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SUMMARY
The neuroimaging community has shown tremendous interest in exploring the brain’s spontaneous activity
using functional magnetic resonance imaging (fMRI). On the contrary, the spinal cord has been largely over-
looked despite its pivotal role in processing sensorimotor signals. Only a handful of studies have probed the
organization of spinal resting-state fluctuations, always using static measures of connectivity. Many innova-
tive approaches have emerged for analyzing dynamics of brain fMRI, but they have not yet been applied to
the spinal cord, although they could help disentangle its functional architecture. Here, we leverage a dynamic
connectivity method based on the clustering of hemodynamic-informed transients to unravel the rich dy-
namic organization of spinal resting-state signals. We test this approach in 19 healthy subjects, uncovering
fine-grained spinal components and highlighting their neuroanatomical and physiological nature.We provide
a versatile tool, the spinal innovation-driven co-activation patterns (SpiCiCAP) framework, to characterize
spinal circuits during rest and task, as well as their disruption in neurological disorders.
INTRODUCTION

Since its early days in the 1990s, functional magnetic resonance

imaging (fMRI) has had a tremendous impact on the field of

neuroscience, substantially advancing our understanding of

the central nervous system (CNS). Relying on non-invasive

detection of blood-oxygen-level-dependent (BOLD) signal

changes, this imaging technique offers meaningful insights into

the underlying neuronal activity (Logothetis et al., 2001). As

such, it has been widely deployed to investigate system-level

brain function, not only during tasks but also at rest, with fMRI

studies focusing on the spontaneous fluctuations of the BOLD

signals (van den Heuvel and Hulshoff Pol, 2010). In this context,

resting-state networks (RSNs) are conventionally extracted us-

ing functional connectivity (FC) measures based on the coherent

activation (e.g., Pearson correlation) of distinct brain regions.

These intrinsic networks have emerged as the building blocks

of human brain function (Damoiseaux et al., 2006), and their ac-

tivity has been shown to encode a wide array of behavioral traits,

from emotion to intellectual performances (Greicius et al., 2003;
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Liégeois et al., 2019). Besides, their widespread alteration in

neurological diseases also support their clinical relevance and

their potential as biomarkers of functional integrity (Allali et al.,

2018; Castellanos et al., 2013). Unfortunately, this exploration

of the functional architecture of the human CNS in vivo has

been essentially focused on the brain. In contrast, the spinal

cord, another component of the CNS, has been mostly over-

looked, even though this structure plays a crucial role in senso-

rimotor processing, for instance in proprioception, pain process-

ing, or during movement generation and control (Darby and

Frysztak, 2013). As such, insights into the intrinsic functional or-

ganization of human spinal circuits appear as pivotal contribu-

tions to fundamental and clinical neurosciences.

This limited amount of researchmay partly stem from the inac-

cessibility of the spinal cord, a small structure deeply encapsu-

lated in the vertebral column (Marieb and Hoehn, 2014; Powers

et al., 2018). Imaging this region is indeed particularly chal-

lenging, as the adjacent bones and organs make it prone to field

inhomogeneities and physiological noise (Giove et al., 2004;

Stroman et al., 2014). This may explain why functional activity
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of the spinal cord was, at first, mainly explored using indirect pe-

ripheral measurements (e.g., muscle activity, force, reflexes, or

sensory tests) (Greenberg, 2003; Knikou, 2008; Yakovenko

et al., 2002). Yet, developments in spinal cord fMRI acquisition

(Finsterbusch, 2013) and processing protocols (Eippert et al.,

2017a; De Leener et al., 2017) have worked toward circumvent-

ing these constraints, and a growing body of research high-

lighted the feasibility of this approach (Wheeler-Kingshott

et al., 2014). Moreover, the validity of BOLD signals as a hemo-

dynamic proxy of spinal neural activity was recently confirmed in

non-human primates, as signal variations were shown to be in

agreement with electrophysiological activity (i.e., local field po-

tentials) (Wu et al., 2019).

Spinal cord fMRI studies have primarily focused on task-

evoked activity, offering an unparalleled opportunity to examine

the human spinal cord in action (Wheeler-Kingshott et al., 2014).

Spontaneous signal fluctuations, on the other hand, were only

explored in recent years. Sensory and motor RSNs were first re-

ported using different approaches, such as seed-based FC (at

3T, Eippert et al., 2017b; and at 7T, Barry et al., 2014, 2016) or

independent component analysis (ICA) (at 3T; Kong et al.,

2014). Similar components were also identified at ultra-high

field (9.4T) in rats (Wu et al., 2018) and non-human primates

(Chen et al., 2015). Although these studies demonstrated the

existence of functional circuits in the spinal cord at rest, their

neurophysiological underpinnings remained unclear (Eippert

and Tracey, 2014).

A critical factor that hindered thorough characterization of the

nature of spinal networks was the use of static measures of FC,

as all earlier studies assumed temporal stationarity over the

scanning session. As a result, they did not consider the dynamic

evolution of interactions over time, and they could not fully cap-

ture the properties of functional networks (Calhoun et al., 2001).

In the brain, however, it has been highlighted that FC fluctuates

at the timescale of seconds, and numerous dynamic FC (dFC)

approaches have been proposed to delve into these time-vary-

ing properties (Preti et al., 2016). This finding has provided new

insights into the properties of resting-state (RS) signals, as well

as informed on the disrupted dynamic interplay of distinct brain

regions in various neurological disorders.

Here, we posit that dynamic methods could enable disentan-

gling the ongoing sustained spinal activity, possibly revealing

new attributes of spinal RSNs. To this end, we leveraged a prom-

ising approach to extract dynamic RS components, termed

innovation-driven co-activation patterns (iCAPs). In this context,

the term innovation refers to transient activity, which is recovered

using robust hemodynamic-informed deconvolution (Karaha-

noǧlu et al., 2013). Patterns obtained using transients constitute

the building blocks of time-resolved activity and offer a unique

way to temporally dissect overlapping signals. Notably, this

has previously enabled the separation of known brain RSNs

(e.g., the default mode network) into multiple subsystems (Kara-

hanoǧlu and Van De Ville, 2015). Capitalizing on this potential to

unfold ongoing functional activity, we combined this method

with a dedicated spinal cord fMRI pipeline into the spinal iCAP

(SpiCiCAP) framework. Using this framework, we assessed

spatial and temporal properties of cervical RS activity in healthy

participants and uncovered precise features of the spinal cord
functional architecture. To the best of our knowledge, this is

the first time that fine-grained RS components are revealed in

the spinal cord. This unparalleled level of detail allowed us to

shed new light on their neuroanatomical nature, as well as to

further characterize their physiological roles and, hence, empha-

size their involvement in distributed neural pathways supporting

ascending sensory feedback (e.g., for proprioception) and de-

scending communication from supraspinal structures (e.g., for

motor control). The SpiCiCAP framework could foster relevant

advances in our understanding of spinal cord function, not only

at rest but also when dynamically modulated in sensory and mo-

tor tasks. Finally, this framework opens an avenue to map spinal

circuits in neurological conditions and to investigate the mecha-

nisms associated with dysfunction and recovery.

