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a b s t r a c t 

Mapping the neural patterns that drive human behavior is a key challenge in neuroscience. Even the simplest of our everyday actions stem from the dynamic and 

complex interplay of multiple neural structures across the central nervous system (CNS). Yet, most neuroimaging research has focused on investigating cerebral 

mechanisms, while the way the spinal cord accompanies the brain in shaping human behavior has been largely overlooked. Although the recent advent of functional 

magnetic resonance imaging (fMRI) sequences that can simultaneously target the brain and spinal cord has opened up new avenues for studying these mechanisms 

at multiple levels of the CNS, research to date has been limited to inferential univariate techniques that cannot fully unveil the intricacies of the underlying neural 

states. To address this, we propose to go beyond traditional analyses and instead use a data-driven multivariate approach leveraging the dynamic content of cerebro- 

spinal signals using innovation-driven coactivation patterns (iCAPs). We demonstrate the relevance of this approach in a simultaneous brain-spinal cord fMRI dataset 

acquired during motor sequence learning (MSL), to highlight how large-scale CNS plasticity underpins rapid improvements in early skill acquisition and slower 

consolidation after extended practice. Specifically, we uncovered cortical, subcortical and spinal functional networks, which were used to decode the different stages 

of learning with a high accuracy and, thus, delineate meaningful cerebro-spinal signatures of learning progression. Our results provide compelling evidence that the 

dynamics of neural signals, paired with a data-driven approach, can be used to disentangle the modular organization of the CNS. While we outline the potential of 

this framework to probe the neural correlates of motor learning, its versatility makes it broadly applicable to explore the functioning of cerebro-spinal networks in 

other experimental or pathological conditions. 
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. Introduction 

Mapping the neural patterns that drive human behavior is a central

nd daunting question of neuroscience. Each of our actions, no matter

ow simple, involves a dynamic and complex interplay between multi-

le neural structures throughout the central nervous system (CNS), from

he brain to the spinal cord. Neuroimaging techniques, such as func-

ional magnetic resonance imaging (fMRI), are instrumental in decipher-

ng these mechanisms. Despite the strong emphasis on cerebral function

n past research, non-invasive imaging of the spinal cord can also pro-

ide a window into spinal processes and has grown as a field in its own

ight (see Kinany et al., 2022b ; Landelle et al., 2021 for reviews). While

maging the spinal cord presents inherent challenges (e.g., small cross-

ectional dimensions, physiological noise, and field inhomogeneities),

echnological advances have allowed researchers to investigate various

acets of spinal activity, notably during motor tasks ( Barry et al., 2021 ;

inany et al., 2022a , 2019 ; Weber et al., 2016 ). Importantly, simulta-
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eous fMRI of the brain and spinal cord is also feasible, though it poses

ncreasing challenges due to differences in ideal MRI protocols for these

wo regions (see Tinnermann et al., 2021 for review). This approach can

ffer a comprehensive characterization of these mechanisms at multiple

evels and at a larger scale of the CNS ( Tinnermann et al., 2021 ). 

To date, the handful of studies that have exploited cerebro-spinal

ignals have primarily relied on inferential univariate techniques (e.g.,

eneral linear model – GLM), to identify regional activations related to

pecific tasks. However, such methods fall short of characterizing the

ntegration and segregation of large-scale networks mediating human

ehavior ( Friston et al., 2002 ). As such, there is a need for flexible mul-

ivariate methods that can disentangle the richness of cerebro-spinal ac-

ivity and reveal the neural states that shape our actions. To address

his knowledge gap, the current study parts ways from traditional tech-

iques and introduces a framework to achieve a concise view of the

erebro-spinal signatures of human behavior, by combining (i) a data-

riven functional connectivity method to reveal spatially and temporally
itzerland. 
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verlapping networks, the so-called innovation-driven coactivation pat-

erns (iCAPs) ( Karahano ğlu and Van De Ville, 2015 ; Kinany et al., 2020 )

nd (ii) multivariate classification. The term innovation , in this context,

efers to transient activity that is recovered using robust hemodynamic-

nformed deconvolution ( Karahano ğlu et al., 2013 ) 

