ=1

1κ(r)cκ,l(f) e2πjkl·r

︸ ︷︷ ︸
compartmental basis functions

+
P 2∑
p=1

dp(f)β3(r− rp)︸ ︷︷ ︸
local basis functions

, (3.65)

where β3 is a cubic B-spline function. The attendant iterative reconstruction
procedure was then given by the following optimization problem:

ĉ[fl], d̂[fl] = arg min
c[fl],d[fl]

‖s̃[fl]− s[fl]‖2`2 + λ
(
‖c[fl]‖`1 + ‖d[fl]‖`1

)
, (3.66)

with,

s(k, f) =

∫
Ω∈R3

ρIMBR(Ar + b, f)e−2πj(k·r+(f+∆f(r))t)drdf, (3.67)

where A and b represent affine transformation parameters that are re-
estimated at each iteration in order to minimize mis-registration errors be-
tween the acquired structural and MRSI datasets.

Although the method proposed in [160] affords greater flexibility to capture
unpredictable spatial variations, it maintains an appreciable reliance upon
explicit boundary information, predisposing it to artifacts arising from model
mis-match errors. Recognizing the demonstrated utility of high-resolution
prior anatomical information, while simultaneously seeking greater data
autonomy, the MRSI reconstruction community began to explore alterna-
tive mechanisms by which these constraints could be implicitly effectuated.
In [161], the underlying data model was considered as a linear combination
of box-shaped voxel functions, φ:

ρHHSL(r, f) =

N∑
n=1

u[rn, f ]φ(r− rn), (3.68)



56 CHAPTER 3. MRSI PROCESSING & RECONSTRUCTION

where {rn}Nn=1 denotes the discrete set of voxels comprising a high-resolution
anatomical reference. The expected signal can therefore be expressed as:

s(k, f) =
N∑
n=1

∫
Ω∈R3

u[rn, f ]φ(r− rn)e−2πjk·rdr (3.69)

=

N∑
n=1

u[rn, f ]Φ(k)e−2πjk·rn , (3.70)

where Φ is the Fourier transform of φ, and is analogous to Xκ in (3.37). Once
the raw data was corrected for B0-induced spectral shifts, the reconstruction
consisted of estimating the weighting coefficients, u, at each frequency posi-
tion, fl:

û[fl] = arg min
u[fl]
‖s̃[fl]− s[fl]‖2`2 + λ ‖Lu[fl]‖2`2 . (3.71)

In this case, the regularization term consists of a spatial smoothing operator,
L, which penalizes local intensity variations between neighboring voxels that
are suspected of belonging to the same tissue class:

‖Lu‖2`2 =

N∑
i=1

∑
i<j
j∈Ωi

wi,j |u[ri]− u[rj ]|2 , (3.72)

where the time-dependence has been dropped for ease of notation. In (3.72),
Ωi denotes the set of voxels that are spatially adjacent to ri. The weights,
wi,j , were pre-computed with the aid of anatomical navigator scans, and
could be adjusted to reflect perceived confidences in the ascertained bound-
ary information. Posing the reconstruction in this manner essentially facili-
tates a compromise between data consistency and anatomical prior informa-
tion, which may be modulated by the choice of λ. Moreover, inconsistencies
between structural and spectral content will tend to manifest as degraded or
biased denoising performance, rather than as additional artifacts. Interest-
ingly, a similar selective smoothing approach was proposed in [162], but was
implemented via an ad-hoc iterative scheme similar to the PG procedure.

Until this point, constraints imposed by the above described methods have
been applied strictly in the spatial domain, allowing the estimated spec-
tra to remain maximally consistent with the observed measurements, given
the appointed data model. As has been discussed, this may result in un-
expected spectral behavior when discordancies exist between the model and
the acquired data. A number of methods have therefore sought to further
improve the problem conditioning by prescribing models for both the spatial
and spectral components of the MRSI signal. In [163], the underlying data
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model was given by:

ρEJM(r, f) =
N∑
n=1

L∑
l=1

v[rn, fl]φ(r− rn)ψ(f − fl), (3.73)

where φ, and ψ are box-shaped voxel functions in the spatial and temporal
frequency domains, respectively. The measured signal model was expressed
as:

s(k, t) = Φ(k)Ψ(t)
N∑
n=1

L∑
l=1

v[rn, fl]e
−α[rn]te−2πj(k·rn+flt) (3.74)

where
α[rn] =

1

T ∗2 [rn]
+ 2πjβ̄[rn], (3.75)

with β̄ the mean frequency shift in voxel rn. The quantity α[rn] was esti-
mated from separately acquired high-resolution magnitude and phase images
prior to the reconstruction. Analagous with Φ, Ψ represents the Fourier
transform of the frequency domain voxel function, ψ, and is analogous to
cκ in (3.37). Given the anticipated MR spectral profile as a combination
of Lorentzian lineshapes with the potential for smoothly-varying baseline
components (e.g., residual water, lipids, short T2 macromolecules, etc.), the
spectrum in each voxel was modeled as:

v[rn, fl] =

L∑
p=1

w[rn, p]δ[fl − p] +

S∑
p=1

w[rn, L+ p]Tp[rn], (3.76)

where δ is the Dirac delta function, and Tp are Chebyshev polynomials.
As the reconstruction was ultimately performed on the high-resolution grid
specified by {rn}, spatial prior knowledge was necessary in order to improve
the inverse problem conditioning. The high-resolution reference image was
therefore partitioned into K pairwise disjoint anatomically-defined regions,
Ωκ, such that Ω =

⋃
κ Ωκ. However, similar to [161], the compartments

themselves were not treated as separate basis functions, but were used to
prescribe a set of boundaries within which the spectral profiles were as-
sumed to be smoothly-varying. This latter assumption was incorporated
into the reconstruction procedure through the use of a modified (isotropic)
TV penalty: TVΩ =

∑K−1
κ=1 TVΩκ . The final reconstruction was therefore

given as:

ŵ[fl] = arg min
w[fl]
‖s̃[fl]− s[fl]‖2`2 + λ1TVΩ (w[fl]) + λ2‖w[fl]‖`1 . (3.77)

Incidentally, the K-Bayes method for MRSI reconstruction [164] was pro-
posed nearly concurrently, stipulating a similar voxel-based signal model to
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(3.67). However, rather than a regularized sparse optimization problem, the
reconstruction was formulated within a Bayesian framework. In this case, the
acquisition model was considered as a likelihood function, with pre-computed
estimates of relaxation and field inhomogeneity parameters, while expected
spatial characteristics of spectral content within anatomically-defined tissue
boundaries were assimilated into a prior distribution through Markov Ran-
dom Field (MRF) models. The reconstruction then consisted of maximizing
the posterior distribution, achieved via an expectation-maximization (EM)
approach.

Although the majority of the methods recounted above were devised and
validated for traditional Cartesian MRSI acquisitions, a number of studies
have sought to capitalize on the advancing accelerated imaging techniques
described in section 2.6.3 in conjunction with the powerful variational recon-
struction framework posited by (3.52). Many notable examples have emerged
within parallel imaging employing sensitivity encoding (SENSE), where mul-
tichannel coil sensitivity information is exploited in order to correct for the
systematic aliasing artifacts incurred through undersampling. In this case,
the basic acquisition scheme can be expressed as:

s̃c(k, t) =

∞∫
−∞

∫
Ω∈R3

ςc(r)ρ(r, f)e−2πj(k·r+ft)drdf + ηc(k, t), (3.78)

where ςc denotes the spatial sensitivity profile, and ηc the noise associated
with the cth coil. Expression (3.78) is commonly discretized as:

s̃[ti] = Ec[ti] + n[ti], (3.79)

where the terms pertaining to the individual coil elements are concatenated
along the rows of s̃, E, and n. In the original weak SENSE formulation [132],
compensation for aliasing artifacts is performed at the center of each recon-
structed voxel. While this may be adequate for typical structural MRI resolu-
tions, variations in the sensitivity profiles over typical MRSI voxel sizes may
preclude proper unfolding, thereby occasioning additional artifacts. This po-
tential limitation was addressed in [165] by over-discretizing the encoding op-
erator, and then solving the conventional LS problem (3.24), which furnishes
an implicit interpolation model and enables usage of the complete high-
resolution sensitivity information. Alternatively, in [166], PEPSI [70] data
was collected from central k-space regions at the Nyquist rate, along with
high-resolution coil sensitivity maps. The reconstruction was then posed as
a Tikhonov regularization problem:

ĉ[ti] = arg min
c[ti]
‖s̃[ti]−Ec[ti]‖2`2 + λ ‖c[ti]‖2`2 , (3.80)

where ĉ[ti] was estimated on the same spatial grid as the sensitivity maps.
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Rather than formulating the reconstruction procedure as a separate recov-
ery problem for each temporal/spectral frame, [167] attempted to exploit the
full k-f volumetric information by optimizing along the spatial and tempo-
ral frequency dimensions simultaneously. An efficient variable density spiral
acquisition scheme was employed to generate both the MRSI data, and a
high-resolution water reference dataset. The latter was used to derive es-
timates of the field inhomogeneity profile and coil sensitivity maps (both
incorporated into the spatial encoding scheme, E), as well as spatio-spectral
support regions delineating the metabolites and extra-cranial lipids. The full
reconstruction problem was then given as:

Ĉ = arg min
C

∥∥S̃−EC
∥∥2

F
+ λ1

∥∥ d∑
l=1

|DlC|2
∥∥
S

+ λ2 ‖C‖S , (3.81)

where the regularizing functions were restricted to the metabolite sup-
port region. Here, Dl denotes the matrix representation of the discrete
differences operator given by (3.63), S̃ = (s̃[f1], s̃[f2], . . . , s̃[fL]), C =
(c[f1], c[f2], . . . , c[fL]), and ‖ · ‖S is the absolute sum norm, here defined
as: ‖A‖S ,

∑
i,j |Ai,j |.

While the above methods address the limited unfolding capacity or resolution
constraints, they do not directly confront the lingering truncation artifacts
that may potentially countervail the merits of sensitivity encoded spectro-
scopic imaging. Attempting to integrate the over-discretization approach
in [165] with concepts proposed in [168], the method of [169] ventured to
directly control the SRF by minimizing deviations from a voxel-specific tar-
get function, T. In this case, the penalized LS criterion was employed to
optimize the reverse encoding scheme itself, such that:

F̂ = arg min
F
‖FE−T‖2F + λ

(
FΨFH

)
, (3.82)

where Ψ is the coil noise covariance matrix of the system. Under this formu-
lation, the regularization parameter, λ, regulates the tradeoff between con-
formity with the designated target function and SNR performance. Tested
target SRFs included well-localized functions such as Gaussian and Dirac
distributions in order to minimize the spectral leakage artifacts normally at-
tributable to appreciable PSF side lobes. The final reconstruction was then
performed by applying the estimated inverse encoding to the measurements:

ĉ[ti] = F̂s̃[ti]. (3.83)

3.3.4 General Decomposition Models

When viewed against the original SLIM concept, it is evident that MRSI re-
construction methodology has experienced a gradual disinclination towards
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explicit data models, where the use of stringent anatomical or spectral con-
straints severely limited the admissible solution space. These techniques
were therefore largely supplanted by those favoring the variational frame-
work along with regularization, which facilitated a more suitable compromise
between the observed data and the expected signal behavior. Nonetheless,
it may be contended that the panoply of explicit prior knowledge that can
be profitably integrated into a given MRSI reconstruction routine has been
only partially explored. For example, [170] and [171] made use of the fact
that chemical concentrations must be non-negative, and in principle lead
to non-negative spectral lineshapes and amplitudes. The underlying data
model can then be expressed as:

ρNN(r, f) =
K∑
κ=1

aκ(r)qκ(f), aκ : Rd → R+, qκ : R→ R+, (3.84)

where aκ are general spatial basis functions and qκ are the associated spec-
tra. The reconstruction can therefore be regarded as a classical blind source
separation (BSS) or dictionary learning (DL) problem, given that neither aκ
nor qκ are known a priori :

Â, Q̂ = arg min
A,Q

∥∥P̃−AQ
∥∥2

F
, such that A ∈ RM×K+ , Q ∈ RK×L+ , (3.85)

where P̃ is the inverse Fourier transform of the observed measurements, Q
contains the K spectral components, and A their corresponding contribu-
tions. In [170], the BSS problem was addressed via a Bayesian framework,
whereby the likelihood was given by (3.85), and the non-negativity con-
straints were reflected in the priors, p(A) and p(Q). Alternatively, [171]
attempted to solve (3.85) directly via a non-negative matrix factorization
approach [172,173].

It is important to note that the joint estimation of A and Q in (3.85) is
a fundamentally non-convex problem. Nonetheless, generalized bilinear for-
mulations in the form:

ρBILIN(r, f) =

K∑
κ=1

uκ(r)vκ(f), (3.86)

as well as the attendant LS reconstruction framework proffer a number of siz-
able advantages. First and foremost, when optimizing over an entire dataset,
such decompositions allow for the exploitation of latent spatio-temporal cor-
relations while simultaneously decoupling the individual domains. Ancillary
constraints may then be separately imposed on the temporal and spatial
components, rather than on the data when considered as a whole. Secondly,
the portrayal of the object as consisting of a finite linear combination of
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unspecified components inspires a feature-based interpretation of the data,
rather than the standard voxel-based analysis. This distinction reverberates
one of the more compelling aspects of SLIM and its variants, namely, that
while the number of observations comprising the data is often (compara-
tively) large, a low-dimensional representation can often be ascertained.

This concept of low dimensionality is often encapsulated through the rank of
the matrix representation of ρBILIN, i.e., the number of linearly-independent
columns. Given this notion, the dimensionality of a given dataset can be as-
certained through so-called “rank-revealing” transforms, such as the singular
value decomposition (SVD), or principle component analysis (PCA) [174], as
manifested by a small number of non-trivial singular values. The MR com-
munity has recently witnessed an outburst of reconstruction methodologies
seeking to capitalize on the surmised low-dimensional structure underlying
seemingly complex objects and processes, most notably in the field of dy-
namic MRI [147, 175–184]. In the following chapter, a method that extends
these concepts to MRSI, while simultaneously drawing upon the established
merits of the aforementioned regularized techniques, will be presented and
discussed.
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Chapter 4

MRSI Reconstruction by
Low-Rank Component Analysis

4.1 Introduction

In the previous chapter, a general bilinear data decomposition model was
introduced as a means of segregating spatial and temporal signal behav-
ior, while simultaneously divulging and preserving intrinsic spatio-temporal
correlations through the minimum norm variational framework. The no-
tion of dimensionality was also discussed as an instrumental property of the
underlying data, which has motivated a profusion of novel reconstruction
and acquisition strategies in other MR-related disciplines. In this chapter1,
we first suggest, and provide justification for the translation of these con-
cepts to MRSI applications. We subsequently propose a novel reconstruction
method and corresponding algorithm, where the underlying spatio-spectral
distribution is estimated on a high-resolution grid by incorporating both
supplementary structural scans and sophisticated regularization techniques.
Finally, experimental results are presented for reconstructions obtained both
through simulated and authentic MRSI measurements, followed by a discus-
sion of the recognized merits.