RESULTS

The SpiCiCAP Framework
Our goal was to achieve a deeper understanding of spinal cord’s

functional architecture. To this end, we reasoned that exploring

the time-varying content of spinal spontaneous fluctuations

would bring new light on their neurophysiological nature. The

SpiCiCAP framework, whose approach is outlined in Figure 1, in-

tegrates tailored spinal cord fMRI protocols with a state-of-the-

art method to extract dynamic RSNs by using clustering of he-

modynamic-informed transients. It enables us the ability to

decompose spinal circuits and to investigate their spatiotem-

poral properties.

Spatial Maps of Spinal iCAPs Specifically Match Spinal
Cord Neuroanatomy
Using the SpiCiCAP framework, we extracted spinal iCAPs for

two levels of granularity (i.e., temporal clustering done indepen-

dently for two different parameters K, 4 or 40, corresponding to

the number of iCAPs; see Figure 1). The choice of these two

levels of granularity was supported by a systematic evaluation

of clustering reproducibility for different Ks (details presented

in Figure S3). Visual inspection of the recovered iCAPs confirmed

the absence of noisy spatial patterns (Figure 2). Components

displayed high spatial segregation, as underlined by the limited

overlap between iCAP maps (Figure S5). In line with previous

studies (Kong et al., 2014; Weber et al., 2018), spinal iCAPs

spanned a limited rostro-caudal extent, likely reflecting the

segmental structure of the spinal cord. Specifically, low-level

granularity iCAPs corresponded to spinal levels C5 to C8 (Fig-

ure 2B), with on average 91% of their voxels in a single spinal

level (Figure S5). The specificity of the matching between iCAPs

and segmental borders was confirmed using Dice coefficients

(mean ± SD= 0.71 ± 0.03). For this low-level granularity, all iCAPs

were bilateral and included dorsal and ventral components (Fig-

ure S4). When increasing the granularity to 40 iCAPs, we

observed that components were further subdivided within the

axial plane (Figure 2C), with high-granularity iCAPs that were

predominantly unilateral and strictly confined to either the dorsal

or ventral side. To achieve a comprehensive description of this

axial organization, we harnessed a detailed atlas of the spinal

cord (Lévy et al., 2015; Figure S2) to precisely quantify the axial

voxel distribution. For each of these fine-grained iCAPs, voxels
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Figure 1. SpiCiCAP Framework

Cervical functional images are processed to circumvent the effect of various sources of noise. Hemodynamic blur is removed using hemodynamic-informed

deconvolution to reveal activity-inducing signals. Innovation signals (i.e., transients) are then obtained by temporal derivation. A two-step thresholding is applied

to select significant innovation frames, which undergo K-means temporal clustering to obtain stable iCAPs (K, number of iCAPs). Recovered iCAPs can be used

as regions of interest to extract subject-specific time courses from activity-inducing signals. Finally, interaction measures (e.g., Jaccard index for couplings and

anti-couplings) can be computed. Inspired by Karahanoǧlu et al. (2013).
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were distributed over a restricted number of atlas regions (on

average, two regions per iCAP included 68% of its voxels; Fig-

ure S5), emphasizing that the activity patterns were highly local-

ized and structured. Each spinal component was, thus, matched

to a specific atlas region (mean Dice coefficient ± SD = 0.61 ±

0.11). Overall, these results illustrated the high correspondence

between the components extracted using the SpiCiCAP frame-

work and the underlying neuroanatomy of the spinal cord.

Spinal iCAPs Assemble into Neural Pathways
To further inspect the neuroanatomical identity of the 40 spinal

iCAPs, we used the hard assignment proposed above (i.e., each

iCAP uniquely matched with an atlas region) and computed the

number of iCAPs found in each of the atlas regions, so as to

seek whether an organized topographical distribution could be

highlighted (Figure 3). We observed that iCAPs fell into a limited

number of regions, i.e., 12 of the 36 atlas regions (see Figure S2

for the exhaustive list), which corresponded to six distinct neuro-

anatomical zones comprising both gray (i.e., ventral horns and in-

termediate regions) and white matter (i.e., the dorsal column,

formed by the fasciculus gracilis, and fasciculus cuneatus, the

cortico-spinal tract, and the medial lemniscus). For each of

them, iCAPs were present in both left and right lateralization.

We then investigated whether this apparent sparsity, driven by

fMRI activity, had a functional meaning. An examination of the

different roles of these regions (Figure S2; Darby and Frysztak,

2013) revealed that iCAPs were essentially organized following

two neural pathways of the spinal cord: 18 iCAPs relied on the cor-

tico-spinal tract pathway (CST), whereas 16 iCAPs corresponded

to the dorsal column-medial lemniscus pathway (DCML) (Fig-

ure 3A). These pathways fulfill distinct functional contributions
426 Neuron 108, 424–435, November 11, 2020
(Figure 3B), as they are involved in conveying and processing sig-

nals from (e.g., for motor control) and to (e.g., for proprioception)

the brain, respectively (Darby and Frysztak, 2013). The former is a

descending pathway that goes from the motor cortex to the

ventral horns (regions 31–32), through the cortico-spinal tract (re-

gions 5–6). The latter is an ascending pathway, sending proprio-

ceptive and sensory information from the periphery to the somato-

sensory cortex by traveling through the dorsal column (regions 1–

4) and themedial lemniscus (regions 13–14). Finally, 6 iCAPs were

found in the intermediate zone, INTER (regions 33–34), at the inter-

face between these ascending and descending pathways. The

rostro-caudal distribution of the iCAPs underlined a uniform pres-

ence of ascending and descending pathways from C5 to C8,

whereas no intermediate regions were found in C8 (Figure 3C).

To evaluate the distance between iCAPs along the two pathways,

we computed the mean rostro-caudal position of the associated

iCAPs in each spinal level. The average spatial gaps along the

CST and DCML were 17.88 ± 1.70 mm and 18.43 ± 0.6 mm

(mean ± SD over spinal levels), respectively, which are in line

with the anatomical distance between spinal levels (Cadotte

et al., 2015). In summary, these results suggested that the recov-

ered spinal iCAPs were functionally relevant. This idea hints at the

potential of the proposed framework to non-invasivelymonitor the

neural mechanisms underlying information flow and processing,

both locally in the spinal cord and in relation to inputs from the

brain and the periphery.

Spinal Functional Organization Is Stable within and
between Subjects
We evaluated the consistency of the observed iCAPs both within

and between subjects. First, we assessed the intra-subject



Figure 2. iCAPs Spatial Patterns

(A) Schematic representation of the structure of the spinal cord. CSF, cerebrospinal fluid.