We propose to demonstrate the relevance of this approach by ex-

loring a key facet of our daily lives – the acquisition and consolidation

f new motor skills. Specifically, we focus on motor sequence learn-

ng (MSL), a complex process in which complex motor skills emerge

rom sequences of individual movements that come to be executed

ointly and effortlessly through repeated practice ( Diedrichsen and Ko-

nysheva, 2015 ). MSL encompasses a wide range of motor, sensory, and

ognitive processes supported by structures distributed along the neu-

al axis ( Doyon et al., 2018 , 2009 ; Doyon and Benali, 2005 ). This intri-

ate machinery operates over multiple temporal scales, characterized by

apid improvements in the early stage of skill acquisition (i.e., within a

ingle training session), followed later by a slower development of per-

ormance over several days or weeks, as skills became consolidate and

ptimized ( Lohse et al., 2014 ; Penhune and Steele, 2012 ; Wymbs and

rafton, 2015 ). 

Traditionally, studies assessing learning-related functional plastic-

ty have focused on cortical and subcortical regions ( Dayan and Co-

en, 2011 ; Doyon et al., 2018 ), while the spinal cord was merely viewed

s a hardwired relay. Nonetheless, evidence challenging the concept

f the spinal cord as a passive relay has accumulated over the years

 Christiansen et al., 2017 ; Grau, 2014 ; Nielsen, 2016 ; Wolpaw and

ennissen, 2001 ) and physiological experiments in animals and hu-

ans have provided support for learning-dependent plasticity in the

pinal cord by probing changes in reflexes (e.g., Hoffmann reflex)

 Lungu et al., 2010 ; Meunier et al., 2007 ; Nielsen et al., 1993 ;

ielsen, 2016 ; Wolpaw, 2007 ). These observations hinted at a more

ophisticated role of the spinal cord in motor learning than initially as-

umed, and prompted the use of neuroimaging studies extending beyond

he brain. Yet, only two studies so far have taken advantage of cerebro-

pinal fMRI to pursue this question by using classic inferential methods

 Khatibi et al., 2022 ; Vahdat et al., 2015 ). 

Given its multifaceted and distributed nature, unveiling the mech-

nisms underlying MSL stands out as a challenge, providing a prime

pportunity to validate our iCAP-driven approach. To this end, we

eployed our data-driven multivariate framework in a simultaneous

rain-spinal cord fMRI dataset acquired during early and late MSL

 Khatibi et al., 2022 ). We harnessed the dynamic content of CNS signals

o uncover remarkably well-delineated cerebral and spinal networks,

epresenting building blocks that are distinctly modulated and interact-

ng to sustain evolving task demands over the course of motor learning.

hese neural states could be used to decode learning stages with a high

ccuracy, underscoring the potential of our approach to reveal meaning-

ul correlates of motor learning. Considering its versatility, this frame-

ork can readily be extended to unveil interpretable cerebro-spinal sig-

atures of aspects of human behaviors beyond those investigated in this

tudy (e.g., pain processing, neurological conditions, etc.). 

. Materials and methods 

.1. Participants 

Thirty young healthy participants were enrolled in the study

 Khatibi et al., 2022 ). All participants were right-handed and had no

istory of neurological or psychiatric disease, no motor-system compli-

ations, nor were they using neurological medications. Individuals who

reviously participated in motor-learning experiments, as well as those

ith previous training in playing a musical instrument for more than

hree consecutive years in the last five years, were excluded from the

tudy. Of these thirty participants, five subjects were subsequently ex-

luded (two dropped-out, one exhibited excessive motion, and two had

ncomplete functional scans). Consequently, 25 subjects were included
2 
n the analyses (13 females, 24.8 ± 3 years old). All participants gave

heir written informed consent to participate, and the study was ap-

roved by the Ethics Committee at the centre de Recherche de l’Institut

niversitaire de Gériatrie de Montréal (CRIUGM). 