4.2 Bilinear Models for MRSI

We consider a general bilinear model (also referred to as the “partially-
separable” model [175]) for the spatio-spectral distribution function as de-

1This chapter is partially based on the publication:
J. Kasten, F. Lazeyras, and D. Van De Ville, “Data-Driven MRSI Spectral Localization
Via Low-Rank Component Analysis,” IEEE Transactions on Medical Imaging, vol. 32,
no. 10, pp. 1853-1863, 2013 [185].
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scribed in chapter 3:

ρ(r, f) =
K∑
κ=1

uκ(r)vκ(f). (4.1)

Provided uκ and vκ are L2 functions, (4.1) is always valid in the limiting
case K →∞ given the following theorem [186]:

Theorem 1. Let X × Y denote the Cartesian product of measure spaces X
and Y . The set of functions

∑
m fm(x)gm(y) for fm ∈ L2(X) and gm ∈

L2(Y ), with m finite, forms a dense subset in L2(X × Y ).

Due to the linearity of the spatial and temporal Fourier transforms, a sim-
ilar decomposition should hold for the acquired measurements under ideal
experimental conditions:

s(k, t) =

∞∫
−∞

∫
Ω∈R3

K∑
κ=1

uκ(r)vκ(f)e−2πj(k·r+ft)drdf (4.2)

=

K∑
κ=1

∫
Ω∈R3

uκ(r)e−2πjk·rdr

︸ ︷︷ ︸
%κ(k)

·
∞∫
−∞

vκ(f)e−2πjftdf

︸ ︷︷ ︸
ξκ(t)

(4.3)

=
K∑
κ=1

%κ(k)ξκ(t). (4.4)

Given the acquired measurements, obtained at k-space locations {km}Mm=1

and temporally sampled at {ti}Ti=1, such that S̃ ∈ CM×T , expression (4.4)
remains valid as long as the rank,K ≤ min(M,T ). In practice, however, non-
ideal experimental conditions (e.g., noise, inhomogeneiety or off-resonance
effects, etc.) generally preclude a straightforward estimation of K from the
raw measurements. Therefore, alternative means of establishing the data
dimensionality are needed, and will be discussed later in this chapter.

The use of the general bilinear model (4.1) for MRSI applications can be
justified by the fact that in most in vivo settings, the number of detectable
metabolites in a given spectrum is small (e.g., see table 3.1). In this case, K
can be regarded as the total number of observable resonances, with vκ the
characteristic spectral profile of the κth resonance, and uκ its corresponding
spatial distribution. Alternatively, K can be interpreted as the number of
pairwise disjoint, spectrally homogeneous compartments as with SLIM-type
methods, in which case vκ would represent the corresponding spectral pro-
files. These scenarios may be considered as prescribing effective upper and
lower bounds for K, respectively, which in general are largely exceeded by
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the number of phase encoding steps (∼ 256 − 1024) or temporal samples
(∼ 512− 1024) in typical MRSI acquisitions.

As mentioned in the previous chapter, a number of methods have emerged
within the field of dynamic MR seeking to exploit the inherent low-
dimensionality conjectured to underlie processes displaying a high degree of
spatio-temporal correlation. For these applications, the proposed approaches
generally fall into two categories: (i) the temporal basis functions are first
determined from limited k-space data acquired at high temporal resolution
(often through rank-revealing transformations such as the SVD), which are
then used to guide the estimation of the attendant spatial basis functions
from either a separate, or combined acquisition with greater k-space cover-
age but limited temporal sampling [175,177,187,188]. (ii) The reconstruction
is performed over the composite spatio-temporal dataset, whereby low-rank
solutions are exacted explicitly, or through the use of additional regularizing
penalties such as the Schatten p-norms [176,178,189–191].

Despite the reported success of these approaches, a number of crucial dispar-
ities confound straightforward translation to MRSI settings. Firstly, MRSI
temporal signals are characterized by a decaying exponential behavior, which
in concert with low metabolite SNR renders matrix recovery approaches
particularly susceptible to noise-generated artifacts and biases. Secondly,
estimated temporal basis functions are typically corrupted by field inhomo-
geneity and off-resonance effects, which may significantly bias recovery of
the corresponding spatial components. Nonetheless, approach (ii) has been
explored as part of a general denoising scheme for CSI acquisitions [192],
whereas (i) quite recently served as the motivation for a hybrid CSI/EPSI se-
quence, for which reconstructions employed additional spatial regularization
to recover high-resolution spatio-spectral volumes [193]. Thus, the extension
of minimum rank principles to MRSI reconstruction, though still inchoate,
has manifested clear potential.

4.3 Proposed Method: Preliminaries

Ideally, we aspire to recover spatio-spectral volumes at resolutions compa-
rable to those afforded by structural MRI, given only a limited set of k-
space measurements. The often severe ill-posedness of this problem there-
fore mandates the utilization of prior information in order to improve its
conditioning. As was discussed during the previous chapter, while the in-
tegration of supplementary MR scans may be of potential value in guiding
MRSI reconstructions, overly-assertive assimilation carries a significant risk
of introducing additional model mis-match errors. In order to circumvent
these imperilments, we seek to delimit the solution space through a set of
comparatively general assumptions:
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1. The inherent MRSI signal resides within a low dimensional subspace.
Furthermore, within this subspace, the bilinear model posited in (4.1)
remains valid.

2. The predominant sources of signal distortion are attributable to lo-
cal susceptibility effects, which tend to disallow the presumed spatio-
temporal separability.

3. The underlying spatial components, uκ, belong to a class of real-
valued, non-negative piecewise smooth functions that may contain a
finite number of sharp edges.

The first assumption was discussed earlier in section 4.2; the two remain-
ing postulates and their respective implementations will be discussed in the
following sections.

4.3.1 Inhomogeneity Compensation

Revisiting expression (3.51) in chapter 3, it is evident that the presence of
local field inhomogeneities tends to subvert the separability of the basic bi-
linear model. Although separable solutions could be found given a suitable
decomposition of the acquired data, for example using the SVD, they would
inevitably reflect any inhomogeneity-induced perturbations. To compensate,
an additional measurement of the field inhomogeneity, ∆f(r), is therefore
necessary, primarily reflecting any sample-specific magnetic susceptibilities.
One central aspect is that the spatial resolution of this map can be arbi-
trarily chosen (within measurement system limitations), and may be used to
define the spatial grid over which the reconstruction is performed. In order
to isolate these effects, we encapsulate them within the form of an operator,
B∆f , acting in the designated high-resolution space, whose action is to ef-
fectively shift a spatio-spectral volume along the temporal frequency axis in
accordance with ∆f(r):

Definition 2. Given a spatial inhomogeneity profile, ∆f(r), the spectral
deformation operator, B∆f , acting upon a spatio-spectral volume, ρ, is given
by:

B∆f{ρ}(r, f) , ρ(r, f + ∆f(r)), (4.5)

when applied in the temporal frequency domain, or by:

B∆f

{
F−1
t {ρ}

}
(r, t) , e−2πj∆f(r)tF−1

t {ρ}(r, t), (4.6)

in the temporal domain, where Ft denotes the temporal Fourier transform.

The effect of the B∆f on a slice of a generic spatio-spectral volume is illus-
trated in figure 4.1. In general, the latter form of definition 2 is preferable,
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Figure 4.1: Effect of the spectral deformation operator, B∆f , on a slice of a generic
spatio-spectral volume.

as it eliminates the need for explicit interpolation models in the attendant
discrete reconstructions. It is therefore beneficial to focus on decompositions
of the form: ρ(r, t) =

∑
κ uκ(r)ξκ(t). Letting Fr denote the spatial Fourier

transform, the conjectured measurement process can then be represented by
the following system:

s̃(k, t) = Fr

{
B∆f{ρ}

}
(k, t) + η(k, t) (4.7)

= Fr

{
B∆f

{∑
κ

uκξκ

}}
(k, t) + η(k, t). (4.8)

4.3.2 Total Variation-Based Spatial Regularization

In the previous chapter, the total variation (TV) semi-norm was introduced
as a prevalent and compelling regularizer for feature-preserving signal de-
noising. Nonetheless, it has been shown that the use of TV often results
in so-called “staircasing” artifacts, which are visually displeasing or phys-
ically implausible in the case of MRI [194, 195]. This is due to the fact
that the standard TV penalty (L1 norm of the gradient) promotes images
with sparse gradients, i.e., it favors piecewise constant solutions. Numerous
techniques have since been proposed which explicitly address this issue, for
example by utilizing higher-order functionals [196–201]. For our purposes,
we adopt the “total generalized variation” (TGV) method of [151, 202, 203],
which has been shown to be robust when compared to other methods ex-
ploiting higher-order signal information [204, 205]. Formally, the TGV of a
function is defined as [202]:

Definition 3. Let Ω ⊂ Rd be a domain, k ≥ 1 and α0, . . . , αk−1 > 0. The
total generalized variation of order k with weight α for f ∈ L1

loc(Ω) is defined
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as the value of the functional:

TGVk
α(f) , sup

{∫
Ω

f(r)divkp(r)dr : p ∈ Ckc
(

Ω,Symk(Rd)
)
,

∥∥divl p
∥∥
L∞
≤ αl, l = 0, . . . , k − 1

}
. (4.9)

In the above definition,

Symk(Rd) =
{
ζ : Rd × · · · × Rd → R : ζ k-linear and symmetric

}
, (4.10)

denotes the space of symmetric tensors of order k, L1
loc the space of locally-

integrable functions (i.e., functions that are integrable on any compact sub-
set of their domains), and αl are positive constants. For completeness,
a tensor ζ ∈ Symk(Rd) is considered to be symmetric if ζ(a1, . . . , ak) =
ζ(π(a1), . . . , π(ak)) for all permutations π. In general, we restrict ourselves
to the case k = 2, in which case the space Sym2(Rd) can be represented as
the space of symmetric d× d matrices, for which

(divζ)i =
d∑
j=1

∂ζi,j
∂xj

, div2ζ =
d∑
i=1

∂2ζi,i
∂x2

i

+
∑
i<j

2
∂2ζi,j
∂xi∂xj

. (4.11)

Expression (4.9) for k = 2 can also be linked via Fenchel duality theory [206]
to the equivalent formulation:

TGV2
α(f) = inf

p
α1

∫
Ω

|∇f(r)− p(r)| dr + α0

∫
Ω

|Ep(r)| dr, (4.12)

where Ep = 1
2

(
∇p+∇pT

)
denotes the distributional symmetrized deriva-

tive of p. Under this formulation, TGV can be interpreted as an optimal
weighting between first and second derivatives, and, like other second order
penalties, will tend to favor piecewise linear solutions, thereby mitigating
staircasing artifacts. In discrete settings, for a general input signal sub-
scripted by d indices, x ∈ RN1×···×Nd , the analog of (4.12) can be expressed
as:

TGV2
α(x) = arg min

p=(p1,p2,...,pd)
α1

∑
i1,i2,...,id∈Ω

∣∣∣∣∣
d∑
l=1

|Dl{x} − pl|

∣∣∣∣∣+
α0

∑
i1,i2,...,id∈Ω

∣∣∣∣∣∣
d∑
l=1

|Dl{pl}|+
1

2

∑
m 6=l
|Dm{pl}|

∣∣∣∣∣∣ , (4.13)

where pl ∈ RN1×···×Nd , andDl is a discrete differences operator as introduced
in section 3.3.3.
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4.4 Proposed Method: Reconstruction Framework

In accordance with our proposed criteria, we would like to apply the TGV
framework only to the estimated spatial components, uκ, which must there-
fore be isolated during the reconstruction process. These components are
further assumed to be real-valued and non-negative in order to confer phys-
ical significance, and to better condition the accompanying reconstruction
problem. It is clear from (4.8), however, that efforts to extricate spatial and
spectral behavior may be stymied by B∆f , which mandates that uκ and vκ
be jointly coupled in order to fall within its domain of definition. This com-
plication can be avoided through a reinterpretation of uκ as a spatio-spectral
volume, but with no explicit time dependence, so that uκ(r, t) = uκ(r, t0) for
all t. This can be further illuminated by considering the discretized recon-
struction setting, where the aim is to recover spatio-temporal distributions
of the form:

ρ[rn, ti] =
K∑
κ=1

uκ[rn]ξκ[ti], uκ : Rd → R+, ξκ : R→ C,

n = 1, . . . , N, i = 1, . . . , T, (4.14)

or,
P = UΞ, U ∈ RN×K+ , Ξ ∈ CK×T (4.15)

in matrix notation, with {rn}Nn=1 corresponding to the spatial grid of the
acquired field inhomogeneity map. Expression (4.15) can also be regarded in
vectorized form, whereupon the implicit temporal aspects of uκ are exposed:

vec(P) =
(
I(T×T ) ⊗U

)
vec(Ξ) (4.16)

=
(
ΞT ⊗ I(N×N)

)
vec(U), (4.17)

where ⊗ denotes the Kronecker product, and the vec(·) operation is such
that for a d-dimensional input, A ∈ CN1×···×Nd , vec(A) ∈ CN1···Nd . When
d = 2, the vec(·) operation amounts to forming a vector by stacking the
columns of an input matrix. For ease of notation, we will henceforth denote
vectorized counterparts of matrices and multi-dimensional arrays by their
corresponding lowercase boldface letters and a ~(·), such that vec(A) = ~a.
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Hence, (4.16) and (4.17) can be expressed as:

~ρ =


U[t1] 0(N×K) · · · 0(N×K)

0(N×K) U[t2] · · · 0(N×K)

...
...

. . .
...