(B) Each low-granularity iCAP spans a limited rostro-caudal extent, in line with the segmental structure of the spinal cord (one iCAP corresponds to one spinal

level, mean Dice coefficient ± SD = 0.71 ± 0.03). Axial views are presented in Figure S4.

(C) When extracting 40 spinal iCAPs (presented from rostral to caudal components), spatial maps get divided within the axial plane and lined up with known

subdivisions of the spinal cord, reflecting meaningful neuroanatomical structures (Figure S2), such as white matter tracts or gray matter horns (mean Dice

coefficient ± SD = 0.61 ± 0.11). Coronal and sagittal views are presented in Figure S4. Thresholded iCAP maps, in red, are overlaid on the corresponding spinal

level or atlas region probabilistic maps, in blue (De Leener et al., 2017). The PAM50 template is used as a background (De Leener et al., 2018). ICAPs numbers are

indicated in the bottom right corners. L, left; R, right; D, dorsal; V, ventral.
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stability by splitting each subject’s dataset into two equal parts

(180 volumes each, i.e., 7.5 min) in which we recomputed iCAPs

independently (Figure 4A). The intra-subject stability was partic-

ularly high for the low-granularity iCAPs (mean Dice coefficient ±

SD of 0.83 ± 0.08), indicating that the coarse functional organiza-

tion was stable over time within the same subjects. Conversely,

the stability of fine-grained spatial patterns was more variable

(mean Dice coefficient ± SD of 0.38 ± 0.20), with 12 iCAPs dis-

playing Dice coefficients superior to 0.5 (maximum value of

0.84), whereas 7 iCAPs exhibited coefficients lower than 0.2

(minimum value of 0.06). ICAPs with low and high Dice coeffi-

cients were distributed over the different pathways, with no spe-

cific pattern. Despite this variability, both sets of iCAPs were in

line with the underlying neuroanatomy (mean Dice coefficient

with atlas regions ± SD of 0.63 ± 0.10 for part 1 and 0.61 ±

0.10 for part 2). Moreover, they carried similar functional rele-

vance, as atlas regions of the two parts could still be clustered

into the same pathways (ascending DCML, descending CST,

and intermediate INTER) (Figure S6). We then probed inter-sub-

ject stability by comparing the iCAPs maps of all subjects for

each iCAP pair of the full dataset. The spatial patterns were

similar across subjects (Figure 4B), as highlighted by the diago-

nal matrices obtained for low- and high-granularity iCAPs (mean

Dice coefficient ± SD of 0.49 ± 0.05 and 0.51 ± 0.06 for the

different levels of granularity, respectively). Altogether, these
findings underlined the stability of the spinal cord’s functional or-

ganization, along with the potential of iCAPs to represent its un-

derlying building blocks.

Dynamic Temporal Interactions Are Observed
between iCAPs
Capitalizing on this stable spatial organization, we probed the

temporal features of the 40 fine-grained spinal iCAPs. Each

iCAP occurrence lasted on average 2.71 ± 0.15 volumes (mean

over iCAPs ± SD, no significant difference between iCAPs), for

a total duration of activation (positive and negative occurrences)

of 27.42% ± 1.82% (mean over iCAPs ± SD, percentage of run

length, no significant difference between iCAPs). A substantial

amount of temporal overlap was observed between iCAPs,

with an average of 10.97 ± 0.17 co-active iCAPs at each time

point (mean over subjects ± SE; Figure 5A). To better understand

the features of this large temporal overlap, we explored the (anti-)

couplings between the 40 iCAPs (Figures 5B–5D). Overall, cou-

plings (mean Jaccard index over subjects ± SE = 0.15 ± 0.007)

were significantly stronger than anti-couplings (0.04 ± 0.003,

p < 0.001), and they exhibited distinct behaviors. Specifically,

larger couplings were observed within level (0.17 ± 0.005) than

between levels (0.13 ± 0.004, p < 0.001). Conversely, anti-cou-

plings were more prominent between levels (0.05 ± 0.002) than

within level (0.03 ± 0.002, p < 0.001). This notable interplay
Neuron 108, 424–435, November 11, 2020 427



Figure 3. Neural Pathways

(A) Each fine-grained iCAPs wasmatched to one of the 36 atlas regions (hard assignment based on themaximum number of voxels, see Figures S2 and S5 for the

details of the atlas regions and voxel distributions). The number of iCAPs per atlas region is presented, omitting regions with no assigned iCAP. Atlas regions from

1 to 30 correspond to the white matter, and regions from 31 to 36 are found in the gray matter. ICAPs cluster into spinal neural pathways involved in transmitting

and processing information from and to the brain (DCML, dorsal column medial lemniscus pathway; CST, cortico-spinal tract pathway). Intermediate regions

(INTER) are also present.

(B) Schematic representation of the spinal neural pathways.

(C) ICAP distribution in the different spinal levels. Colors refer to neural pathways.
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between spinal iCAPs was stable across subjects, both for cou-

plings (mean cosine similarity over subjects ± SE of 0.88 ± 0.01)

and anti-couplings (0.76 ± 0.01). These results corroborated the

hypothesis that spinal cord spontaneous fluctuations are highly

entwined, prompting the need for dynamic approaches to

dissect this activity.

iCAPs of Different Neural Pathways Exhibit Distinct
Interplays
Finally, we examined the interactions between iCAPs grouped

according to their neural relevance (ascending, descending,

or intermediate), to potentially uncover distinctions regarding

their coupling properties. Interaction profiles specific to each

pathway (i.e., between the iCAPs belonging to the same

pathway; Figure 6A) were highlighted, in particular in terms of

within-level interactions. Couplings appeared larger inside the

intermediate zone, whereas they were smaller in the ascending

and descending pathways, especially for the former. Anti-cou-

plings followed an opposite trend. The strong coupling inside

the intermediate zone might be attributed to commissural inter-

neurons, whose axons cross the midline to link the two hemi-

cords. When assessing the interactions shared across pathways

(i.e., between the iCAPs belonging to different pathways; Fig-

ure 6B), we found that the intermediate zone was differently

coupled with the two others pathways, with stronger couplings

occurring with the ascending regions. Anti-couplings, however,

did not display any clear tendency. To further investigate

whether these distinctions were inherent properties of connec-

tivity inside and across neural pathways, we attempted to clas-

sify them using the aforementioned features (couplings and

anti-couplings, within and between levels). We were able to

distinguish interactions occurring inside the ascending and inter-

mediate pathways, as they could be discriminated with high ac-

curacy (73.7%, p < 0.01 and 63.2%, p < 0.05, respectively; non-
428 Neuron 108, 424–435, November 11, 2020
parametric permutation testing against chance level, i.e.,

�33.3%), confirming their distinct behaviors. Internal couplings

within the descending pathways exhibited a more hybrid profile,

resulting in a lower classification accuracy (52.6%, not signifi-

cant). When looking at the interactions across neural pathways,

we found the highest accuracy for the relationship between the

ascending and descending pathways (63.3%, p < 0.01),

although the interactions across the intermediate zones and

the two other pathways could also be classified (57.9%, p <

0.05). This finding suggests that peculiar interactions exist be-

tween pathways, as they are engaged to support disparate

sensorimotor functions.