.2. Experimental protocols 

.2.1. General procedure 
Each participant participated in six experimental sessions, dis-

ributed over six consecutive days (Figure S1A). These sessions com-

rised two MRI scans: at the beginning (Day 1) and at the end (Day 6)

f the study. At the beginning of the first experimental session, subjects

ere familiarized with the set-up by practicing a motor sequence learn-

ng (MSL) task in a mock scanner, using a different sequence than the

ne used during the actual experiment. Participants were then installed

n the MRI scanner, where functional acquisitions were obtained during

he performance of two different motor tasks (Sequence or Random, see

elow for details). During Day 2 to Day 5, participants performed a daily

raining of the sequential task while lying supine in the mock scanner. 

.2.2. Motor sequence learning paradigm 

The motor task was performed using a joystick that the subject ma-

ipulated with the dominant (right) hand. At the beginning of the task,

he cursor representing the joystick position was positioned in the cen-

er of the screen (i.e., neutral position) and indicated by a black circle.

our static targets, represented as circles, were positioned at equal dis-

ance from the center (3, 6, 9 and 12 0-clock, Figure S1B). Participants

ere instructed to move the cursor towards a target as soon as the corre-

ponding circle was filled. Once the target was reached, it disappeared

nd the circle corresponding to the following target was highlighted.

he sequence was not known in advance by the participants, who were

imply asked to reach targets as quickly as possible while being as ac-

urate as possible. The sequence was repeated ten times in each block,

ith 15 blocks in total, interleaved with rest periods of 20 s. Two dif-

erent conditions were used: (i) an 8-item Sequence Learning condition

SEQ) in which the order of the targets was sequential and repeated ev-

ry 8 reaching movements (Figure S1B), and (ii) a Random condition

RND) where targets appeared in a pseudo-random, non-sequential or-

er. During each scanning session (Day 1 and Day 6), functional MRI

cquisitions were acquired during both experimental conditions on two

eparate runs (SEQ and RND) and the order of the two runs was coun-

erbalanced between subjects. 

.2.3. Data acquisition 
Imaging data were acquired with a 3 Tesla Siemens Trio scanner

Erlangen, Germany), equipped with a 12-channel head coil paired with

 4-channel neck coil (both receive only). Extra foam pads were installed

round the subjects’ head and neck in order to minimize motion. The

socenter of the magnet was aligned to the lower edge of the head coil

i.e., approximately at the vertebral level C2/C3). 

In order to investigate the cerebro-spinal correlates of motor learn-

ng, functional images were acquired using a custom fMRI protocol en-

bling combined brain and spinal cord imaging ( Finsterbusch et al.,

013 ). Briefly, this approach allows simultaneous functional measure-

ents in two sub-volumes (brain, spinal cord) with different geomet-

ic properties (Figure S1C). As such, each sub-volume was tailored

o the region-of-interest (i.e., brain or cervical spinal cord). Optimal

him settings (linear shim terms and resonance frequencies) were de-

ermined for the two sub-volumes at the beginning of each scanning

ession. Then, shim parameters were dynamically updated during the

unctional acquisitions. Details regarding shimming procedure are dis-

ussed in ( Tinnermann et al., 2017 ). Based on a reference acquisition,

 slice-specific z-shim approach was also used to maximize the signal

ntensity within the spinal cord ( Finsterbusch et al., 2012 ). Forty to

3 slices (depending on the participant size) were acquired for both
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ub-volumes. Specifically, the brain sub-volume contained 30 to 33 ax-

al slices (FOV = 220 ×220 mm 

2 , in-plane resolution = 2 ×2 mm 

2 , slice

hickness = 3.5 mm, no gap between slices, flip angle = 90º, GRAPPA

actor 2, TE = 30 ms). Such parameters allowed to cover the whole-

rain of most participants, except for a few subjects for whom the box

as tilted upward by approximately 10° (around the x axis), hence cut-

ing a small part of the upper motor cortex in the field of view. As for the

pinal sub-volume, 8 to 10 slices were acquired (FOV = 132 ×132 mm 

2 ,

n-plane resolution = 1.2 ×1.2 mm 

2 , slice thickness = 5 mm, 4 mm gap

etween slices, flip angle = 90º, GRAPPA factor 2, TE = 33 ms). The

maged region extended from the C3 to T1 spinal cord segment levels.