0(N×K) 0(N×K) · · · U[tT ]

 ~ξ = U⊗~ξ (4.18)

=
(
ΞT ⊗ I(N×N)

)
~u = Ξ⊗~u, (4.19)

where U[ti] = (u1[ti],u2[ti], . . . ,uK [ti]). From the above, it is clear that
B∆f is free to act solely upon uκ, thereby allowing an investigation of the
unperturbed temporal bases, ξκ. This notion of time-independence can be
considered as an essential condition for the separability of (4.1), and is equiv-
alent to the requirement that uκ remain constrained to the f = 0 plane in
the temporal frequency domain.

Considering the temporal behavior of uκ explicitly, the general form of the
reconstruction procedure can be given in the discrete setting as:

Û, Ξ̂ = arg min
U,Ξ

∥∥S̃−AUΞ
∥∥2

F
+ µTGV2

α (U) ,

such that U = U[tp] = U[tq] ∈ RN×K+ , for all tp, tq ∈ {ti}Ti=1, (4.20)

where µ is a regularization parameter and A represents the combined Fourier
encoding and spectral deformation operators. The stipulation that spatial
components be real-valued can be accounted for directly by supplanting U
in (4.20) with UR = 1

2(U + U∗), whereas the time-independence and non-
negativity can be encompassed by a constraint set, Cu. Furthermore, al-
though no explicit assumptions were made with regards to the expected be-
havior of qκ, for example the sparsity level or anticipated lineshape profiles,
we prescribe the additional condition that ‖Ξ‖F ≤ 1, henceforth denoted as
the constraint set Cξ, which has been shown to mitigate scaling ambiguities
during the reconstruction procedure [179,207,208]. Reverting to the vector-
ized notation of (4.18) and (4.19), thereby allowing the establishment of F
and B as the matrix analogs of Fr and B∆f , respectively, the reconstruction
is then given by:

~̂uR, ~̂ξ =arg min
~uR,~ξ

∥∥~̃s− FBΞ⊗~uR

∥∥2

`2
+ µTGV2

α (~uR) ,

such that ~uR ∈ Cu, ~ξ ∈ Cξ. (4.21)

4.4.1 Algorithm Description

In order to solve (4.21), we adopt an augmented Lagrangian (AL) approach,
also known as the method of multipliers (e.g., [209,210]), in which minimiza-
tion is performed in an alternating fashion over a set of surrogate variables.
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Under the AL formulation, the reconstruction is posed as:

minimizeL =
∥∥~̃s− FBΞ⊗~uR

∥∥2

`2
+ µTGV2

α (~y) + β
∥∥~uR − ~y

∥∥2

`2
+〈

~λ, ~uR − ~y
〉
, such that ~uR ∈ Cu, ~ξ ∈ Cξ, (4.22)

where ~λ is an auxiliary variable whose role is that of a Lagrange multiplier,
and β ∈ R+ is a penalty parameter that effectively controls how closely
(4.22) approximates (4.21). The complete reconstruction procedure is given
by algorithm 1.

Algorithm 1 Component-based MRSI Reconstruction

1: Input: µ ≥ 0, β > 0, τ > 1, ~̃s, ~uR,0, ~ξ0, ~y0, ~λ0

2: repeat
3: repeat

4: ~u
(n+1)
R = arg min

~uR∈Cu

∥∥~̃s− FBΞ
(n)
⊗ ~uR

∥∥2

`2
+ β

∥∥~uR −
(
~y(n) −

~λ(n)

β

)∥∥2

`2

5: ~ξ(n+1) = arg min
~ξ∈Cξ

∥∥~̃s− FBU
(n+1)
R⊗

~ξ
∥∥2

`2

6: ~y(n+1) = arg min
~y

∥∥~u(n+1)
R −

(
~y −

~λ(n)

β

)∥∥2

`2
+
µ

β
TGV2

α (~y)

7: ~λ(n+1) = ~λ(n) + β
(
~u

(n+1)
R − ~y(n+1)

)
8: until convergence or maximum allowable inner iterations reached
9: β = τβ

10: until convergence or maximum allowable outer iterations reached

The ~y subproblem (algorithm 1, line 6) is referred to as the total (generalized)
variation denoising problem, whose solution can be efficiently obtained by the
primal-dual method originally proposed in [151]. To solve the ~uR subproblem
(algorithm 1, line 4), we use a fast projected gradient approach [211, 212],
whereby at each iteration, l, ~uR is updated as:

~ul+1
R = PCu

(
~u

(l)
R −

1

L
∇L(~u

(l)
R )

)
, (4.23)

where L is an appropriate upper bound on the Lipschitz constant of the
gradient, and PCu is the Euclidean projector onto the set Cu, whose action
for the current case will be discussed shortly. The gradient step, ∇L(~u

(l)
R ),
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in (4.23) is given by:

∇L(~u
(l)
R ) =

1

2
Re

{(
Ξ

(l)H
⊗ BHFHFBΞ

(l)
⊗ + βI

)
~u

(l)
R −

Ξ
(l)H
⊗ BHFH~̃s− β

(
~y(l) −

~λ(l)

β

)}
. (4.24)

For completeness, FH can be characterized as the inverse Fourier transform
of the low resolution spatial components, %κ[km], sinc interpolated to the
high-resolution spatial grid. Likewise, BH is determined through an appeal
to definition 2 with a flip of sign. From an implementation standpoint, it is
not necessary to construct the full forward and adjoint matrices in practice,
as the associated operations may be applied point-wise along the temporal
axis. It is particularly noteworthy that (4.24) may not be time-independent,
therefore highlighting the indispensability of the projection step. This pro-
jection can be decomposed into two actions. The first effectuates time-
independent solutions by projecting (~u

(l)
R − (1/L)∇L(~u

(l)
R )) onto its mean

timecourse, effectively restricting spectral behavior to the f = 0 plane.
The second involves a projection onto the non-negative orthant, whereby
PR+(uR[rn]) = max(0, uR[rn]). Solutions to the ~ξ subproblem (algorithm 1,
line 5) can be found using similar projected gradient approaches, where the
projection step is given by:

PCξ(~ξ) =


~ξ

‖~ξ‖`2
, ‖~ξ‖`2 ≥ 1

~ξ, otherwise.
(4.25)

One advantage to using the AL framework is that unlike traditional penalty
methods, β does not need to grow very large in order to establish equivalence
between (4.22) and (4.21). Nonetheless, we employ a continuation strategy,
steadily increasing β by factors of τ in an outer loop once convergence has
been reached over the alternating minimization routine, in order to hasten
overall algorithm convergence.

4.4.2 Model Order Determination

Prior to the reconstruction, an initial determination must be made for the
expected model order of (4.1). Robust estimation of the underlying data
dimensionality from a series of measurements corrupted by noise represents
an ongoing challenge in statistics, information theory, and machine learning,
and amounts to the successful identification and segregation of the signal
and noise subspaces. Several criteria have been proposed to achieve this
task, including the minimum description length (MDL) [213], Akaike infor-
mation criterion (AIC) [214], Scree test on residual percent variance [215],
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cross-validation approaches [216–218], and the Bayesian information crite-
rion (BIC) [219, 220]. With regards to the latter, a series of probabilistic
PCA methods have been proposed (e.g., [221–224]), whereby the observed
data, D, is considered to consist of a collection of high-dimensional random
vectors:

xi = Hw + m + η, xi,m,η ∈ CN , H ∈ CN×K , w ∈ CK , (4.26)

where K < N . Here, H are the unknown basis vectors, m is the mean of
the xi, and η is AWGN noise distributed as η ∼ N (0, σ2I(N×N)). It is also
typically assumed that the weights w ∼ N (0, I(K×K)). The probability of
the data then becomes:

p(D
∣∣H,m, σ2) =

∏
i

p(xi
∣∣H,m, σ2), (4.27)

which is maximized at [222]:

Ĥ = U
(
Λ− σ2I(K×K)

)1/2
R, (4.28)

where Λ is a diagonal matrix containing the K largest eigenvalues of the
data covariance matrix, U are the corresponding eigenvectors, and R is an
arbitrary orthogonal matrix. The objective is then to maximize the prob-
ability of the data, given a particular model order by integrating over the
various parameters comprising the data model:

maximize p(D
∣∣H,m, σ2) =

∫
H,m,σ2

p(D
∣∣H,m, σ2)p(H,m, σ2)dHdmdσ2.

(4.29)

For the proposed MRSI reconstruction method, we adopt the method of
[223], which decomposes H in a similar fashion to (4.28):

H = U
(
L− σ2I(K×K)

)1/2
R, (4.30)

such that UHU = I(K×K), RHR = I(K×K), (4.31)

where L is a general diagonal matrix. Priors are then introduced on each
of the model parameters, and estimates are obtained by approximating the
integral in (4.29) via Laplace’s method [220,225].

Due to the fact that the acquired measurements are typically corrupted by
inhomogeneity and off-resonance effects, dimensionality estimates, Kest, ob-
tained from the raw MRSI data will tend to overestimate the model order.
The resulting values can therefore be considered as upper bounds, which for
Kest ≥ K should in principle result in greater noise contamination rather
than model mis-match effects.
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4.4.3 Selection of the Regularization Penalty

In the proposed framework, the choice of the regularization parameter, µ,
ultimately regulates the desired smoothness of the reconstructed volumes.
Values that are too large will engender a loss of discriminating spatial fea-
tures, whereas values that are too small tend to result in spurious signal
contributions, either due to noise or discontinuities. The consequence of this
judgement has provoked a considerable body of research dedicated towards
the establishment of robust criteria for selecting optimal parameters that
minimize the expected reconstruction error while limiting the regularization
bias. Established approaches include the discrepancy principle [226, 227],
generalized cross validation [228], and the L-curve [229, 230] (more detailed
discussions can be found in [231, 232]). Generally, an appropriate choice
of regularization parameter follows from a careful consideration of the data
noise variance, and the (eigen) spectral properties of the employed operators,
neither of which may be known a priori. Most of these methods, however,
were developed under the linear, Tikhonov regularization framework, and
their suitability in non-linear reconstruction settings is uncertain. A number
of more recent studies have explored alternative frameworks for selecting reg-
ularization parameters for TV-based reconstructions, either adapting estab-
lished linear methods [233], or by reformulating the reconstruction process
within a probabilistic framework, whereby the regularization parameter is
adaptively estimated [234,235].

For our experiments, the regularization parameter was first determined em-
pirically to minimize the peak signal-to-noise ratio (PSNR) for reconstruc-
tions based on numerically simulated ground truth measurements under
varying noise levels. This allowed us to identify a series of ε such that:∥∥~̃s− FBΞ⊗~uR

∥∥2

`2
≤ ε
∥∥~̃s∥∥2

`2
. (4.32)

These values were then used to inform discrepancy principle-based estimates
of µ for subsequent experiments using real MRSI data.

4.5 Validation in Phantom Data

In order to validate the proposed method, we scrutinize reconstructions fur-
nished by both numerically simulated and haptic phantoms, i.e., objects of
known geometry and/or composition that serve to reduce the number of ex-
perimental confounds. In the following, we provide detailed descriptions for
each of the investigated datasets, as well as enumerate the various acquisition
and pre-processing modules used to generate the raw input data. We then
assess reconstruction performance for each scenario, and offer a discussion
of the established results.
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4.5.1 Simulated Data

For experiments based on simulated data, a numerical phantom was utilized
consisting of three spectrally-homogeneous compartments, using a square
FOV ([−0.5, . . . , 0.5] × [−0.5, . . . , 0.5]) and a 128 × 128 Cartesian sampling
grid, as depicted in figure 4.2. A local static field inhomogeneity map
was also simulated at the same resolution using a fourth-degree polyno-
mial model along each planar Cartesian dimension, which was then thresh-
olded by the combined support of the compartments. To emulate the effects
due to changes in material susceptibility at the compartment interfaces, ad-
ditional Laplacian-of-Gaussian filtered images (Gaussian kernel FWHM =
three pixel units) for each compartment were added to the final map. To
each compartment, a unique spectrum with fixed temporal resolution (T =
1024 points) was associated. The final synthetic dataset was obtained by
constructing BSLIM kernels for each compartment, Hκ[km, ti] (see (3.51)),
using the high-resolution field map, and multiplying by the corresponding
FID. The measurement process was then simulated by selecting the central
phase encodes of the resulting dataset, taken to be a 32×32 Cartesian k-space
sampling grid, and adding zero-mean Gaussian white noise to the simulated
MRSI data. To examine the robustness of the reconstruction to various noise
conditions, five realizations for each of three noise scenarios were generated,
corresponding to mean SNR values of 13.98, 10.02, and 7.03 dB, to which we
further refer as Case 1, Case 2, and Case 3, respectively. Using the criterion
in (4.32), values for ε were estimated for each of the three cases, such that
ε1 = 0.067, ε2 = 0.163, and ε3 = 0.314. The initial dimensionality for all
reconstructions was set at K0 = 25 via [223], based upon the raw Case 2
dataset. All computations were carried out in MATLAB 8 (The Mathworks
Inc., Natick, MA, USA) on an Intel Xeon 3.33 GHz six-core processor under
Mac OSX 10.8.2 with 32 GB RAM.

Figure 4.2: Numerical phantom composition and simulated static field inhomo-
geneity map (lower left).
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To assess performance, four different reconstruction strategies were con-
trasted: (I) standard inverse DFT, (II) the adjoint solution, whereby FH

and BH were applied directly to the raw measurements, (III) the proposed
method in the absence of total generalized variation spatial regularization,
and (IV) the full proposed method. Reconstructed images (Case 1), gener-
ated by integrating along the temporal frequency axis, as well as represen-
tative spectra for each method are collected in figure 4.3. For quantitative
evaluation, each of the given spectra, as well as the reconstructed spatio-
spectral volume as a whole, was compared against the ground truth data.
The resulting mean PSNR values across realizations for each SNR scenario
are collected in table 4.1. Following reconstructions, the SVD was computed
for representative datasets in each case; the resulting singular value spectra
are provided in figure 4.4 (a-c).