DISCUSSION

In previous work, RSNs were shown to be a feature of the entire

CNS, with the spinal cord demonstrating an intrinsic functional

organization akin to the recognized brain’s functional architec-

ture (van den Heuvel and Hulshoff Pol, 2010). Although this orga-

nization has been presumed to support sensory, motor, or auto-

nomic functions, its neurophysiological purpose has so far

remained elusive. Former studies had solely focused on static

FC, which merely reflects the average organization over the

course of a functional run. In this regard, exploiting the dynamic

features of spinal spontaneous activity could promote new in-

sights into its physiological nature. In this study, we leveraged

state-of-the-art spinal cord fMRI protocols, combined with a

dFCmethod (Karahanoǧlu and VanDe Ville, 2015), and deployed

the SpiCiCAP framework to unweave spinal RS fluctuations.

We showed that these fluctuations were highly structured and

could be precisely delineated into neuroanatomically relevant

components. To the best of our knowledge, this is the first

time that such fine-grained subdivisions of the spinal cord

have been extracted using fMRI measures and, in particular,



Figure 4. Stability of Spatial Patterns

(A) To evaluate the intra-subject stability of the iCAPs spatial maps, the dataset was split into two equal parts (180 volumes each, i.e., 7.5 min), and iCAPs were

then computed independently for each part. The matrices show the Dice coefficients between both sets of iCAPs, for the two granularity levels (K = 4, low

granularity; and K = 40, high granularity).

(B) The inter-subject stability was computed as the mean Dice coefficients over each pair of subjects, for a particular iCAP pair. In all matrices, iCAPs are ordered

rostro-caudally.
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RS activity. Thanks to this unprecedented level of detail, our

results shed new light on the functional relevance of spinal fluc-

tuations, underscoring their association with the main spinal

neural pathways. Hereafter, we discuss these findings with an

emphasis on their clinical potential.

Methodological Aspects
In this work, we deployed a dFC approach to exploit the richness

of spontaneous spinal activity. Specifically, the SpiCiCAP frame-

work first uses a tailored processing pipeline on spinal cord fMRI

data.Regularizeddeconvolution of denoised timecourses is then

applied to retrieve the underlying activity-inducing signals, which

is subsequently used to reveal robust transient activity (see Fig-

ure 1 for a summary of the different steps) (Karahanoǧlu et al.,

2013; Karahanoǧlu and Van De Ville, 2015). Transients encode

changes in the BOLD time courses (i.e., activations and de-acti-

vations) and can be used to determine components reflecting

consistent patterns of co-activation, the so-called iCAPs. A

unique feature of this method is its ability to disentangle spatially

and temporally overlapping signals. In this study, fine-grained

components could be revealed, suggesting that spinal activity

manifests complex and non-stationary temporal properties that

are better unraveled using a dynamic approach instead of con-

ventional static methods. To thoroughly characterize iCAPs, we

relied on maps of spinal levels and atlas regions (Cadotte et al.,

2015; De Leener et al., 2017; Lévy et al., 2015), which enabled

a systematic assessment of each component’s physiological

relevance (Figure S2). Notably, inter-subject variability is not rep-

resented in the atlas, but differenceswere assumednot to be crit-

ical at this spatial resolution. Although the SpiCiCAP framework

offers unique advantages, certain drawbacks should be high-

lighted. First, this clustering-based approach implies that the

number of clustersKshouldbe aprioridefined.Here,weselected

K based on anatomical knowledge and reproducibility analyses,

although this selection is not exclusive. Another aspect that

should be considered pertains to the estimation of the hemody-

namic response function (HRF). Indeed, the deconvolution
step, which is deployed to recover activity-inducing signals (Fig-

ure 1), uses a single canonical HRF. Yet, theHRF is known to vary

across subjects and regions (Hanwerker et al., 2004). Although

these differences have not been closely investigated in the spinal

cord, one study highlighted that the spinal HRF may be slower

than in the brain (Giulietti et al., 2008). Besides, variations of the

hemodynamic response between gray and white matter could

also be probed, as differences in this regard have been demon-

strated in the brain (Li et al., 2019). This topic warrants further

investigation, and potential improvements to the SpiCiCAP

framework could include a variable HRF model or integrate

HRF identification within the deconvolution step. Finally, future

research could examine the impact of changes in the processing

pipeline (e.g., physiological noise removal, smoothing, etc.) on

the reproducibility of spinal iCAPs, similar to how Eippert et al.

(2017b) investigated robustness of static connectivity.

To foster the emergence of new research characterizing spinal

functional pathways, we are providing our dataset and analysis

pipeline as resources for the neuroscientific community. Spinal

cord fMRI is still an emerging field, and currently, no such

open dataset is publicly available. Despite significant improve-

ments in the last years, spinal cord fMRI remains challenging

and some limitations should be acknowledged, notably in terms

of image quality. For instance, field inhomogeneities can lead to

distortion and signal dropouts, although the extent of these

signal variations was limited (Figure S1). It should also be noted

that the low temporal resolution (repetition time [TR] = 2.5 s)

might impede the detection of fast transients.

Spinal RS Components Are Highly Structured and
Robust
The SpiCiCAP framework was used to explore spinal RS fluctu-

ations by using two separate levels of granularity (i.e., either 4

low-granularity or 40 high-granularity iCAPs were extracted).

All iCAPs presented spatially segregated patterns (Figure S5)

and a limited rostro-caudal extent (Figures 2 and S4), corrobo-

rating previous results reporting that ICA-derived components
Neuron 108, 424–435, November 11, 2020 429



Figure 5. Investigating Temporal Overlap between iCAPs
(A) Percent duration of different degrees of co-activation (i.e., number of overlapping iCAPs), with respect to the total run duration. The dotted line indicates the

mean over subjects.

(B) After extraction of the subject-specific time courses, interactions between iCAPs were assessed using Jaccard index (both for couplings, see C; and for anti-

couplings, see D) Strong couplings were found between the different regions, mainly at the same spinal levels. Anti-couplings are weaker and mostly observed

between spinal levels. Means over subjects ± SE are presented. W, within; B, between. ***p < 0.001, paired t test, Bonferroni corrected.