he Repetition Time (TR) was 3140 ms for S01, 3200 ms for S02 to

04 and 3050 ms for the other subjects, as the TR was slightly opti-

ized in the first acquisitions. Importantly, the same TR was always

sed within the same subject. To limit noise, only signal from the head

oil was used for the brain images, while only signal from the neck

oil was used for the spinal cord images. A 3D-MPRAGE T1-weighted

natomical image was also acquired (175 sagittal slices, head to upper

horacic spine, TR = 2300 ms, TE = 3.45 ms, flip angle = 9º, TI = 1.1 s,

OV = 192 ×240 ×320 mm 

3 , voxel resolution 1 ×1 ×1 mm 

3 ). 

.2.4. Data preprocessing 
All preprocessing steps were performed independently for the brain

nd the spinal cord using the Oxford Center for fMRI of the Brain’s (FM-

IB) Software Library (FSL) ( Jenkinson et al., 2012 ) and the Spinal Cord

oolbox (SCT) (versions 3.1 to estimate warping fields and for motion

orrection (see Khatibi et al., 2022 ) and 4.3 for other processing steps)

 De Leener et al., 2017 ). 

1) Motion correction 

Brain: Following removal of the first two volumes to allow for

1 equilibration effects, non-brain regions were removed using BET

 Smith, 2002 ) and motion correction was applied using MCFLIRT

 Jenkinson et al., 2002 ). 

Spinal cord: Similarly to the brain, the first two fMRI volumes were

iscarded and slice-wise motion correction was performed with the

ean image as reference, using the SCT ( De Leener et al., 2017 ). The cor-

ected time series were visually inspected and parameters were adapted

f needed. 

Motion parameters were extracted independently for the brain and

pinal cord and used to compute the mean framewise displacement

FD BR and FD SC ) for each subject, day and condition. A repeated mea-

ures ANOVA with Day (1 vs 6) and Condition (SEQ vs RND) as within-

ubject factors was conducted to assess changes in FD BR and FD SC . Per-

ormances across days and conditions were then evaluated using paired

-tests (Bonferroni corrected for multiple comparisons). 

2) Image denoising 

Brain: FSL’s FEAT tool was used to regress out signals of no in-

erest from fMRI time series. The following noise regressors were in-

luded: six motion correction parameters (translations and rotations),

SF and white matter signals. Residuals were spatially smoothed using

n isotropic Gaussian kernel with a FWHM of 4 mm 

Spinal cord: Noise regression was also performed in the spinal cord

sing the following confounds: physiological noise modeling (PNM) re-

ressors ( Brooks et al., 2008 ), slice-wise motion correlation parameters

x and y), CSF signal and mean global signal outside the spinal cord.

he resulting residuals were then spatially smoothed using a 3D Gaus-

ian kernel with a full width half maximum (FWHM) of 2 ×2 ×4 mm 

3 ,

long the spinal cord. 

3) Estimating warping fields for normalization 

Brain: Functional-to-anatomical and anatomical-to-template trans-

ormations were carried out using FLIRT ( Jenkinson et al., 2002 ). Reg-

stration from high resolution structural to standard space (3 mm reso-

ution) was then further refined using FNIRT nonlinear registration. 
3 
Spinal cord: Spinal cord segmentation was performed automatically

n the T1 anatomical images using a two-step process: the spinal cen-

erline was extracted using a first segmentation and subsequently used

o yield a smoothed image on which a second segmentation was ob-

ained. Segmentations were visually inspected and manual adjustments

ere performed when necessary. Landmarks were placed at the C4 and

7 vertebrae and used to normalize the structural scans to the MNI-

oly-AMU template ( Fonov et al., 2014 ). The spinal cord was semi-

utomatically segmented (i.e., with manual corrections) on the mean

otion-corrected fMRI volume. All segmentations were performed by

ne rater and inspected by a second examiner, in order to optimize

egmentation quality. This segmentation was used to support the reg-

stration of the mean motion-corrected to the T1 anatomical scan.

unctional-to-template warping fields were obtained by concatenat-

ng the functional-to-anatomical and anatomical-to-template transfor-

ations. 