The limitations associated with MRSI reconstructions by low-resolution in-
verse DFT are clearly visible in figure 4.3 [I]. The spectral leakage artifacts,
while expectedly severe near the compartment interface (4.3 [I(d)]), propa-
gate even through the FOV center (4.3 [I(b)]), demonstrating the profound
effects of the PSF. Concomitant lineshape distortions and spectral shifts are
also apparent throughout the reconstructed data. Similarly, though the ad-
joint reconstruction (4.3 [II]) effectively compensates for the inhomogeneity-
induced spectral shifts, it is unable to exploit the full high-resolution infor-
mation from the field map, and to mitigate the PSF effects. In contrast,
reconstructions using the proposed method (4.3 [III, IV]) best approximate
the ground truth spatio-spectral distribution, offering vastly improved spatial
localization and spectral lineshapes. Though the merits of the TGV penalty
can be clearly recognized via improved spectral quality in 4.3 [IV(a), IV(b)],
and markedly reduced spectral leakage from the outer-most compartment
(4.3 [IV(c), IV(d)]), it can introduce slight partial-volume effects, which are
most pronounced around areas containing differing spectral signatures that
are small in comparison to the nominal CSI voxel size (4.3 [IV(c)] vs. 4.3
[III(c)]). Nonetheless, table 4.1 shows that by and large, the TGV regulariza-
tion provides the best reconstruction quality by abating the most degrading
influences.

Given the phantom conception, the desired result in the synthetic MRSI
dataset would be such that the final reconstructed dataset lie completely
within a three-dimensional subspace corresponding to the three ground truth
compartments. In other words, an attendant spectral decomposition would
yield only three non-trivial singular values. Although such idealized out-
comes are generally precluded by the ill-posedness of the reconstruction,
the proposed method does yield solutions in which the energy is primarily
captured by just a few singular values, thereby suggesting ultimately low-
dimensional representations (figure 4.4). This is easily contrasted to the
inverse DFT and adjoint solutions, which are unable to adequately identify
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RECONSTRUCTION METHOD
ifft

spectrum
Case 1 Case 2 Case 3

(a) 17.55± 0.02 17.33± 0.04 17.04± 0.05
(b) 15.01± 0.03 14.71± 0.05 14.25± 0.04
(c) 17.61± 0.04 17.30± 0.07 16.89± 0.07
(d) 18.30± 0.04 18.14± 0.04 17.86± 0.04
(e) 18.32± 0.00 18.31± 0.01 18.30± 0.01
(f) 19.50± 0.00 19.49± 0.01 19.47± 0.01

full - - -
adjoint

spectrum
Case 1 Case 2 Case 3

(a) 21.60± 0.03 21.04± 0.08 20.34± 0.06
(b) 21.12± 0.07 20.17± 0.09 18.72± 0.04
(c) 21.22± 0.04 20.52± 0.05 19.75± 0.06
(d) 20.82± 0.03 20.54± 0.04 20.04± 0.05
(e) 24.64± 0.01 24.62± 0.03 24.56± 0.01
(f) 23.39± 0.01 23.37± 0.01 23.33± 0.03

full 20.61± 0.00 18.26± 0.00 16.41± 0.00

proposed (no tgv)
spectrum

Case 1 Case 2 Case 3
(a) 38.21± 3.28 31.42± 4.84 26.56± 1.22
(b) 35.31± 1.80 29.27± 0.71 24.89± 0.67
(c) 36.53± 2.02 27.97± 1.87 27.07± 1.50
(d) 38.13± 1.57 33.84± 2.09 30.10± 1.72
(e) 48.27± 2.01 41.69± 2.75 38.55± 2.42
(f) 51.67± 1.20 45.57± 0.68 40.47± 1.73

full 44.88± 4.85 31.77± 0.27 27.21± 0.26

proposed
spectrum

Case 1 Case 2 Case 3
(a) 41.99± 3.23 37.85± 1.93 35.68± 1.68
(b) 36.62± 1.10 32.91± 0.39 30.41± 0.19
(c) 36.30± 2.59 32.29± 1.81 30.51± 1.39
(d) 40.98± 3.16 39.04± 2.44 36.62± 1.51
(e) 48.29± 4.11 46.31± 0.82 44.45± 1.19
(f) 48.79± 1.83 47.92± 0.63 43.99± 1.91

full 48.99± 1.04 43.81± 1.29 38.35± 4.21

Table 4.1: Numerical phantom dataset mean PSNR values plus standard devia-
tions for the selected spectra and full reconstructed volumes (dB). The row initiated
with the heading “full” reflects mean values over all voxels across realizations for
the designated reconstruction method.
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Figure 4.4: Singular value spectra for the reconstructed phantom datasets.

and expunge the field inhomogeneity and noise components, and therefore
require higher dimensional subspaces to represent the observed data. The
efficacy of the TGV regularization can also be discerned as the input SNR
decreases, effectively attenuating the contribution of the accompanying noise
subspaces.

4.5.2 MRSI Phantom Data

To evaluate the performance of the algorithm using real-world data, we ac-
quired two 1H CSI datasets on a 3.0 Tesla Siemens Trio MR scanner (Siemens
Healthcare, Erlangen, Germany), using a two compartment test phantom,
which is depicted in figure 4.5. The inner compartment (4.5 (A)) consisted
of a sphere (diameter = 8.7 cm), containing 50 mmol/L N-acetyl-aspartic
acid (NAA) and 50 mmol/L creatine (Cr) in standard buffer solutions. The
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Figure 4.5: 1H Phantom composition and acquired static field inhomogeneity map
(lower left).

outer cylindrical compartment (4.5 (B)) (height = 13.5 cm, diameter = 10.5
cm) was filled with corn oil. Single-voxel spectra were acquired for each
compartment using a PRESS sequence (voxel size = 15×15×15 mm, TR =
1700 ms, TE = 288 ms, temporal bandwidth = 2 kHz, number of FID sam-
pling points = 2048). Utilizing a semi-LASER sequence, water-suppressed
CSI data was then acquired from a 10 mm slice thickness positioned at the
center of the inner compartment (in-plane FOV = 160 × 160 mm, TR =
1700 ms, TE = 288 ms, temporal bandwidth = 1.5 kHz, number of FID
sampling points = 1024) using both 32 × 32 and 64 × 64 sampling grids.
During the same scanning session, a local field map was estimated using two
spoiled gradient echo sequences corresponding to the FOV of the CSI (nom-
inal voxel size = 1.56 × 1.56 × 10 mm), with echo times selected so as to
ensure the water and lipid resonances were in phase. Though two different
CSI grid sizes were acquired, reconstructions were performed only using the
lower resolution (32 × 32) data in order to better emulate typical clinical
acquisition protocols. The underlying data dimensionality was estimated as
K0 = 35. As with the simulated data, resulting images and representative
spectra for the different reconstruction strategies are collected in figure 4.6.
In this case, however, the adjoint reconstruction has been replaced by the
64× 64 reference CSI data.

From an examination of figure 4.6, it is clear that inverse DFT reconstruc-
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tions (4.6 [I]) are afflicted by similar artifacts as were prevalent in the syn-
thetic case, namely, those due to spectral leakage, especially near the com-
partment interface. Spectral shifts and lineshape distortions due to the field
inhomogeneity (depicted in figure 4.5) are also readily seen. For comparison,
corresponding spectra taken from the 64 × 64 inverse DFT reconstructions
are illustrated in 4.6 [II], where improved spatial localization and reduced
spectral leakage can be observed at the expense of SNR. Unlike the synthetic
case, where the same model was used to both simulate and reconstruct the
MRSI data, reconstructions based on real-world MR data underscore the
indispensability and effectiveness of the TGV penalty. While the proposed
method in the absence of TGV regularization (4.6 [III]) is able to recover
the general phantom geometry, the lack of additional spatial constraints ren-
der the method incapable of recovering uncontaminated spectra, and hence
little is gained by way of spectral quality over the standard DFT recon-
structions. Though null-space contributions are presupposed given the ill-
posedness of the unregularized reconstructions, a possibly incomplete mea-
surement model, as discussed in greater detail later in this chapter, may ex-
plain the observed and seemingly exacerbated phase perturbations, as well
as the incapability of the synthetic data to anticipate such artifacts. Al-
ternatively, visual comparison between 4.6 [II] and 4.6 [IV] encourages the
notion that the TGV penalty provides the necessary conditioning to recover
the true underlying spatio-spectral distribution. Indeed, though some influ-
ence from the outer compartment can be discerned in 4.6 [IV(a)-IV(b)], the
severity is greatly attenuated over reconstructions illustrated in 4.6 [I, III].

Although the underlying data presumably lies within a two-dimensional sub-
space corresponding to the inner and outer phantom compartments, subse-
quent spectral decompositions of the various reconstructions, collected in fig-
ure 4.4 (d), reflect the added complexities and increased difficulties encoun-
tered when working with real data. While reconstructions obtained through
the proposed method lead to lower-dimensional representations when com-
pared to their DFT counterparts, it is evident that unanticipated experi-
mental confounds exist that incur further departures from the ideal. These
may arise from the necessary discretization or mis-representation of the con-
cerned continuous operators, and/or inaccuracies in the a priori information.
For example, estimations of the local field inhomogeneities may be prone to
errors stemming from an inappropriate choice of echo time or insufficient
SNR. Moreover, although single-slice MRSI acquisitions are often regarded
as purely two-dimensional datasets, significant variations in both the object
geometry and the local susceptibility profile may exist throughout the slice
thickness. While such heterogeneities were intentionally minimized or elim-
inated in the described phantom experiments so as to underscore in-plane
reconstruction performance, their influence requires careful consideration in
in vivo applications.
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4.6 Adapting the Framework for In Vivo Settings

In order to achieve adequate SNR in typical clinical settings, the elected
MRSI slice thicknesses are often designated as comparable to, or greater
than nominal in-plane voxel dimensions (∼ 0.5−2.5 cm). Given the resultant
coarse voxel volumes, a re-examination of the theoretically predicted signal
may be revealing. Taking into account static field inhomogeneities, and
assuming without loss of generality that slice selection occurs along the z-
direction, the measurements can be expressed as:

s(kx, ky, t) =

∞∫
−∞

∫
Ωxy∈R2


z0+ ∆z

2∫
z0−∆z

2

ρ(r, f)e−2πj∆f(r)tdz

 e−2πj(kxx+kyy+ft)dxdydf, (4.33)

where z0 corresponds to the slice center, ∆z is the slice thickness, and Ωxy

represents the in-plane FOV. It is clear from (4.33) that any spatial variations
in ρ along the z-direction will be projected onto the slice plane, and will be
imprinted with the full volumetric behavior of ∆f(r). Depending on the
investigated anatomy, these variations may be substantial, which may in
turn undermine the clinical utility of the resultant aggregate spatio-spectral
information content.

With regards to the proposed reconstruction framework, this through-plane
behavior carries a number of important consequences. The first pertains
to so-called “partial volume” effects, whereby differing spatial (or likewise,
spectral) characteristics will be amalgamated along the slice-select direction.
In this case, the preeminence of total variation-based regularization becomes
contentious, as any sharp object features displaying significant through-plane
curvature will be diffused throughout the composite volume. Secondly, static
local field maps estimated from images acquired using the same FOV as
the MRSI measurements will represent conglomerated phase information,
and will therefore remain limited in their capacity for abrogating volumetric
lineshape distortions. In light of these arguments, it is therefore prudent to
adapt the proposed method to explicitly take such volumetric aspects into
account.

4.6.1 Incorporation of 3D Information

As was mentioned in section 4.3.1, though practical considerations severely
limit achievable MRSI voxel volumes, far greater latitudes can be taken
when selecting both the in-plane and through-plane resolutions of the ancil-
lary field maps. These maps provide not only explicit phase information, but
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Figure 4.7: Schematic representation of the 3D reconstruction scheme. The MRSI
slice is partitioned into subvolumes defined by the acquired static field map.

also contain a wealth of implicit high-frequency content, which conceivably
may be used to recover the divested volumetric signal. We therefore extend
the proposed method such that multiple field map slices are acquired in order
to split the nominal MRSI slice thickness into a number of non-overlapping
partitions, which are then jointly estimated during the reconstruction pro-
cess. This procedure can be demonstrated pictorially by means of figure
4.7.

Unfortunately, the added recovery of volumetric information from a single
MRSI slice exacerbates the ill-posedness of the reconstruction, mandating
further mechanisms in order to constrain the solution space. The principal
concern is that the recovered signal energy may be disproportionally appor-
tioned to a small subset of the estimated slices. Though these outcomes
may be obviated by strongly penalizing disparities in signal intensity along
the slice-select direction, such measures would inevitably undermine the pri-
mary motivation by discouraging spatial variations. We therefore attempt
to circumvent this apparent paradox by introducing an additional penalty
into the reconstruction framework that penalizes through-plane deviations
of the mean in-plane intensity of the spatial components. The modified
reconstruction problem can then be expressed as:

minimizeL =
∥∥~̃s− FBΞ⊗~uR

∥∥2

`2
+ µ1TGV2

α (~y) + µ2

∥∥DssM⊥~uR

∥∥2

`2
+

β
∥∥~uR − ~y

∥∥2

`2
+
〈
~λ, ~uR − ~y

〉
,

such that ~uR ∈ Cu, ~ξ ∈ Cξ, (4.34)

where M⊥ computes the mean along the in-plane dimensions, and Dss repre-
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sents a first-order forward discrete differences operation along the slice-select
dimension. The ~uR subproblem in algorithm 1 is then modified as:

~u
(n+1)
R = arg min

~uR∈Cu

∥∥~̃s− FBΞ
(n)
⊗ ~uR

∥∥2

`2
+ β

∥∥~uR −
(
~y(n) −

~λ(n)

β

)∥∥2

`2
+

µ2

∥∥DssM⊥~uR

∥∥2

`2
. (4.35)

The attendant gradient step, (4.24), can similarly be adapted as:

∇L(~u
(l)
R ) =

1

2
Re

{(
Ξ

(l)H
⊗ BHFHFBΞ

(l)
⊗ + µ2M

H
⊥DH

ssDssM⊥ + βI
)
~u

(l)
R −

Ξ
(l)H
⊗ BHFH~̃s− β
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. (4.36)

4.6.2 In Vivo Experiments

To test the modified algorithm, a 1H CSI dataset was acquired in the brain
from a healthy volunteer using the same protocol as described in section 4.5.2,
but with an enlarged in-plane FOV of 200× 200 mm. In this case, however,
three slices of a local field inhomogeneity map were obtained such that their
combined volumes corresponded to that of the CSI slice (nominal voxel size
= 1.56× 1.56× 3.0 mm, inter-slice spacing = 3.3 mm). Pre-processing prior
to the reconstruction consisted of residual water signal filtering using the
HSVD algorithm, and 10 Hz Gaussian line broadening (section 3.2.3). As
no outer volume suppression was applied during the acquisition, additional
pre-processing steps were necessary in order to attenuate signal contribu-
tions from the extra-cranial lipids. To accomplish this, a variant of [134]
was utilized, whereby high-resolution reference scans were used to define
metabolite and lipid-containing support regions. Lipid signal contributions
were then estimated, and subsequently subtracted from the raw measure-
ments by means of the BSLIM framework introduced in section 3.3.2. The
model order was determined from the un-processed raw CSI data, and was
estimated as K0 = 30. The reconstruction results are collected in figure 4.8,
where spatial metabolite maps are displayed for NAA, Cr, and choline (Cho)
resonances for each of the slice partitions. Sample spectra produced by both
the proposed method and DFT reconstructions are additionally contrasted
in figure 4.9.