(C and D) For each matrix, iCAPs are grouped into ascending, descending, and intermediate regions and are ordered rostro-caudally for each category (dashed

lines indicate the different spinal levels). The mean over subjects is presented. Bottom triangular matrices show Jaccard index for each pair of iCAPs, and top

triangular matrices highlight significant interactions (non-parametric permutation testing, corrected for multiple comparisons).
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did not spanmore than one vertebra (Kong et al., 2014). Here, we

could further confirm that each low-granularity iCAP coincided

with a single spinal level, from C5 to C8 (Figure 2B). A most strik-

ing observation was that increasing the granularity to 40 iCAPs

allowed us to uncover fine-grained spinal components extending

beyond the commonly reported dorso-ventral division (Fig-

ure 2C). These components were in close agreement with the un-

derlying neuroanatomy and could be matched with a specific

gray or white matter region. In line with previous studies, we

observed components corresponding to the ventral (i.e., motor)

horns (Barry et al., 2014; Kong et al., 2014; Liu et al., 2016;Weber

et al., 2018). No iCAPs were, instead, assigned to the dorsal (i.e.,

sensory) horns, although few voxels were indeed present in

these regions (Figure S5, regions 35 and 36). FC in the dorsal

horns was previously reported as weaker and harder to reliably

detect (Barry et al., 2016, 2018; Eippert et al., 2017b), possibly
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because of their narrow geometry (see Figure S2). An unex-

pected observation was the presence of clearly defined iCAPs

in the white matter, as FC is conventionally studied only for the

gray matter. Despite the surprising character of these findings,

there is compelling evidence that white matter has the vascular

capacity to support hemodynamic changes and that the initial

lack of interest in these signals was probably due to a limited

sensitivity (lower field strength), rather than linked to a funda-

mental property that would impede their detection (Gawryluk

et al., 2014; Gore et al., 2019). Indeed, recent studies reliably

captured functionally relevant information in cerebral white mat-

ter (e.g., Ding et al., 2018; Huang et al., 2018; Peer et al., 2017;

Wu et al., 2017). In the spinal cord, specifically, weaker BOLD

signals in the white matter might be compensated by its large

volume (i.e., more than three times the gray matter volume, see

Figure S2). Coherent activity has previously been reported in



Figure 6. Interaction Signatures of Neural Pathways

To highlight whether couplings had a specific organization pertaining to neural pathways, we studied interactions inside (A) or across them (B). Patterns were

highlighted based on four features: couplings and anti-couplings, both within level and between levels. Left: interactions in this feature space. Scatterplots show

the relationship of within-level and between-level couplings and anti-couplings. Values are presented separately for the different interaction types, represented by

distinct colors. The light dots correspond to the values of individual subjects, and the bold dots indicate the means over subjects. The distinct distributions of

these values for each interaction type suggested that specific interaction signatures exist for the different neural pathways. To confirm these signatures, a

quadratic discriminant analysis (QDA) classifier (leave-one-subject-out cross validation) was used to distinguish them. The average confusion matrices are

displayed on the right. *p < 0.05, **p < 0.01 (non-parametric permutation testing, corrected for multiple comparisons). Asc/A, ascending; Desc/D, descending;

Inter/I, intermediate.
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spinal white matter at rest, as Barry et al. (2014) observed corre-

lations between white matter regions using a seed-based anal-

ysis. Besides, the ICA components presented by Kong et al.

(2014) did not allow an accurate delineation between gray and

white matter and seemingly contained both structures. Alto-

gether, our findings illustrate the potential of a dFC framework

to resolve functional activity with high precision, down to the

level of individual gray and white matter regions. Importantly,

this framework may offer valuable insight into neurological con-

ditions principally affecting the white matter, such as multiple

sclerosis. To evaluate the reliability of our approach, we probed

the intra-subject robustness of spinal iCAPs by extracting com-
ponents on split-half datasets (Figure 4A). The low-granularity ar-

chitecture was particularly stable, and high-granularity iCAPs of

both sets coincided with atlas regions. The latter indicated that

short acquisitions already allowed us to recover meaningful

fine-grained components and could be foreseen in the context

of clinical applications, where time is often a limiting factor. By

evaluating inter-subject similarity (Figure 4B), we then showed

that low- and high-granularity iCAPs were stable across sub-

jects, hence supporting the idea that they represent consistent

features of spinal cord functional organization. It is noteworthy

that low-granularity iCAPs weremore stable within than between

subjects. This finding could pertain to individual differences
Neuron 108, 424–435, November 11, 2020 431
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regarding the location of spinal levels, as anatomical variability

was, indeed, previously acknowledged (Cadotte et al., 2015).

In contrast, high-granularity iCAPs were more similar between

than within subjects. We hypothesized that fine-grained maps,

as they capture regions involved in specific functions (e.g., pro-

prioception or muscle tone control), were more likely to vary over

time depending on external variations (e.g., fatigue, stress or

muscle relaxation). Spinal FCwas previously reported to be state

dependent, for instance following thermal stimulation (Weber

et al., 2018). Further studies with physiology-based measures

of cognitive states (e.g., electroencephalography, blood pres-

sure, skin conductance, and pupillometry) (Lohani et al., 2019)

could help validate this conjecture.

The ‘‘Restless’’ Spinal Cord Is Organized According to
Neural Pathways
To date, the mechanisms at the core of spinal RS fluctuations

are still speculative. Three main processes have been hypothe-

sized (Eippert et al., 2017b; Eippert and Tracey, 2014; Kong

et al., 2014): (1) RS signals could be driven by the continuous

processing of inputs from the periphery (e.g., proprioception,

touch, or vibration); (2) alternatively, they potentially stem from

the ongoing communication between the brain and the spinal

cord, through ascending (sensory) and descending (motor)

signals; (3) finally, they could be generated locally from intrinsic

features of spinal activity, for instance linked to coordinated

movements (e.g., bilateral coordination [Jankowska, 2008; So-

teropoulos et al., 2013], breathing [Sandhu et al., 2015], or cen-

tral pattern generators [Guertin and Steuer, 2009]). To further

shed light on these three hypotheses, we inspected the func-

tional roles of the fine-grained iCAPs. First of all, we found that,

similarly to the brain (Fox and Raichle, 2007; Smith et al.,

2009), RS spinal components were distributed in networks

corresponding to distinct neural pathways, which are usually

active and modulated during task. This finding suggests that,

at the level of the spinal cord, the same neural substrates likely

support active and passive behaviors. Specifically, networks

were mainly involved in descending and ascending processes

associated with two spinal neural pathways: the CST and the

DCML (Figure 3). By conveying and processing signals from

(e.g., for motor control) and to (e.g., for proprioception) the brain,

respectively, these pathways subserve distinct functions (Darby

and Frysztak, 2013). The CST is the major pathway supporting

voluntary motor function, and it connects motor cortical regions

to the ventral horns of the spinal cord. Conversely, the DCML is

related to proprioception, fine touch, and vibration sensation.