. Data analysis 

.1. Task performance 

Subject’s performance during each block of practice of the two exper-

mental conditions (Sequence and Random) was evaluated by measuring

he movement’s jerkiness and the duration of each block. We expected

hat motor skill learning would be reflected by a reduction in move-

ent jerkiness; an indicator that the sequence of movements was being

earned and that participants were able to predict the next stimulus and

djust the trajectory of their movements accordingly. Briefly, jerkiness

as computed as the third-time derivative of the pointer displacement,

or each time point. Values were then integrated to obtain an Integrated

bsolute Jerk (IAJ) index ( Goldvasser et al., 2001 ) for each task block.

ikewise, we hypothesized that block durations would decrease over

he course of the experiment, reflecting participants’ improved ability

o perform the movements more quickly with practice. A repeated mea-

ures ANOVA with Blocks (1:7 vs 9:15) x Day (1 vs 6) x Condition (SEQ

s RND) as within-subject factors was conducted to assess improvement

n performance, for both IAJ and block duration. Performances across

ays and conditions were then evaluated using paired t-tests (Bonfer-

oni corrected for multiple comparisons). As for within-session learning,

 similar analysis was conducted to compare the level of jerkiness and

verage block duration in the first seven blocks against the last seven

locks, for both days and conditions. 

.2. Extracting innovation-driven coactivation patterns (iCAPs) 

We deployed the (SPiC)iCAP frameworks to extract spinal and brain

CAPs ( Karahano ğlu and Van De Ville, 2015 ; Kinany et al., 2020 ).

riefly, the raw BOLD signals were denoised, and a regularized HRF

econvolution was employed to recover the activity-inducing signals,

hanks to the Total Activation (TA) framework ( Karahano ğlu et al.,

013 ). Transient activity (i.e., the so-called innovation signal) was ob-

ained as the temporal derivative of the activity-inducing time courses. A

wo-step thresholding process was then used to select significant inno-

ation frames: (i) temporal thresholding: a surrogate distribution was

enerated by applying TA to phase randomized data and a 5% confi-

ence interval was used to pick significant voxels; (ii) spatial thresh-

lding: only the frames containing more that 5% of active voxels were

ept. This procedure was applied to each run independently, for both

he spinal cord and the brain. Significant innovation frames were nor-

alized to the MNI-Poly-AMU and MNI template, respectively. Of note,

 mask, shown in Figure S2, was used to constrain brain analyses to

egions relevant to the study of motor control and learning, as defined

ased on previous literature ( Dayan and Cohen, 2011 ; Doyon and Be-

ali, 2005 ; Hardwick et al., 2013 ; Vahdat et al., 2015 ). As for the spinal

ord, the common imaged region was used and extended from C5 to T1

pinal cord segment levels. The spatially normalized maps were masked
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nd concatenated (i.e., both days and conditions, for all subjects, in-

ependently for the brain and the spinal cord) and temporal K-means

lustering was conducted to obtain group level iCAP maps. Similarly

o Zöller et al. (2019a, 2019b) , the optimal number of clusters was de-

ermined by means of consensus clustering ( Monti et al., 2003 ), which

ses a subsampling scheme to estimate clustering stability (Figure S3).

pecifically, K-means clustering was applied to multiple subsets of the

ata to generate a consensus matrix indicating the fraction of subsets for

hich two frames were clustered together. Ideally, two frames should

ither (i) always be clustered together (i.e., fraction value of 1) or (ii)

ever be clustered together (i.e., fraction value of 0). This procedure was

epeated for different values of K, yielding a consensus matrix for each

 of the selected range. The average consensus (i.e., mean consensus per

luster) and the cumulative distribution function of values in the con-

ensus matrices were then probed to select the best clustering solution.