Upon inspection, variations along the slice-select direction for each of the
metabolite maps can be discerned in figure 4.8, while the signal energy ap-
pears to be distributed evenly among the slices. Nonetheless, figures 4.8
and 4.9 highlight some of the difficulties encountered during in vivo scenar-
ios, namely, the vast reduction in SNR when compared to the previously-
described phantom experiments, and the pertinacity of the residual lipid
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Figure 4.9: (Left) Sample spectra taken from the center slice of the reconstructed
data generated by the proposed method. Improvements in both the SNR, and the
phase behavior can be observed when compared to corresponding spectra produced
by inverse DFT (right). In both cases, signal contamination from the extra-cranial
lipids remain prevalent throughout the FOV.
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Figure 4.10: Singular value spectrum for the reconstructed 1H in vivo MRSI
dataset.

signals. The former obfuscates attempts to separate the signal and noise
subspaces, and thus, the resulting variational reconstruction framework will
generally suffer greater noise bias. This relative diminution of the signal sub-
space can also be seen by regarding the resultant singular value spectrum,
which is displayed alongside that of the inverse DFT reconstruction in figure
4.10.

4.7 Summary

In essence, the proposed scheme seeks a compromise between two broad gen-
eralizations concerning the problem geometry. The first, as was discussed
in section 4.2, adheres to the validity of a bilinearly-representable functional
form for the spatio-spectral distribution, whose dimensionality is presumed
to be lower than that of the acquired measurements. We constrain solutions
to meet this criterion by effectively placing an upper bound on the expected
data dimensionality, and restricting the reconstruction process to the circum-
scribed subspace. The second, enforced by the total generalized variation-
based spatial regularization, prescribes an implicit geometrical framework
for the high-resolution model, stipulating that the spatial components rep-
resent a class a piecewise linear functions (piecewise constant with classical
TV). Moreover, the non-linearity of total variation penalties facilitates the
recovery of objects exhibiting strong edge behavior, resonating with com-
mon medical imaging applications where definitive borders exist between
differing tissue types. Nonetheless, it is the synergy between the spatial reg-
ularization and the implicit high-resolution information carried by the field
map that furnishes the necessary problem conditioning for high-resolution
MRSI reconstruction. As section 4.6 demonstrated, the latter is an indis-
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pensable ingredient when attempting to extricate volumetric information,
and affords a liberal choice of reconstruction resolution. Nevertheless, these
maps are still unable to account for dynamic phase perturbations, such as
residual eddy currents, which are often problematic for MRSI. In general,
spatial variations in B1, off-resonance effects, motion-induced artifacts, and
flow phenomena reflect a number of common additional challenges in in vivo
settings that are currently unaccounted for in the measurement model.

It should be noted that while the in vivo reconstruction results represent
a significant improvement over standard inverse DFT, the lack of reliable
ground truth data greatly confounds the robust assessment of reconstruc-
tion performance, especially with regards to the recovered volumetric infor-
mation. A number of studies have attempted to investigate regional metabo-
lite distributions in the human brain at enhanced spatial resolutions, such
as [236,237], which reported increased Cr and Cho concentrations along the
inter-hemispheric fissure. While our results do not seem to corroborate these
observations, it is important to bear in mind that individual outcomes do
not necessarily communicate group-wide trends, and that additional experi-
ments are needed before attempting further conjecture. Nonetheless, in vivo
MRSI ultimately represents a unique, albeit limited, modality that cannot be
easily validated. Though simplistic real-world phantom studies such as the
one presented in section 4.5.2 serve as important first steps in characterizing
a reconstruction method so as to identify potential biases, they remain lim-
ited in their capacity for elucidating reconstruction behavior when working
with complex biological systems. More sophisticated ground truth models
are therefore needed in order to provide further insights into expected in vivo
performance.
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Chapter 5

Haptic Phantoms for MRSI
Testing and Validation

5.1 Introduction

The in vivo results presented in the previous chapter revealed a need to
envision more robust means of both characterizing and validating new and
original reconstruction methods, given the unavailability of high-resolution
ground truth data for comparison. Though numerical or physical phantoms
may be of use with regards to this task, their current incarnations represent
overly naive approximations of the complex object geometries and acquisi-
tion conditions encountered in common biological applications. We there-
fore begin this chapter1 by expounding upon the nature of these limitations,
postulating the potential advantages obtained through the synergetic assim-
ilation of the two phantom approaches. We accordingly propose a general
framework for MR phantom generation that capitalizes on current trends in
additive manufacturing technology, which affords greater flexibility in rapidly
designing and manufacturing objects with highly customized geometries. We
then describe the fabrication of a novel phantom for MRSI, and contrast the
resulting simulated and experimental data. Finally, we demonstrate recon-
structions using the method described in chapter 4, and conclude with a
short discussion.

1This chapter is partially based on the publication:
J. Kasten, T. Vetterli, F. Lazeyras, and D. Van De Ville, “3D-Printed Shepp-Logan Phan-
tom as a Real-World Benchmark for MRI,” Magnetic Resonance in Medicine, [Accepted
for publication December 4, 2014].
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5.2 Limitations in Current Phantom-Based Testing

5.2.1 Haptic Phantoms

Although a number of geometrically complex physical phantoms currently
exist on the market, they have been designed primarily with structural MR
assessments in mind, and generally remain devoid of spectral diversity. For
example, apart from the standard test phantoms supplied by the major scan-
ner vendors, specialized phantoms, such as the ACR [238] and ADNI [239]
phantoms, have been created for testing SNR, contrast-to-noise ratio (CNR),
geometrical uniformity, slice thickness accuracy, etc., in order to synchronize
and/or normalize scan parameters across vendors and institutions in large
multi-site studies. Likewise, a 3D grid phantom was constructed in [240]
in order to measure and compensate for image distortions due to gradient
non-linearities. The MRSI community itself, however, has traditionally ap-
propriated phantoms designed primarily for single voxel assessments, where
structural heterogeneity is typically devalued in order to underscore spectral
behavior. These phantoms are consequently limited in their capacity for eval-
uating the spatial characteristics of a given MRSI reconstruction strategy,
and therefore maintain minimal predictive value when attempting to ex-
trapolate performance to clinical settings. In contrast, in [241], a phantom
consisting of an array of cone-shaped vials filled with various metabolites
was fabricated, whereby the solution volume in a given MRSI slice could
be modulated by changing the slice position. Nonetheless, such in-house ex-
ploits often represent substantial endeavors that cannot easily be transmitted
among institutions. While it has been possible to commercially commission
or develop customized phantoms in accordance with specific requirements,
the invested time for prototyping and fabrication, as well as the associated
costs, may also remain limiting factors.

5.2.2 Numerical Phantoms

Numerical phantoms remain popular among the image processing and recon-
struction communities, as they facilitate quantitative comparisons between
different algorithms. Moreover, they enable optimization over a wide variety
of applicable object classes, which is particularly convenient when access to
a scanner is limited or cost-prohibitive. Nevertheless, care must be taken
to ensure that numerical studies faithfully represent the acquisition process.
Perhaps the most often overlooked consideration in this regard is the proper
distinction between the various discretization procedures. As discussed in
section 3.3.1, the acquired measurements are obtained by sampling the ob-
served MR signal, which in turn arises from purely continuous phenomena,
namely, the object itself and the encoding scheme. By comparison, in typi-
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cal reconstruction settings, the paucity of closed-form Fourier expressions for
the vast majority of investigated objects impels a discrete approximation of
the entire encoding process. Utilizing this approximation for both raw data
simulation and the attendant reconstruction, however, defines a so-called
“inverse crime” situation, in which the general disregard for the underlying
continuous problem leads to artificially providential algorithm performance.
A greatly preferable scenario for phantom testing is therefore one where the
continuous-domain Fourier transform of the object can be expressed ana-
lytically, thereby adhering to the true measurement model, and allowing
simulations that are resolution-independent.

Though closed-form Fourier expressions for arbitrary geometries may be dif-
ficult or even impossible to obtain, a number of works have presented an-
alytical solutions for certain object classes. One of the initial works per-
tains to the inception of the now ubiquitous Shepp-Logan phantom [242],
originally conceived for tomographic reconstruction evaluation, proposing a
closed-form Fourier transform for an object comprised of 2D ellipses, which
was later extended to the 3D case [243]. These object classes have been
supplemented by the inclusion of Gaussian functions [244], linearly-varying
functions with polygonal support [245], and 3D polyhedra [246, 247]. Re-
cently, [248] extended these polygonal regions to those defined by 2D spline
or Bézier contours, and even allowed for the modulation by sinusoidal or
polynomial functions to mimic sensitivity maps for parallel MRI.

Ultimately, the discretization step represents just one of the multifarious el-
ements introduced throughout the preceding chapters that define the acqui-
sition process. Though a wide array of system behaviors may be accurately
characterized and accommodated into the measurement model, the various
system imperfections and nonlinearities that underlie acquired MR measure-
ments can never be fully encapsulated through numerical simulation.

5.3 3D Printing: A Flexible Framework for MR
Phantom Generation

From the discussions in section 5.2, it can be surmised that an ideal test bed
for MRSI reconstruction would be such that a geometrically sophisticated
haptic phantom, admitting a closed-form Fourier transform, were available,
thereby allowing access to the benefits of both physical and numerical testing
platforms. The former would enable the assessment of reconstruction perfor-
mance under authentic experimental conditions, whereas the latter could be
used to furnish a set of ideal reference measurements for comparison. Other
desirable phantom properties would include a short overall production time,
whereby prototypes could be rapidly fabricated under exigent circumstances,
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and ease of accessibility in order to facilitate data comparison and exchange
among scanners and institutions. Though a wealth of differing manufactur-
ing technologies exists, one possible avenue for satisfying the above prereq-
uisites is through the use of additive manufacturing, better known by the
modern appellation of “3D printing.”

5.3.1 The 3D Printing Platform

Under the additive manufacturing platform, computer assisted design (CAD)
software is used to generate models represented by faceted meshes, which are
then exported to a printing device that gradually produces a solid object by
successively layering material. Though 3D printing encompasses a variety of
techniques, such as selective laser sintering (SLS), stereolithography (SLA),
and multijet modeling (MJM), the recent rise in accessibility of consumer-
level printers under the fused deposition modeling (FDM) platform, which
utilizes extruded thermoplastics to form each layer, has led to an explosion in
popularity. Furthermore, most interfacing software for 3D printers requires
only a stereolithography (STL) file, promoting the open-source exchange of
designs that has culminated in numerous online repositories. 3D printing is
therefore an attractive prospect for MR applications due to the decreasing
costs, routine use of MR-compatible materials such as acrylonitrile butadiene
styrene (ABS), cross-institution accessibility, and as will be demonstrated
in the following subsection, congruence of feasible designs with a class of
analytical Fourier transforms.

5.3.2 Analytical Fourier Computations

Although closed-form Fourier expressions are available for a diverse assort-
ment of object classes as presented in section 5.2.2, extending these results
to account for the partial voluming associated with finite slice thicknesses
may not be straightforward. Moreover, even when working within these geo-
metrical confines, translating a given design to a physically realizable model
may still prove to be a formidable process. As such, 3D printing offers a com-
pelling resolution by proffering a set of CAD-driven faceted models, where
analytical Fourier transforms are available for representing both the full 3D
object and its 2D projections. To demonstrate the former, we first consider
a solid polyhedral region, P , whose spatial support is denoted by 1P (r). The
Fourier transform is then given by:

F {1P } (k) =

∫
Ω⊂R3

1P (r)e−2πjk·rdr =

∫
P
e−2πjk·rdr. (5.1)

The right-hand side of expression (5.1) can be evaluated analytically, leading
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to the following proposition:

Proposition 1. Suppose P is a solid polyhedral region comprised of simple
polygonal facets whose vertices are enumerated in a counter-clockwise fash-
ion. The Fourier transform of 1P is then given by:

F {1P } (k) =
− 1

‖2πk‖2`2

|F |∑
i=1

k · n̂(i)

‖k‖2`2 −
∣∣k · n̂(i)

∣∣2
|E (i)|∑
n=1

(
k · l(i)n

)
j0

(
πk · (v(i)

n+1 − v
(i)
n )
)
e−2πjk·c(i)

n , k 6= 0

m(P ), k = 0,

(5.2)

where j0 is a zero-order spherical Bessel function, and m(P ) denotes the
Lebesgue measure (volume) of P . Similarly, F is the family of polygonal
facets comprising P , each with outward unit normal vector, n̂(i), and E (i)

denotes the set of edges delimiting the ith facet, with vertices, {v(i)
n }|E

(i)|
n=1 ,

such that v(i)

|E (i)|+n = v
(i)
n . Lastly, c(i)

n = (v
(i)
n+1 +v

(i)
n )/2 represents the center

of, and l(i)n = (v
(i)
n+1 − v

(i)
n )× n(i) an in-plane vector normal to the nth edge

of the ith facet.