Peripheral signals originating from receptors involved in tactile

sensation and conscious proprioception travel through the dor-

sal column and the medial lemniscus, before reaching the pri-

mary somatosensory cortex. Although other spinal pathways

exist, they were not detected here, possibly due to their second-

ary role at rest. One such example is the reticulospinal tract,

which is mainly involved in postural control (Figure S2). The

absence of these pathways could also pertain to their small

size, as the spatial resolution (13 13 3mm) could have hindered

their identification. A few components were observed in the in-

termediate region of the spinal cord and can be engaged in

different mechanisms, such as commissural interneuronal con-
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nections between contralateral horns, for instance to coordinate

movement (Jankowska, 2008; Soteropoulos et al., 2013). At the

interface between ascending and descending pathways, they

may also support an interaction between sensory and motor

components, notably for reflexes (Koch, 2019; Pierrot-Desseil-

ligny and Burke, 2005). From these findings, we could infer that

the aforementioned mechanisms likely coexist and generate

restless spinal cord activity.

To help further clarify the organizational principles of this dy-

namic architecture, we then considered the temporal character-

istics of spinal iCAPs, which displayed a significant overlap (Fig-

ure 5A). Although strong couplings occurred mostly within the

same spinal level, in line with earlier studies (Barry et al., 2014;

Eippert et al., 2017b; Kong et al., 2014; Liu et al., 2016; Weber

et al., 2018), anti-couplings were weaker and identified between

spinal levels (Figures 5B–5D). Weak negative correlations be-

tween spinal segments were previously reported by Kong et al.

(2014) and may be reminiscent of mechanisms involved in inter-

segmental inhibition (Friesen and Cang, 2001; McBain et al.,

2016). Patterns of interactions specific to each neural pathway

also emerged from this analysis (Figure 6). Successful classifica-

tion of these pathway-dependent signatures further confirmed

their specificity, highlighting that distinct pathways might rely

on different dynamic interactions to achieve their functional con-

tributions. The strongest level of couplings was found for iCAPs

located in the intermediate zone, not only among them but also

with regions of the ascending pathway. This finding suggests

that ongoing communication between hemicords may occur

through interneuronal connections and point to a potential role

of the intermediate pathway in bridging sensory networks.

Conversely, ascending and descending pathways appeared to

be more loosely connected, maybe due to the absence of active

task. This initial disentanglement of spinal neural pathways in vivo

could help us understand the impact of task-relatedmodulations

on their interactions, for instance during the complex integration

of sensory feedback and motor commands involved in voluntary

movements. In this context, collecting behavioral data will be

pivotal for further assessing the relevance of these networks.

Clinical Potential
In addition to these findings, the versatility of our framework

could enable researchers to explore the disruption of spinal

functional architecture in impaired individuals. Studies assessing

spinal functional integrity may be especially valuable when

structural damages are minimal and do not allow full character-

ization of the patient’s status. Multiple sclerosis could particu-

larly benefit from this approach, as its pathological hallmark is

the formation of demyelinating lesions in the brain and spinal

cord (Filippi et al., 2018). Recent work from Conrad et al.

(2018) has already initiated this effort, with promising results.

Using a region of interest correlation analysis in a cohort of

multiple sclerosis patients, they showed that the presence of le-

sions was concomitant to local alterations of FC. They specu-

lated that different mechanisms could explain these changes,

such as a compensatory effect of white matter damage or a

disruption of inhibitory spinal interneurons. Our data-driven

approach could help resaerchers distinguish between these

hypotheses, by granting access to fine-grained features of spinal
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cord FC in the white and gray matter. In addition, studying

functional integrity could also bring valuable knowledge in the

context of spinal cord injuries. To this end, RS scans are partic-

ularly attractive, as even severely affected patients can undergo

such recordings (Krakauer, 2007). No such study has so far been

performed in humans, but the clinical relevance of RS fluctua-

tions was investigated in non-human primates at ultra-high field

(Chen et al., 2015) by longitudinally monitoring the effect of a uni-

lateral spinal cord injury. This investigation emphasized that dis-

ruptions in FC within and between spinal levels were related to

the recovery process, thus underscoring the potential of intrinsic

RSNs as imaging biomarkers of spinal cord functional integrity.

The framework proposed in our study offers the prospect of

identifying such functional biomarkers in the human spinal cord

with a remarkable level of detail. This benefit can have major

translational implications, as these biomarkers could potentially

be used for diagnosis and prognosis to quantify disease pro-

gression or to investigate the effect of different interventions. Ul-

timately, a thorough understanding of spinal functional circuitry

could help steer the development of innovative therapies,

notably in the context of neurotechnological solutions that are

able to deliver precise and knowledge-based treatment (Micera

et al., 2020). For instance, electrical epidural stimulation has

been used to restore locomotion following a spinal cord injury,

with very promising results (Wagner et al., 2018). Patient-specific

maps of spinal pathways could be used to fine-tune these proto-

cols, so as to optimally engage the spared connections and net-

works to further improve a patient’s clinical outcome.

Conclusions
So far, studies have inspected spinal RS fluctuations only by us-

ing static FC, showing that signals were organized into networks,

but without demonstrating their physiological origin. Here, we

deployed the SpiCiCAP framework to exploit the rich dynamic

features of spontaneous spinal activity and recovered fine-

grained components. Capitalizing on this unprecedented level

of detail, we showed that these components were related to

the underlying neuroanatomical organization and that they

were functionally relevant. We provide a powerful tool to delin-

eate stable spinal circuits in vivo, thus enabling access to the

building blocks of spinal functional activity. This approach pro-

vides a foundation for future work to elucidate how spinal net-

works can be flexibly combined to support particular functions,

both at rest or when specifically modulated by a task. We believe

that the versatility of this methodological framework opens new

avenues to tackle fundamental and clinical neuroscientific ques-

tions related to the function of the spinal cord.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Twenty-two right-handed healthy subjects (11 females, 28.5 ± 3.5 years old) were enrolled in the study. All participants gave their

written informed consent to participate, and the study had been approved by the Commission Cantonale d’Éthique de la Recherche

Genève (CCER, study 2019-00203). All volunteers had normal or corrected-to-normal vision and no history of neurological disorders

METHOD DETAILS

Data acquisition
The imaging protocol was the same as the one used in our previous study in which we imaged the rostrocaudal patterns of activity

elicited by upper limb movements (Kinany et al., 2019). Imaging data were acquired with a 3.0 Tesla Siemens Prisma scanner (Erlan-

gen, Germany), equipped with a 64-channel head (only inferior element, HC7, was used) and neck coil (both anterior and posterior

elements, NC1 and NC2, were used – i.e., 24 channels). For 14 subjects, the upper element of the spine coil (SP1) was also used

(optimal coil combination defined by the scanner). All functional acquisitions were performed with a gradient-echo echo-planar

sequence, with ZOOMit selective field-of-view imaging (Repetition Time (TR) = 2.5 s, Echo Time (TE) = 34 ms, FOV = 48 3