t the brain level, 17 iCAPs were recently reported to describe resting-

tate activity ( Tarun et al., 2021 ; Zöller et al., 2019b ). In order to obtain

 similar level of detail, we applied consensus clustering for K BR ∈ [14,

0] (i.e., range of ± 3 compared to these previous studies). Results are

resented in Figure S3 and prompted the selection of K BR = 15 for fur-

her analyses. As for the spinal cord, we relied on a priori knowledge on

natomy and explored a range corresponding to the potential number

f dorsal and ventral components, expected to be around 10, as 5 spinal

ord segment levels were imaged. Specifically, consensus clustering was

valuated for K SC ∈ [7, 13] (i.e., range of ± 3 compared to anatomical

xpectations) and we opted for K SC = 11 based on the consensus clus-

ering quality measures. In order to ensure that the spatial organiza-

ion of iCAPs was stable across conditions (i.e., for both days and both

asks), we computed condition-specific iCAPs maps (i.e., mean of the

rames of one condition, assigned to a particular iCAP). Stability was

valuated using cosine similarity and Dice coefficients (maps binarized

ith a threshold at Z = 2). Finally, subject-specific activity-inducing

ime courses were obtained for all iCAPs (brain and spinal cord) using

patio-temporal transient-informed regression ( Zöller et al., 2019a ). As

oth the RND and SEQ tasks were self-paced, time courses were aver-

ged per task / rest block to allow comparisons between subjects. 

.3. Classification of cerebro-spinal correlates of MSL 

A multivariate data-driven approach was employed to highlight

rain and spinal correlates of MSL. Specifically, we used Linear Dis-

riminant Analysis (LDA) to investigate whether distinct neural activity

atterns were associated with the execution of RND or SEQ tasks, in Day

 and Day 6. Features were defined as the mean difference of activity

uring task and rest blocks for each iCAP (i.e., 11 spinal cord features

nd 15 brain features). Values were Z-scored and fed to a two-class LDA

lassifier, with leave-one-subject-out cross validation. Confusion matri-

es were computed using all cross-validation folds and statistical signifi-

ance was assessed using non-parametric permutation tests. Specifically,

000 classifications were performed with randomly assigned labels and

sed to build a null distribution on which significance thresholds were

alculated. The significance of the LDA weights was evaluated with the

ame procedure. A similar procedure was employed to compare MSL

i.e., SEQ > RND) between sessions. 

.4. Investigating iCAP-informed correlations 

In order to explore whether distinct cerebro-spinal interactions were

ssociated with MSL, we performed a series of correlation analyses

etween the spinal cord and the brain. In particular, we examined

ask-dependent functional connectivity by leveraging the ability of the

CAP framework to retrieve activity-inducing signals unblurred from the

emodynamic lag. Functional connectivity estimates were performed

sing iCAPs as seeds. Specifically, time courses from each spinal iCAP

ere correlated with whole-brain activity-inducing signals from the

rain. In order to rule out that connectivity merely reflected shared task
4 
nput (i.e., correlation with task timings) ( Cole et al., 2019 ), we focused

ur analysis only on the portions of the time courses corresponding to

ask blocks. To minimize the impact of state transition, one TR was re-

oved at both ends of each block, and all task blocks were concate-

ated. Pearson’s correlation coefficients were computed between these

ask-only time courses, for all subjects, days and conditions. Values were

hen Fisher Z-transformed and MSL-related correlation maps were ob-

ained by contrasting the SEQ and RND conditions within each subject,

or each day. Group-level maps were generated using a mixed-effects

eneral linear model ( Beckmann et al., 2003 ), with FSL’s FLAME (FM-

IB’s Local Analysis of Mixed Effects). Correction for multiple compar-

sons was conducted using Gaussian Random Field (GRF) theory ( Z > 3,

 < 0.001), with FSL’s smoothest and cluster functions. 

. Results 

We assessed motion using framewise displacement, separately for the

pinal cord (FD SC ) and the brain (FD BR ), across the different days and

onditions (Figure S4). A two-way repeated-measures ANOVA revealed

 significant interaction effect between day and condition for both the

pinal cord (F(1,24) = 248.1, p < 0.001) and the brain (F(1,24) = 133.09,

 < 0.001). Paired t-tests indicated that on Day 6, motion estimates

ere significantly smaller for RND than for SEQ, both in the spinal

ord (t(24) = 4, p < 0.01, difference of 0.08 ± 0.02 mm, mean ± SE

cross subjects) and in the brain (t(24) = 4.76, p < 0.001, difference of

.03 ± 0.01 mm). 