A proof of proposition 1 is given both in [246] and in the appendix. Given
the above, an analytical formulation of the expected MRSI measurements is
straightforward so long as the spatial and temporal spaces remain separable,
which may be presumed in the absence of spatially-dependent temporal phase
perturbations. Discounting B1 and relaxation effects, and letting P denote
the family of polyhedral regions comprising the phantom, the theoretical
signal is given by:

s(k, t) =

|P|∑
p=1

w(p)

(
F
{
1(p)

}
(k)

) L∑
l=1

∞∫
−∞

ν
(p)
l (f)e−2πjftdf

 , (5.3)

where w(p) are non-negative weights. Here, νl represents a general spectral
lineshape function with known analytical Fourier transform. Two appropri-
ate choices for MR are Lorentzian and Gaussian functions:

νLorentzl (f) =
1

π

(Γl/2)

(f − fl)2 + (Γl/2)2

Ft
� e−2πjflte−πΓl|t|, (5.4)

νGauss
l (f) = e

− (f−fl)
2

2σ2
l

Ft
�

(
2πσ2

l

)1/2
e−2πjflte−2(πσlt)

2
. (5.5)

For single-slice acquisitions, we again consider a single polyhedral region
P ∈ P, and a rectangular slice profile S, centered at a point δ. We also
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introduce the transformation T : X → Y , from the laboratory frame to the
frame oriented along the slice profile such that:

T {r} = R−1(r− δ)

= p = puêu + pvêv + pwêw, (5.6)

where êu, êv, and êw are orthogonal unit vectors with êw pointing along the
slice-select direction, and R is a pure rotation matrix. We further denote
the restriction of 1P to S as

1P
∣∣
S

= 1P∩S = 1R. (5.7)

Figure 5.1: Graphical overview of the various geometrical entities and reference
frames used for establishing the analytical single-slice MRSI signal produced from
a planar-faceted object model.

A graphical overview of the described geometrical entities and reference
frames is provided in figure 5.1. When expressed in the new coordinate
frame, the Fourier transform of the projected object onto the slice profile is
then given by:

F {1R} (κu, κv) =

∫∫
Ω′uv∈R2

(∫
Ω′w∈R

1R(Rp + δ)dw

)
e−2πj(κuu+κvv)dudv,

(5.8)

where Ω′uv and Ω′w denote the in-plane and through-plane FOV, respectively.
Because P (and hence, R) consists of planar facets, the integration along w
in (5.8) simply outputs the unsigned area under each face, such that:

F {1R} (κu, κv) =

|FR|∑
i=1

∫∫
F

(i)
R,uv

a(i) ·
(
puv − p

(i)
0

)
e−2πj(κuu+κvv)dudv, (5.9)
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where FR denotes the set of faces comprising R, and F (i)
R,uv the orthogonal

projection of F (i)
R ∈ FR onto the uv-plane. Additionally, puv represents a

general point in the uv-plane, and p
(i)
0 an arbitrary point on the ith facet.

The vector a(i) can be calculated from the unit outer normal vector of F (i)
R

in the slice frame, t̂(i) = T {n̂(i)} as:

a(i) = −

(
t
(i)
u

t
(i)
w

êu +
t
(i)
v

t
(i)
w

êv + êw

)
. (5.10)

Expression (5.9) can also be determined analytically to give the following
result:

Proposition 2. Suppose P is a solid polyhedral region comprised of simple
polygonal facets whose vertices are enumerated in a counter-clockwise fash-
ion, and S is a rectangular MR slice profile. The Fourier transform of the
2D projection of 1P

∣∣
S

= 1R, onto the slice profile is then given by:

F {1R} (κ) =
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where κ = κuêu + κvêv + 0 êw. Similarly, {q(i)
n }
|E (i)|
n=1 denotes the set of

comprising vertices, and p̄
(i)
uv the barycenter of the ith facet, orthogonally

projected onto the slice (uv) plane. Finally, m(i)
n = (q

(i)
n+1 − q

(i)
n ) × êw rep-

resents an outer normal vector to the nth edge of the ith projected facet, and
d

(i)
n = (q

(i)
n+1 + q

(i)
n )/2.

A proof of proposition 2 is provided in the appendix. The expected MR
signal for the projected slice can then be expressed as:

s(κ, t) =

|P|∑
p=1

w(p)

(
F
{
1(p)
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S

}
(κ)

) L∑
l=1

∞∫
−∞

ν
(p)
l (f)e−2πjftdf

 . (5.12)
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5.4 A 3D Printed Shepp-Logan Phantom for MRSI

5.4.1 Conception and Design

As proof of concept, we decided to begin our investigations by designing a
3D variant of the Shepp-Logan phantom, prescribing for each compartment a
solution of known spectral content. The Shepp-Logan design was selected as
a reference due to its simplicity, yet appositeness in representing prominent
anatomical features of the human head, as well as its omnipresence among
the image processing community. Certain adaptations, however, were neces-
sary in order for the design to remain compatible with both the 3D printing
process, and the study motivation. These mandated a tapering of the el-
lipsoids to ensure adequate structural support at each stage of the print,
as well as a means for later filling. The smallest ellipsoids (corresponding
to regions h, i, and j in the original Shepp-Logan manuscript) were also
restricted to remain spherical, and were scaled such that the diameter of
each was comparable to the nominal voxel sizes in common MRSI settings.
A schematic drawing of the finalized design is provided in figure 5.2. The
material thickness of each of the interior compartments was chosen to be 2
mm, whereas the outer concentric shells were given a 3 mm thickness. The
base plate thickness was set at 5 mm, with a 9 mm wall height. These values
were shown to represent a suitable compromise between the required struc-
tural integrity, material usage, and the risk of component permeability. All
designs were conceived using Sketchup Make 8 (Trimble Navigation Limited,
Sunnyvale, California, USA).

5.4.2 Fabrication Process

Once the design stage was complete, a model was exported as a STL file,
and printed with a Statasys Fortus 250mc (Stratasys Ltd., Eden Prarie,
Minnesota, USA/Rehovot, Israel) FDM printer using ABS, for which select
material properties are provided in table 5.1. ABS is an attractive choice for
MR applications due to its low magnetic susceptibility, effectively rendering
the resultant structures as “MR invisible.” The minimum achievable layer
thickness for the printer (used in this study) was 0.178 mm, with a nominal
in-plane accuracy of ±0.241 mm (manufacturer specifications). During the
fabrication process, the model geometry dictated that each of the compo-
nents be printed separately. This was due to the fact that the printer can
only achieve a reliable layering when there is adequate support underneath.
Practically, most systems mandate that the angle formed between the sur-
face normals and the printing plane, θ ∈ [−45◦, 225◦]. When θ falls outside
of this range, an ancillary water-soluble material is printed to provide tempo-
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Figure 5.2: Schematic diagram of the 3D-printed Shepp-Logan phantom.
(Left) Perspective view of the individual components comprising the phantom.
(Top/Right) Profile views of the assembled phantom. (Bottom/Right) Axial sec-
tion portraying the various phantom regions. Grayscale intensities serve as an aid
to distinguish between spectrally-homogeneous compartments.
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rary support, which is removed after printing. The entire phantom required
approximately 10 hours of fabrication time, leading to a total manufacturing
cost of around 300 USD. Once printed, the fidelity of the phantom to the
original design was verified using a set of digital calipers.

Material Property Value
Tensile Strength (Type 1, 0.125",0.2"/min) 37 MPa
Tensile Modulus (Type 1, 0.125",0.2"/min) 2,320 MPa
Flexural Strength (Method 1, 0.05"/min) 52 MPa
Heat Deflection (HDT) @ 66 psi 96◦ C
Dielectric Constant 2.9 - 2.6
Dielectric Strength 320 - 100 V/mm
Dissipation Factor .0053 - .0046

Table 5.1: Selected Material Properties for ABSplus-P430 (manufacturer specifi-
cations).

Though the completed parts should ideally represent “solid” objects, a num-
ber of factors may preclude complete impermeability, such as incomplete
layer adhesion, or compromises in the extruder trajectory. This can obvi-
ously present a problem if contamination between compartment-specific so-
lutions is to be avoided. We therefore coated the exterior (and when possible,
interior) surface of each printed component with a two part waterproof epoxy
resin (Prestolith special epoxy resin, MOTIP DUBPLI GmbH, Haßmersheim,
Germany), which has a nominal mixed viscosity of 950 mPa.s (manufacturer
specifications). The same epoxy was used to join the separate components
and to attach Luer connectors to the filling inlets into compartments a and
b, which culminated in a robust object once assembled. The various stages
of the phantom construction are documented in figure 5.3. It is important
to note that given the asymmetry of the protruding inlets, the phantom can
be unambiguously oriented within the MR scanner.

Upon assembly, interior phantom compartments b, e, f , g, and h were filled
with solutions containing various concentrations of common brain metabo-
lites, namely, NAA, Cho, Cr, and sodium L-lactate (Lac), prepared in phos-
phate buffered saline (PBS) containing 0.02% sodium azide to preclude mi-
crobial contamination. The pH of each solution was adjusted to 7.2 to mimic
in vivo conditions. Compartments c and d consisted of just the buffer so-
lution. The outer compartment (a) was filled with corn oil (Lip) in order
to simulate the extra-cranial lipids. Specific concentrations and calculated
volumes for all compartments are provided in Table 5.2. No additional T1-
shortening agents were used. We emphasize that the utilized concentrations
were chosen as significantly higher than those normally encountered in vivo
in order to achieve a SNR better suited for testing and validation. When
filling each of the compartments, special care was taken to inhibit air bubble
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Figure 5.3: (Top/Left) The printed phantom components. (Top/Right) The com-
pleted phantom. (Bottom) The partially-assembled phantom following application
of the epoxy coating.
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formation, which can engender severe susceptibility effects in the acquired
images. For the main compartment (b), the two filling inlet connections were
used to mount a series of Luer valves, allowing a closed fluid current loop to
be formed and any large air bubbles to be isolated and subsequently evacu-
ated. For the remaining compartments, extra long syringe needles were used
to ensure solution filling began at the base of each compartment. Once filled,
compartments a and b were sealed using threaded stoppers compatible with
the Luer connectors; the remaining compartments were sealed using paraffin.

5.5 Phantom Validation

In order to evaluate the design and fabrication process, the completed phan-
tom was scanned on a Siemens 3.0 Tesla Trio MR scanner. The phantom was
first positioned in the center of a 32-channel phased array head coil, with
the major semi-axis oriented along the scanner bore (z-direction). Three
coronal slices, positioned such that the top slice roughly corresponded to the
center of regions f , g, and h, were acquired using a GRE sequence (FOV =
160 × 160 × 10 mm, TR = 400 ms, TE1 = 2.46 ms, TE2 = 4.92 ms, FA =
60◦, BW = 1447 Hz/pixel, nominal voxel size = 1.25× 1.25× 3.0, inter-slice
spacing = 3.3 mm), and were used to generate a local field inhomogeneity
map. The same spatial positioning and FOV was used to define a single
MRSI slice, obtained using the same CSI protocol as described in section
4.5.2 (temporal sampling rate = 1.2 kHz). A transverse, high-resolution 3D
MP-RAGE sequence (FOV = 74.38× 140× 144 mm, TR = 1750 ms, TE =
2.5 ms, TI = 900 ms, FA = 9◦, BW = 210 Hz/pixel, nominal voxel size =
0.547× 0.547× 0.9 mm) was also acquired as a reference for translating the
GRE / MRSI slice positioning onto the phantom model. Following phantom
scanning, SVS spectra were acquired for each of the prepared solutions us-
ing a PRESS sequence (TR = 1700 ms, TE = 288 ms, temporal sampling
rate = 2.0 kHz, number of temporal samples = 2048, nominal voxel size =
15× 15× 15 mm).

5.5.1 Structural Imaging

Once suitable position parameters were identified, three slices corresponding
to the GRE sequence measurements were generated from the original phan-
tom model, and their analytical Fourier transforms computed in accordance
with (5.11), with a FOV and nominal spatial resolution chosen to match
that of the measured data. The weights, w(p), were selected based on the
Bloch equations for the GRE sequence, with literature-derived values of T1

and T2 for the buffer solution and corn oil. All calculations were performed
in Matlab 8 on an Intel i7 2.66 GHz processor under Mac OSX 10.8.5 with
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8 GB RAM. For comparison, rasterized counterparts for each of the slices
were calculated based on Matlab’s native inpolygon function, from which
k-space data was generated via the DFT.

Resulting images for each of the rasterized, analytical, and measured datasets
are collected in figure 5.4; all reconstructions were performed by inverse DFT
of the simulated and acquired k-space samples. For the measured data, local
static field inhomogeneity maps are also displayed for each slice. Maximum
normalized cross correlation coefficients between the measured data and both
the rasterized and analytical simulations are also provided for each recon-
structed slice. Figure 5.4 serves as an edifying illustration of the various
assumptions imposed when modeling the acquisition process. The utiliza-
tion of rasterized images (figure 5.4, first row) reflects a discretization of the
spatial integral in (5.8), whose DFT samples are considered as the measured
data. The analytical case (figure 5.4, second row) clearly represents a more
accurate portrayal of the Fourier transform and downsampling operations, si-
multaneously communicating the ramifications of additional confounds dur-
ing the acquisition process, as evidenced by a visual comparison with the
experimental data (figure 5.4, third row). Perhaps the most prominent ex-
amples are the reduced partial voluming around region e in the rasterized and
analytical images in slice 1, where an ideal slice-select profile was assumed,
and the lack of variation in the rf profile when compared to the measured
data. The latter is made especially apparent through the normalized line
profile plots for each of the reconstructions in figure 5.5. When viewing the
static inhomogeneity profiles (figure 5.4, fourth row), some susceptibility ef-
fects can be recognized, predominantly around the lipid compartment and in
the bottom slice around compartments f , g, and h, paralleling the classical
field response of a cylinder positioned perpendicular to the primary magnetic
field [249].

5.5.2 Spectroscopic Imaging

For CSI simulations, spectral parameters for each of the prepared solutions
were estimated from the SVS measurements using the HSVD algorithm. A
CSI slice was then generated from the phantom model as with the GRE data,
and analytical k-space measurements computed in accordance with (5.12).
To facilitate visualization and interpretation, the analytical CSI data was
then scaled using the Cho peak from compartment e in the acquired data
as a reference, which was selected based on the relatively homogeneous local
static inhomogeneity profile.

A few representative spectra are displayed in figure 5.6, where measured
spectra are shown superimposed on their simulated counterparts. Here, the
usual data truncation artifacts are observed, manifested primarily as spectral
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Figure 5.4: Reconstructed simulated and acquired images corresponding to each
of the GRE slices. (Top row) Rasterized and simulated images. (Second row) An-
alytical simulated images. (Third row) Measured data. The small hyperintensity
in slice 1 can be attributed to a slight mis-calibration in the coil combining algo-
rithm. (Bottom row) static field inhomogeneity profiles for each of the GRE slices.
The maximum value of the normalized cross correlation (R) between the measured
data and both the rasterized and analytical simulations is displayed for each slice,
and substantiate an increased fidelity of the analytical simulations to the acquired
measurements.
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Figure 5.5: Sample line profile plots for the slice portrayed in the rightmost column
of figure 5.4. RMSE values are given for both the rasterized and analytical recon-
structions in reference to the measured data. The deviations of the measured data
when compared against the simulated data reconstructions also indicate the pres-
ence of an inhomogeneous B1 field, which is not accounted for during the simulation
process.

leakage of the lipid signals into the interior compartments (figure 5.6 (i-iii)),
as well as that of the large Cho peak in region e into region b (figure 5.6 (ii)).
Spectral shifts and concomitant line broadening effects in the measured data
due to the static inhomogeneity profile can also be discerned.