144 mm, flip angle = 80�, in-plane resolution = 1 3 1 mm, slice thickness = 3 mm). The cervical enlargement was covered using

32 axial slices. Particular care was taken in placing slices perpendicularly to the spinal cord, in order to maximize the alignment

with the intervertebral discs and limit signal dropouts due to field inhomogeneities (Finsterbusch et al., 2012). Before acquisition,

the magnetic field homogeneity was optimized using shimming adjustments focused on the spinal cord. For each participant, 360

volumes (i.e., 15 minutes) were acquired, during rest (i.e., no explicit task), with eyes open (an empty screen was shown). A high-res-

olution T2-weighted anatomical image, covering a region from C1 to the upper part of the thoracic spine, was also acquired with a

SPACE sequence (single slab 3D turbo spin echo sequence with a slab selective, variable excitation pulse, TR = 1500 ms, TE =

135 ms, echo train length = 74, flip angle = 140�, resolution = 0.4 3 0.4 3 0.8 mm, sagittal orientation). Throughout the recordings,

subjects were instructed to relax, breathe normally andminimizemotion. A soft cervical collar was used in order to stabilize the neck.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Data processing
All preprocessing steps were performed using the Oxford Center for fMRI of the Brain’s (FMRIB) Software Library (FSL, version 5.0)

(Jenkinson et al., 2012) and the Spinal Cord Toolbox (SCT, version 3.2.7) (De Leener et al., 2017). The pipeline is based on the one

used in our previous study (Kinany et al., 2019).

1) Motion correction

All functional and anatomical images were inspected for potential artifacts. For each participant, the bottom slices whose signal was

insufficient to accurately detect the spinal cord were removed. The mean functional image was then used to automatically detect the

centerline of the spinal cord. A cylindrical mask (diameter of 30 mm) along the centerline was generated to prevent the inclusion of

regions moving independently from the spinal cord and slice-wise realignment was performed with the mean functional image as

reference. This procedure allows to account for the articulated structure of the spinal cord (De Leener et al., 2017).Motion parameters

were extracted and used to compute the mean (i.e., average over slices and volumes) framewise displacement along the x and y

directions (FDx and FDy). A stringent threshold on the framewise displacement (i.e., mean FDx or FDy > 0.2 mm) was applied to detect

subjects with excessive motion. This led to the exclusion of three subjects. All the other subjects (n = 19) were included in further

analyses. The overall level of motion of these remaining subjects was minimal (mean ± SE along x and y: FDx = 0.10 ± 0.04 mm,

and FDy = 0.10 ± 0.03 mm).

Following slice-wise realignment, outliers volumes were detected for motion scrubbing (i.e., to be included as noise regressors

during the time courses denoising, see 2) Denoising time courses). Variations in image intensity were assessed to identify potential

outliers with FSL, using DVARS (i.e., the root mean square intensity difference of volume N to volume N+1) within the spinal cord, and

a box-plot cutoff (75th percentile + 1.5 x the interquartile range) (Power et al., 2014). On average, five volumes per run were consid-

ered as outliers.

2) Denoising time courses

Due to the proximity of respiratory tracts and visceral organs, the spinal cord is particularly prone to physiological motion (Brooks

et al., 2008; Eippert et al., 2017a; Piché et al., 2009). It is, therefore, essential to limit the detrimental impact of those fluctuations

on BOLD time courses. For this purpose, physiological signals (i.e., heart rate and respiration) and scanner triggers were acquired

throughout the functional scans, using a photoplethysmograph and a respiratory belt (BiopacMP150 system, California, USA). These

recordings were used to generate noise regressors, with a procedure based on RETROspective Image CORrection (RETROICOR)

(Glover et al., 2000). Briefly, this approach assigns cardiac and respiratory phases to each functional volume, considering their acqui-

sition timings with respect to the physiological traces. Then, a low-order Fourier expansion is typically used to model physiological

noise. In the spinal cord, however, recommendations suggest to include higher order Fourier terms as well as the noise related to the

cerebrospinal fluid (CSF) (Brooks et al., 2008; Kong et al., 2012). Accordingly, we generated 32 voxelwise noise regressors using the

physiological noisemodeling (PNM) tool from FSL, alongwith an additional regressor corresponding to the CSF signal (mean signal in

the 10% of CSF voxels whose signal varies the most).

These 33 physiological noise regressors (PNM and CSF) were combined with motion correction parameters (i.e., two slice-wise

regressors, for the motion in x and y) and motion outliers (see 1) Motion correction), and regressed from the fMRI time-series using

FSL’s fMRI Expert Analysis Tool (FEAT). The resulting residuals were then spatially smoothed using a 3D Gaussian kernel with a full

width half maximum (FWHM) of 23 2 x 6 mm3. Smoothing was performed along the centerline of the spinal cord, so as to preserve

anatomical consistency.

3) Estimating warping fields for normalization

The PAM50 template (spatial resolution of 0.53 0.53 0.5mm3) was employed as a common space (De Leener et al., 2018). Using the

Spinal Cord Toolbox (De Leener et al., 2017), a two-step registration procedure was performed for each subject: i) Anatomical-to-

template: automatic spinal cord segmentation and vertebrae labeling was performed, based on the T2-weighted image. The spinal

cord was then straightened along its centerline and registered to the PAM50 template, using the labels (specifically for the vertebral

bodies C4 and C7) and non-rigid transformations; ii) Functional-to-anatomical: functional images were registered to the T2-weighted

image, using non-rigid transformations. The warping fields from steps i) and ii) were finally concatenated to obtain the functional-to-

template transformation. Accurate spatial registration to a common space is a crucial step to allowmeaningful inter-subject compar-

ison. Nevertheless, the normalization procedure in the spinal cord is notoriously challenging, partly because of its small size, com-

binedwith non-uniform signal quality (Giove et al., 2004). To validate the precision of our registration to the PAM50 template, we show

the results of this procedure in Figure S1, which illustrates the accurate correspondence between the normalized anatomical and

functional images and the template. Importantly, the delineation between gray and white matter can be clearly observed in the

normalized fMRI runs.