5.6 Component-Based Reconstructions

The geometrical sophistication of the haptic Shepp-Logan design when com-
pared against the simple two-compartment phantom presented in section
4.5.2 provides a more exigent environment for MRSI reconstruction assess-
ment, offering potentially greater insights into in vivo performance. We
therefore sought to exploit this new platform by applying the (3D) recon-
struction framework developed in chapter 4. The acquired MRSI data was
first subjected to a number of pre-processing steps, which included residual
water removal using the HSVD algorithm, as well as 5 Hz Gaussian line
broadening along the temporal dimension. An initial determination of the
data dimensionality was then made using the method described in section
4.4.2, estimated atK0 = 40. The target reconstruction resolution was chosen
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to be that of the three GRE images described in section 5.5, which were also
used to define high-resolution support regions for the metabolite and lipid
compartments. Following the reconstruction procedure, spatial maps of the
NAA, Cr, and Cho resonances were generated through HSVD-based spectral
fitting of the reconstructed data over the metabolite support region and the
corresponding temporal frequency ranges. Resulting images for each of the
three slices are collected in figure 5.7. Sample spectra from both inverse
DFT reconstructions and those furnished via the proposed method are also
displayed in figure 5.8.

It is clear from figure 5.7 that not only is the proposed method able to re-
cover a number of prominent through-plane geometrical features, but also the
small circular structures corresponding to compartments f , g, and h, which
are not resolvable when using standard DFT reconstructions. Nonetheless,
the reconstruction is not able to fully extricate all through-plane variations,
evidenced for example by the overestimation of NAA and Cr into compart-
ment e in slice 3. Furthermore, a number of issues occur both in the pos-
terior regions of slice 1 (adjacent to the small spherical compartments), and
near the interface between the metabolite and lipid compartments, which
manifest primarily as small areas of localized signal loss. However, the pro-
posed method does altogether offer markedly superior spatial localization
performance when compared against standard reconstruction schemes. This
improved localization is also carried over to the spectral domain, where both
abated contamination from the peripheral lipids and reduced lineshape dis-
tortions can be discerned. The mitigated PSF effects characterizing the
former are easily observed when comparing figure 5.8(iii) to 5.8(vii), where
the leakage artifacts stemming from both the Lip and Cho resonances in
the DFT reconstructions have been largely suppressed using the proposed
method. The improved lineshape profiles are particularly apparent when
contrasting the spectra corresponding to compartment g (5.8(iv,viii)), where
the presence of the Cho peak has been effectively disclosed.

5.7 Summary and Discussion

In this chapter, we have demonstrated the efficacy of 3D printing as a means
of actualizing a class of phantom models for which analytical Fourier trans-
forms are available for both the full 3D object and its projection onto a
finite slice thickness. As proof of concept, we developed a novel Shepp-
Logan-type phantom, envisioned as an early prototype for a new generation
of phantoms designed specifically for characterizing and validating prospec-
tive MRSI reconstruction approaches. Such phantoms proffer a more unified
testing framework, circumventing the various limitations confronted while
exclusively considering numeric or haptic types. For example, reconstruc-
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Figure 5.8: (Left) Sample spectra taken from the center slice of the 3D Shepp-
Logan MRSI data reconstructed by the proposed method. A significant reduction
in the spectral contamination artifacts (denoted by an asterisk next to the offend-
ing resonance) from both the peripheral lipids in compartment a, and the Cho in
compartment e can be observed when compared against spectra reconstructed via
standard inverse DFT (Right). Improvements in the spectral lineshape profiles are
also manifest, and are particularly evident when contrasting the spectral signatures
from compartment g, in which the Cho resonance – barely perceptible above the
noise level in (viii) – has been effectively recovered in (iv). Vertical axis scaling for
all spectral plots is in arbitrary units (a.u.).
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tion techniques that are optimized based solely on numerical simulations
may ultimately fail or introduce systematic bias when presented with real
scanner data if important acquisition or object features are discounted or
overlooked. Though a comprehensive account of all MR parameters and ap-
purtenances within a reconstruction framework is by no means trivial, the
use of a haptic phantom counterpart may facilitate identification of the most
salient factors. In many cases, such elements may even be incorporated into
the analytical signal model, allowing more complex and sophisticated simu-
lations. This is certainly feasible for phenomena that are described as having
a multiplicative effect on the signal, such as coil sensitivities or B1 effects.
On the other hand, attempts to incorporate experimental factors such as
arbitrary phase perturbations (static or dynamic) regrettably lead to math-
ematically intractable situations, and therefore cannot be easily subsumed.
Conversely, scanner hardware imperfections or patient-induced perturbations
may be difficult to identify or characterize without knowledge of the ideal
or unperturbed signal. Clearly, the more synergistic approach occasioned
by 3D printing would serve as a preferred benchmark for MR reconstruction
validation.

From an experimental standpoint, the strong correspondence between the
acquired MR measurements and the analytically determined signal, as well
as the paucity of any deleterious object-induced artifacts, effectively substan-
tiates the 3D printing framework for MR phantom generation. Furthermore,
the CSI measurements do not indicate any sign of solution contamination
between the various compartments, corroborating the efficacy of the fab-
rication process, though thorough analysis requires additional longitudinal
testing. Although the acquired static field maps revealed the presence of
small susceptibility effects, these may remain inconsequential for a number
of applications. Nonetheless, for situations where the elimination of such ef-
fects is paramount, the use of FDM, which may carry a risk of air becoming
trapped between the individual material layers, may be dismissed in favor of
alternative rapid prototyping technologies.

With regards to the performance of the reconstruction procedure presented
in chapter 4, though vast improvements in the resulting spatio-spectral pro-
files were observed, a number of issues require further investigation. These
pertain primarily to the localized losses in signal intensity both around the
interface between the metabolite and lipid compartments, and the posterior
region of the inferior slices. The former may result from phase perturbations
that are not accounted for by the acquired field inhomogeneity map, and
may be mitigated by considering either additional lipid suppression and/or
more robust phase correction techniques during the pre-processing stages.
The latter may be attributable to an irrecoverable loss of spectral signal due
to dephasing caused by local susceptibilities, therefore highlighting the need
for better shimming procedures. Additional studies are also needed in or-
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der to fully characterize and influence the recovery of through-plane spatial
variations, which is essential before progressing to in vivo scenarios. Though
the inclusion of additional high-resolution information may aid in this task
by further improving the problem conditioning, it is important to achieve an
appropriate balance between the measured data and a priori assumptions,
and to refrain from rendering the reconstruction method dependent upon a
level of prior signal knowledge that is typically unavailable or unrealistic in
common clinical settings.

We conclude this chapter by noting that the medical field has already em-
braced 3D printing as a promising tool, with applications in surgical plan-
ning, prosthetics, and tissue engineering, often relying upon imaging data
for modeling patient-specific anatomical features (for reviews, see [250,251]).
Alternatively, we here introduce the converse, using 3D printing for validat-
ing and characterizing new imaging approaches. While the requirement for
a haptic counterpart to a numerical design would somewhat undermine the
flexibility afforded by strictly numerical testing – necessitating an archetypal
phantom corresponding to the investigated anatomy or geometrical object
type – this limitation may be counterbalanced by the steadily decreasing
costs, reduced printing times, and the open-source prospects occasioned by
rapid prototyping.



Chapter 6

Discussion and Outlook

Over the course of this PhD work, we have proposed a number of valu-
able tools for the advancement of magnetic resonance spectroscopic imaging.
First and foremost, we developed a novel component-based high-resolution
reconstruction method, which aims to surmount the inherent limitations in
MRSI by prescribing an intrinsic spatio-spectral framework for the inves-
tigated object. Secondly, in order to better characterize and validate per-
formance of the ensuing reconstructions, we introduced a flexible phantom-
based testing platform, which capitalizes on recent advances in additive man-
ufacturing. In the following sections, we recapitulate our primary contribu-
tions, identify possible extensions or potential avenues for improvement, and
discuss future research directions.

6.1 Summary

MRSI Reconstruction via Low-Rank Component Analysis

In chapter 4, we developed a high-resolution MRSI reconstruction method,
exploiting the investigated object’s surmised low-dimensional inherent sig-
nal structure. This was accomplished by stipulating a bilinear form for the
underlying spatio-spectral distribution, thereby enabling spatial and tem-
poral/spectral behavior to be effectively de-coupled. Although such bilinear
models have been previously proposed, our method can be characterized by a
number of key differences. First, unlike existing methods, in which the model
parameters in one domain (i.e., spatial or spectral) are pre-determined with
the aid of additional reference scans, we jointly estimate both the spatial
and spectral components, thereby circumventing the mismatch artifacts fre-
quently afflicting reconstructions that are overly-reliant upon explicit prior
knowledge. Second, despite the spatio-spectral coupling fomented by local

113
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field inhomogeneities, signal separability is strictly enforced throughout the
reconstruction procedure. The assured bilinear structure enables additional
assumptions or a priori knowledge to be individually applied in each of
the segregated domains, thereby providing justification for a wealth of so-
phisticated image and signal processing techniques. In the current scheme,
an implicit geometrical framework is prescribed for the spatial components,
stipulating that estimated spatial maps belong to a class of piecewise linear,
real-valued, and non-negative functions. The former is achieved through
the use of a total (generalized) variation regularization penalty, whereas the
latter are compelled by various projection steps during the reconstruction
process.

Though the acquired MRSI measurements are afflicted by a number of oner-
ous experimental confounds, the proposed method implicates local static
field inhomogeneities as the primary sources of signal corruption, which are
consequently estimated and assimilated into the reconstruction through an-
cillary acquisitions. These estimated field maps play an integral role in the
reconstruction procedure, both capacitating the compensation of the induced
line broadening effects and spectral shifts, and serving as additional sources
of explicit high-resolution information by which the problem conditioning
may be improved. This latter amenity was further exploited in both chap-
ters 4 and 5, whereby multiple field maps were acquired along the MRSI slice
thickness to effectively guide the recovery of otherwise irretrievable through-
plane variations. These promising results may therefore serve to extenuate
the presupposed compromise underlying typical MRSI acquisition strategies,
namely, that of dictating adequate spatial resolution while maintaining suf-
ficient available signal.

Haptic Phantoms for MRSI

Unlike many structural imaging modalities, where suitable gold standard
measurements are available for validating new acquisition or reconstruction
strategies, MRSI offers a fundamentally unique set of information that lacks a
referential counterpart. This distinctiveness portends a number of challenges
when considering techniques that allege to transcend prevailing methodolo-
gies, especially given the stringency required for medical applications. One
prominent avenue for evaluating such methods is through the use of phan-
toms, whereby reconstruction results obtained from objects of known geom-
etry serve as a proxy for in vivo performance. MR phantoms typically fall
into one of two categories: haptic (physical) or numeric, each characterized
by a number of advantages and limitations.

As physical entities, haptic phantoms generally provide more valuable in-
sights into reconstruction performance under typical experimental condi-
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tions. Nonetheless, though a multitude of haptic phantoms have been de-
veloped for assessing structural or spectral characteristics exclusively, there
remains a general paucity of designs tailored for MRSI reconstruction vali-
dation, where an appreciable degree of heterogeneity is required in the two
domains. Alternatively, numeric phantoms afford a greater degree of flexi-
bility, enabling the optimization of a particular reconstruction strategy over
an assortment of object classes without the various financial or material
investments required for actual scanning.

In chapter 5, we endeavored to exploit the advantages afforded by both phan-
tom types, proposing a more unified testing platform based on 3D printing.
On the numerical side, the closed-form Fourier expressions made available
through the use of the versatile faceted geometrical models utilized by 3D
printing better represent the continuous MR encoding process, thereby lead-
ing to more realistic simulation data for both volumetric and single-slice
MRSI acquisition strategies. Similarly, the reduced fabrication times and
minimal costs associated with rapid prototyping facilitate phantom develop-
ment for custom and/or transient applications. The resulting designs may
then be readily disseminated, facilitating testing among multiple institutions
and promoting reproducible research. As an archetypal proof of concept,
we developed a variant of the prevalent Shepp-Logan phantom for MRSI,
whereby each of the comprising compartments was filled with a solution of
known spectral content. This phantom was successfully tested at 3 Tesla,
and demonstrated excellent correspondence with the theoretically-predicted
signal afforded through the associated numerical simulation data. These
results thus underscore the most salient feature of the 3D printed phantom
framework, namely, that it establishes a direct link between the numerically-
obtained, and experimentally acquired MRSI measurements, which may
serve to identify the most precarious elements beleaguering reconstruction
quality.

MRSI Reconstruction Results

Throughout the course of the dissertation, results obtained via the pro-
posed reconstruction method have been presented for various experimen-
tal settings. For the 2D numerical Shepp Logan phantom and the sim-
ple two-compartment haptic phantom described in chapter 4, the estimated
spatio-spectral distributions displayed superior spatial and spectral local-
ization properties, as well as reduced noise contamination, when compared
to those obtained using standard inverse DFT reconstructions. The com-
pensatory mechanisms occasioned by the acquired static field inhomogeneity
maps were also made manifest through improved lineshape profiles and abro-
gated spectral shifts. Furthermore, though a modest reduction in truncation
artifacts were observed for the numeric data, the physical phantom recon-
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structions underscored the efficacy of the total (generalized) variation regu-
larization penalty in producing smooth solutions. In both cases, subsequent
spectral analyses indicated that the proposed method promoted solutions ad-
mitting low-dimensional representations when compared against the initial
estimation of the signal subspace, thereby substantiating one of the principal
tenets of the reconstruction framework.

Although the results described above show promise, both experiments were
performed using objects that were geometrically and spectrally homogeneous
along the MRSI slice thickness. Such scenarios are typically unrealistic in
clinical settings, thereby prompting the extension of the proposed method
to account for through-plane variations. The preliminary in vivo results
presented at the end of chapter 4 demonstrated that such variations may
be recoverable by incorporating volumetric field map information and addi-
tional regularization along the slice direction. However, the general deficit of
high-resolution reference data necessarily impedes straightforward interpre-
tation. The behavior of the extended method was partially elucidated when
considering the 3D-printed Shepp-Logan phantom reconstructions presented
in chapter 5, where a number of prominent through-plane features were suc-
cessfully recovered. Nevertheless, this discrimination was in some cases in-
complete, and the estimated metabolite maps were partially marred by the
presence of additional artifacts likely arising from localized phase perturba-
tions or signal loss. Further investigations are therefore necessary in order
to incontrovertibly identify both the sources of any such artifacts, as well
as the conditions under which volumetric signal information can be reliably
extricated.

6.2 Outlook

The methods and tools summarized above offer promising avenues for the
advancement of magnetic resonance spectroscopic imaging. However, as with
any burgeoning methodology, further development and experimentation is
required in order to achieve any longstanding clinical impact. In this section,
we highlight a number of additional considerations and possible extensions
with regards to the presented work, and discuss potential future research
directions.

Model Enrichment

Ultimately, the development of non-Fourier techniques for MRSI can be clas-
sified into two primary endeavors. The first concerns the investigated object,
and may be regarded as the pursuit of a suitable means for both translating
prior assumptions based on qualitative observations or physical constraints
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into a viable mathematical framework, and incorporating such presupposi-
tions into the reconstruction process in an optimal and unbiased manner. In
this respect, the profusion of additional high-resolution information afforded
by alternative MR modalities has been far from exhausted. For example, al-
though the proposed method intentionally refrained from exploiting explicit
tissue boundary information in the preliminary in vivo reconstructions, there
is evidence to suggest that regional concentrations of NAA, Cr, and Cho in-
deed vary across tissue type [236, 252, 253]. Such findings may therefore
advocate the implicit integration of such tissue distributions into the recon-
struction procedure via localized smoothing procedures as in [161,254–256].
These may be further combined with prior knowledge of the spatial signal
support in water-suppressed CSI, or even with the expected distribution
of individual resonances in select applications where such distinctions are
feasible. Nevertheless, care should be taken when introducing additional
regularization penalties into the reconstruction framework, as the need to
optimize over an increasing set of parameters typically diminishes clinical
appeal.

The second aim concerns a robust formulation of the acquisition process
itself. As with any model-based approach, reconstruction accuracy is typi-
cally circumscribed by the degree to which the measurement process is ac-
curately represented. In its current incarnation, the proposed method has
shown promise by explicitly accounting for the spatial encoding process, as
well as the effects due to local static field inhomogeneities. These, however,
represent only a subset of the variegated phenomena underlying real-world
measurements. For example, although the use of adiabatic pulse sequences
serves to minimize spatial B1 variations, further improvements in reconstruc-
tion quality may be garnered through additional mapping of the rf field, for
which a number of techniques have been previously developed [257–261].
Moreover, residual eddy currents due to gradient switching may give rise to
additional dynamic phase perturbations that cannot be accommodated by
static field mapping. Though a number of methods designed for eddy cur-
rent compensation were discussed in section 3.2.3, many of these techniques
rely upon external reference data – in most cases an unsuppressed water
signal. While such ancillary measurements entail a negligible time com-
mitment when considering single voxel measurements, the requirement for a
unsuppressed signal corresponding to each acquired MRSI voxel significantly
prolongs already lengthy acquisition durations, and are altogether impracti-
cable for high-resolution reconstruction settings. Recourse, however, may be
found through the use of field monitoring techniques [262–264], whereby the
signal phase evolution is estimated by fitting a set of solid spherical harmonic
basis functions to the phase time courses of an array of NMR probes [265]
positioned around the sample.
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Reproducibility

One concern surrounding the proposed reconstruction method is that the
joint estimation of the spatial and spectral components is a fundamentally
non-convex problem. This pronouncement implies that the obtained so-
lutions may in fact represent local minima, or that minor changes in the
input conditions may have an appreciable impact on the estimated spatio-
spectral distributions. Notwithstanding, the standard deviations resulting
from quantitative comparisons as provided in table 4.1 support the stability
of the proposed method in different noise scenarios. However, additional
testing under varying experimental conditions is necessary in order to grant
further assurances.

Short Echo Time Acquisitions

For the 1H MRSI experiments presented throughout this dissertation, it
should be noted that a relatively long echo time of 288 ms was chosen, gen-
erally restricting subsequent analyses to the large singlet resonances charac-
terizing prominent metabolites. Alternatively, short TE measurements are
warranted in certain applications for which spectral information from shorter
T2 species is desired, which occasion additional encumbrances such as a less
efficient water suppression, an increased lipid/metabolite ratio, and a more
complex background spectral profile. Accordingly, commensurate compen-
satory mechanisms, for example, additional outer volume suppression mod-
ules, more robust water suppression techniques, or even explicit modeling
of nuisance components, may be required in order to ensure accurate recon-
struction quality.

Combination with Advanced Acquisition Strategies

Although the focus of this dissertation remained on the development of ad-
vanced reconstruction methodologies, further progress in MRSI may be pro-
moted by considering such techniques in concert with the progressive med-
ley of innovative acquisition strategies. Indeed, current trends advocate the
notion of designing novel acquisition schemes that best serve a particular
reconstruction method. As an example, the virtues of the method proposed
in chapter 4 were recently acknowledged in both [193] and [266], in which
the presumed low intrinsic signal dimensionality served as motivation for a
dual acquisition strategy. In the first step, a typical CSI sequence was em-
ployed, maintaining limited k-space coverage but high temporal resolution.
The resulting measurements were then used to estimate a set of temporal
basis functions by means of the SVD. A separate sequence was then used
to produce a second set of measurements, this time with extended k-space
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coverage but reduced temporal sampling, from which the remaining spatial
bases were estimated using the LS framework along with varying degrees of
regularization.

Post-Acquisition Suppression of Nuisance Signals

In 1H applications, the metabolite signal of interest is typically overwhelmed
by the dominant water and lipid resonances. While these nuisance com-
ponents may be attenuated by the tailored sequence modules described in
sections 3.2.1 and 3.2.2, the resulting MRSI datasets are often beleaguered
by residual signals due to incomplete suppression. Moreover, while post-
acquisition filtering techniques such as the HSVD have proven to be effective
in removing residual water, they are less suitable for eradicating the linger-
ing lipids, which exhibit a strong degree of spectral overlap with the desired
metabolite signal. Some consolation, however, can be found in the fact that
the spatial origin of the offending lipid resonances can often be directly as-
certained from high resolution reference scans. A number of methods have
therefore sought to exploit this knowledge, either through k-space extrapola-
tion procedures [267], or SLIM-type methods [134,268]. However, with most
of these techniques, such knowledge is typically implemented as zero order
information, i.e., simply the (binary) spatial support of the lipid-containing
regions. Though perhaps sufficient in certain scenarios, such spatial homo-
geneity assumptions are generally inadequate for in vivo applications in the
brain, and undermine the vast body of literature specifically devoted to the
high-resolution dissociation of the water and fat resonances (e.g., [269–272]).
Therefore, the development of methods seeking to exploit higher order infor-
mation, for example by cultivating adaptable harmonic expansions or other
efficient representations of the spatial lipid distribution, may be of consider-
able interest.

The Specific Role of Field Inhomogeneities

It is clear from the presented experimental results that the acquired static
field inhomogeneity maps are integral to the success of the proposed high-
resolution reconstruction framework. Such observations may, however, ap-
pear as counterintuitive, as one of the generally acknowledged conditions
for ensuring sufficient MRSI data quality is the adequate nullification of
these very inhomogeneities through shimming. These dichotomous view-
points pose an interesting dilemma for the proposed reconstruction frame-
work. Looking to either extreme, it is evident that while perfect shimming
(i.e., ∆f(x) = 0) would lead to improved spectral lineshapes and SNR, the
attendant loss of discriminating spatial information content would have a
detrimental impact on the spatial localization performance of the reconstruc-
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tion. On the other hand, the additional reduction in phase coherence due
to extremely poor shimming may precipitate inordinate signal loss. Further
studies are therefore needed in order to identify an appropriate compromise,
and to determine in general whether certain inhomogeneity profiles are ide-
ally suited for the proposed reconstruction method.
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Proposition 1. Suppose P is a solid polyhedral region comprised of simple
polygonal facets whose vertices are enumerated in a counter-clockwise fash-
ion. The Fourier transform of 1P is then given by:

F {1P } (k) =
− 1

‖2πk‖2`2

|F |∑
i=1

k · n̂(i)

‖k‖2`2 −
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(
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)
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πk · (v(i)
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(i)
n )
)
e−2πjk·c(i)

n , k 6= 0

m(P ), k = 0,

(A.1)

where j0 is a zero-order spherical Bessel function, and m(P ) denotes the
Lebesgue measure (volume) of P . Similarly, F is the family of polygonal
facets comprising P , each with outward unit normal vector, n̂(i), and E (i)

denotes the set of edges delimiting the ith facet, with vertices, {v(i)
n }|E

(i)|
n=1 ,

such that v(i)

|E (i)|+n = v
(i)
n . Lastly, c(i)

n = (v
(i)
n+1 +v

(i)
n )/2 represents the center

of, and l(i)n = (v
(i)
n+1 − v

(i)
n )× n(i) an in-plane vector normal to the nth edge

of the ith facet.

Proof. We proceed by direct proof. We begin by first establishing the an-
alytical Fourier transform of a 2D simple polygonal planar facet, F , such
that,

F {1F } (k) = ζ(k) =

∫
Ω∈R2

1F (r)e−2πjk·rdr

=

∫
F
e−2πjk·rdr, (A.2)

where k = kxî + ky ĵ + 0 k̂ and r = x̂i + yĵ + 0 k̂. Because F consists of
a closed, piecewise smooth boundary, ∂F , we may make an appeal to the
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divergence theorem, stating that:∫
F
∇ · F(r) dr =

∫
∂F

F(r) · n̂ dS, (A.3)

where ∇ ·F(r) = ∂Fx
∂x +

∂Fy
∂y + ∂Fz

∂z , and n̂ is the outward unit normal vector
along the boundary ∂F . In this case, choosing the vector-valued function:

F(r) =
jk

2π‖k‖2`2
e−2πjk·r, k 6= 0, (A.4)

such that,

∇ · F(r) = e−2πjk·r

(
k2
x + k2
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‖k‖2`2

)
= e−2πjk·r, (A.5)

expression (A.2) can be equivalently formulated as:

ζ(k) =

∫
F
e−2πjk·rdr

=

∫
F
∇ · F(r) dr

=
j

2π‖k‖2`2

∫
∂F
e−2πjk·r (k · n̂) dS. (A.6)

For the case k = 0, e−2πj0·r = 1, and (A.2) reduces to the well-known
formula for the area of a polygon:

ζ(0) = m(F ) = Area(F ) =
1

2

|E |∑
n=1

n̂F · (vn × vn+1) , (A.7)

where m(F ) denotes the Lebesgue measure of F . Similarly, E denotes the
set of vertices, {vn}|E |n=1 comprising F , enumerated in a counter-clockwise
fashion such that v|E |+n = vn, and n̂F is the outward unit normal vector of
the plane defined by F . When k 6= 0, we note that ∂F consists of a series
of line segments, En, each with unit tangent vector, τ̂n = (vn+1 − vn)/dn,
where dn = ‖vn+1 − vn‖`2 . Then from (A.6), and noting that n̂ is constant
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along each facet:

ζ(k) =
j
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where j0 is a zero-order spherical Bessel function, and ln = (vn+1−vn)× n̂F
and cn = (vn+1 + vn)/2 are the outer normal vector and the center of the
nth edge, respectively.

Now consider a simple 3D polyhedron, P , comprised of simple polygonal
facets. The Fourier transform is similarly given by:

F {1F } (k) =

∫
P
e−2πjk·rdr

=
j

2π‖k‖2`2

∫
∂P
e−2πjk·r (k · n̂) dS, (A.9)

for k = kxî + ky ĵ + kzk̂. For the k = 0 case, F {1P } (0) = m(P ), which is
simply the volume of P . For the k 6= 0 case, we note that the boundary,
∂P , can be described by a finite union of the comprising polygonal facets,
and hence (A.6) can be applied recursively using the relation given by (A.8).
Letting k − (k · n̂(i)

F )n̂
(i)
F denote the projection of k onto the plane defined

by the ith facet with origin δ(i), (A.9) can be expressed as:

F {1F } (k) =
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(i)
F

)
,

(A.10)

which is equivalent to (A.1) once expanded.

Proposition 2. Suppose P is a solid polyhedral region comprised of simple
polygonal facets whose vertices are enumerated in a counter-clockwise fash-
ion, and S is a rectangular MR slice profile. The Fourier transform of the
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2D projection of 1P
∣∣
S

= 1R, onto the slice profile is then given by:
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where κ = κuêu + κvêv + 0 êw. Similarly, {q(i)
n }
|E (i)|
n=1 denotes the set of

comprising vertices, and p̄
(i)
uv the barycenter of the ith facet, orthogonally

projected onto the slice (uv) plane. Finally, m(i)
n = (q
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resents an outer normal vector to the nth edge of the ith projected facet, and
d
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Proof. We begin by examining vector-valued expressions of the form:

Λ(k) =

∫
Ω∈R2

(r− r0)1F (r)e−2πjk·rdr =

∫
F

(r− r0)e−2πjk·rdr, (A.12)

where F is a simple polygonal region as described above, k = kxî+ky ĵ+0 k̂,
and r0 is an arbitrary point in the plane defined by F . For the case k = 0,

Λ(0) =

∫
F

r dr− r0

∫
F
dr. (A.13)

The first integral expression in (A.13) is simply m(F )r̄, where r̄ is the
barycenter of F ; the second is m(F )r0. Thus,

Λ(0) = (r̄− r0)m(F )
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2
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When considering the case k 6= 0, we note that (A.12) can also be expressed
as:

Λ(k) =
j

2π
∇kζ(k)− r0ζ(k), (A.15)
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where ζ(k) is given by (A.8) and,
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Expression (A.15) can therefore be expanded as:
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To establish a link with (A.11), we note that the Fourier transform of a
linearly-varying scalar-valued function, g(r) = a · (r− r0)1F (r) is given by:

F {g} (k) = a ·
∫
F

(r− r0) e−2πjk·rdr

= a ·Λ(k). (A.19)

For the case of a polyhedral region P and MRSI slice profile S, the projection
of P ∩ S onto the slice profile can be expressed as a sum of such functions,
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