Data analysis
1) Extracting innovation-driven coactivation patterns (iCAPs)

The innovation-driven co-activation patterns (iCAPs) pipeline was performed using the iCAP toolbox (MATLAB code openly available

on https://c4science.ch/source/iCAPs/; Karahanoǧlu and Van De Ville, 2015). The different steps of the pipeline are illustrated in Fig-

ure 1. In detail, the measured fMRI time course is assumed to reflect the underlying activity-inducing signal, temporally smoothed by
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the effect of the hemodynamic response function (HRF). As a result, we first used the denoised images (native space) and deployed a

regularized deconvolution, using the Total Activation framework (TA; Karahanoǧlu et al., 2013), to reliably retrieve these activity-

inducing signals. Transients (i.e., the so-called innovation signals) were computed as the temporal derivative of these activity-

inducing time courses. It is worth highlighting that innovation frames present spatial patterns that are much cleaner than the related

fMRI frames because they have been undone from hemodynamic blur, but also noise that is not compatible with the hemodynamic

properties. In order to select significant innovations (i.e., frames with significant transitioning activities), a two-step thresholding pro-

cedure was used: i) temporal thresholding: for each voxel, a surrogate distribution was obtained by applying TA on phase randomized

data and a 5% confidence interval was used to select significant voxels, ii) spatial thresholding: only the innovation frames with at

least 5% of active voxels were considered to be significant. Significant innovation frames were normalized to the PAM50 and

used to identify resting-state components, the iCAPs, using temporal K-means clustering. Two levels of granularity were chosen:

i) K = 4 (low granularity) and ii) K = 40 (high granularity). The iCAPs spatial maps were then thresholded (Z > 1.6 for K = 4 and Z >

5 for K = 40) and binarized, and their spatial similarity evaluated bymeans of Dice coefficients (i.e., twice the overlapping area, divided

by the total number of voxels in both maps).

It should be pointed out that a priori estimating data dimensionality is a long standing issue in network analyses (Xu and Wunsch,

2005). In order to ensure that selecting 4 low-granularity and 40 high-granularity components provided reliable partitions of the data,

we systematically evaluated the reproducibility of the clustering for different values of K (see Figure S3). Specifically, we used a sub-

sampling scheme where clustering was repeated using random subsets of the data (100 subsets of 10 subjects). For each repetition,

K-means clustering was performed using different values of K and each clustering solution was compared to the global clustering

obtained with the 19 subjects, using the adjusted mutual information (AMI) (Vinh et al., 2010) which estimates the similarity of two

discrete assignments (i.e., by comparing the assignments of the significant innovation frames to the different clusters). Of note,

this metric is corrected for the effect of chance in order to avoid biasing results in favor of a large number of clusters. Values range

from 0 (chance level) to 1 (equal partitions). In order to explore low-granularity values, K values corresponding tomultiples of four (i.e.,

number of spinal levels in the imaged regions) were probed. Moreover, we investigated higher values of K, ranging from 20 to 90 in

steps of 10, hence covering a wide range of potential fine-grained subdivisions. Details of this analysis are presented in Figure S3.

2) Linking iCAPs with spinal levels and atlas regions

To validate the relevance of the iCAP spatial patterns, we assessed whether they were related to the underlying neuroanatomy of the

spinal cord. In order to do so, we relied on probabilistic atlas maps provided by the Spinal Cord Toolbox (De Leener et al., 2017),

including both spinal levels (Cadotte et al., 2015) and atlas regions (Lévy et al., 2015) (see Figure S2). To investigate the spatial dis-

tribution of the low- and high-granularity iCAPs, we used binarized versions of the probabilistic atlas maps and computed, for each

iCAP, the proportion of voxels found in the different levels and regions. As the aim was to precisely localize spatial maps with respect

to the atlas regions, atlas maps were thresholded at a probability of 0.5 before binarization, to ensure that only the highest probabil-

ities were taken into account for the assignment. Based on these distributions, low- and high-granularity iCAPs were then uniquely

matched to individual spinal levels or atlas regions, respectively, using a hard assignment based on the maximum number of voxels.

Dice coefficients were used to confirm the accuracy of the matching. To this end, the full extent of the corresponding atlas maps was

considered (i.e., non-zero probability), so as to assess the correspondence between borders. Finally, fine-grained iCAPswere group-

ed based on their neuroanatomical identity. For presentation purposes, iCAPs were ordered rostro-caudally based on the location of

their center-of-gravity, unless indicated otherwise.

3) Assessing iCAP stability

We assessed iCAPs stability within and between subjects. In order to investigate the temporal stability over all subjects (i.e., stability

within subjects), we assessed the intra-subject similarity. For each subject, the functional run was split into two equal parts of 7.5 mi-

nutes (i.e., 180 volumes). The procedure to obtain iCAPmaps was performed independently for these two parts and using both levels

of granularity (K = 4 or 40). Dice coefficients were computed to assess the similarity between the spatial maps of the two parts. To

ensure that the spatial organization of iCAPs was stable across subjects on the entire dataset (i.e., stability between subjects), we

computed the inter-subject similarity, as the mean Dice coefficients over each pair of subjects, for a particular iCAP pair. For

each subject, subject-wise iCAP maps were computed as the mean over the frames of this subject assigned to each iCAP and bi-

narized (Z > 3).

4) Extracting temporal dynamics

Finally, subject-specific time courses were obtained by regional averaging of the activity-inducing signals within the binarized iCAP

maps. In order to extract their temporal properties, the subject-level iCAPs time courses were Z-scored and thresholded (|Z| > 1) to

highlight active and de-active time points. The total and average durations of each iCAP were computed, as well as couplings and

anti-couplings between pairs of iCAPs, based on the number of time points with same signs or different signs simultaneous coac-

tivations, expressed as Jaccard indices (i.e., percent joint activation time). To evaluate the statistical significance of these (anti-)cou-

plings, we performed non-parametric permutation tests. At each permutation (n = 5000), we randomly assigned iCAP labels, for each

subject and computed (anti)-couplings using Jaccard indices. The mean overall couplings (or anti-couplings) matrix over subjects

was then calculated. The upper triangular matrices resulting from each permutation were finally used to build a null distribution on

which thresholds for significance were obtained. Bonferroni correction (n = 2) was applied to account for the presence of both cou-

plings and anti-couplings. Mean durations and couplings were compared using paired t tests (Bonferroni corrected).
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5) Investigating neural interplays

In order to investigate whether interplays were functionally relevant, we studied interactions inside (between iCAPs of one pathway)

and across (between iCAPs of different pathways) neural pathways (as defined based on the neuroanatomical identity of iCAPs, see

2) Linking iCAPs with spinal levels and atlas regions). Interactions were described using four features (couplings and anti-couplings,

both within and between levels). Values were Z-scored for each subject and feature and scatterplots were used to capture potential

interaction signatures. To further assess whether these signatures were pathway-specific, three-class quadratic discriminant anal-

ysis (QDA) classifiers were employed, with leave-one-subject-out cross validation. Confusion matrices were computed considering

all cross validation folds to summarize the accuracy of the classification. Statistical significance of accuracy was verified by perform-

ing non-parametric permutation testing. Specifically, classification was performed using the same procedure, but with randomly as-

signed labels. For each permutation (n = 5000), the three diagonal elements of the resulting confusion matrix were retrieved and used

to build a null distribution on which thresholds for significance were obtained. As both interactions inside and across pathways were

considered, Bonferroni correction was applied to account for the two comparisons.
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