.1. Behavioral performance: motor sequence learning leads to smoother 
ask execution 

To probe early and late MSL, subjects were scanned at the begin-

ing (Day 1) and end (Day 6) of a MSL training regimen (Figure S1A).

cans were acquired during sequential (SEQ) or random (RND) move-

ent, performed with the right hand (15 blocks of 80 trials interleaved

ith rest periods). Participants’ performance over time and conditions

as evaluated using a measure of movement jerkiness (i.e., integrated

bsolute jerk [IAJ]) ( Fig. 1 A). Distinct learning curves were observed,

s emphasized by a significant three-way interaction between block,

ay and condition (repeated measures ANOVA, F(1,24) = 859.06, p <
.001). In particular, learning effects were present across days (i.e., sig-

ificant interaction between day and condition, F(1,24) = 888.15, p <
.001) as well as within the same day (i.e., significant interaction be-

ween block and condition (F(1,24) = 986.96, p < 0.001). Paired t-tests

ere used to further analyze these learning dynamics and confirmed an

mprovement between sessions (t(24) = 2.85, p < 0.05, Fig. 1 B) as well

s within session (on Day 1: t(24) = 4.44, on Day 6: t(24) = 4.40, p
 0.01, Fig. 1 C), for the SEQ, but not for the RND condition. As ex-

ected, these observations suggest that repeated practice of the SEQ

ask, as opposed to the non-specific effect of random motor practice,

ed to smoother movements, hence indicating that subjects had learned

he repeating motor sequence. In order to disentangle learning effects

rom motor practice, MSL was defined as SEQ > RND in further analy-

es. Block duration (i.e., reflecting speed) was also analyzed as a com-

lementary measure of task execution (Fig. S5). We observed a signifi-

ant three-way interaction between block, day and condition (Fig. S5A,

(1,24) = 3458.7, p < 0.001), with significant interaction between day

nd condition (F(1,24) = 3556.5, p < 0.001) and between block and con-

ition (F(1,24) = 3624.8, p < 0.001). As for speed, SEQ movements were

onsistently performed faster than RND ones ( p < 0.001) (Fig. S5B-C).

n improvement between sessions was observed for SEQ (t(24) = 8.46,

 < 0.001) and, to a lesser extent, for RND (t(24) = 3.30, p < 0.05) (Fig.

5B). Over the course of Day 1, there was a significant increase in move-

ent speed for the SEQ condition (t(24) = 6.19, p < 0.001), but not for

he RND condition (Fig. S5C). During Day 6, both SEQ (t(24) = 6.87,

 < 0.001) and RND (t(24) = 5.70, p < 0.001) movements showed a

ecrease in block duration. 
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Fig. 1. Behavioral performance. Performance was assessed using an Integrated Absolute Jerk (IAJ) measure, which characterizes the smoothness of movement 

trajectories (i.e., a decrease in IAJ values reflects an increase in smoothness). A. IAJ averaged across all subjects for each block, illustrating learning curves for both 

days and conditions. B. Comparison of subjects’ performance (i.e., mean IAJ values) between days for both conditions. C. Comparison of the performance between 

the early (first seven blocks: B1-B7) and late (last seven blocks: B9-B15) phases of learning, for both days and both conditions. Values are presented as mean ± SE. 

n.s. = non significant, ∗ corresponds to p < 0.05, ∗ ∗ to p < 0.01, and ∗ ∗ ∗ to p < 0.001 (paired t-tests corrected for multiple comparisons). 
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.2. Brain and spinal activity can be decomposed into meaningful networks

We applied the iCAP framework in the brain and spinal cord inde-

endently, so as to retrieve regional iCAPs across all subjects and con-

itions. Fifteen brain iCAPs were extracted and corresponded to well

elineated cortical and subcortical regions known to be involved in var-

ous aspects of motor learning and practice ( Fig. 2 A, see Table S1 for de-

ails of the structures involved in each network). Notably, a task-specific

etwork was identified (iCAP 6) and included contralateral sensorimo-

or cortices, the premotor areas bilaterally and the ipsilateral cerebel-

um. Of note, there were several additional iCAPs comprising parts of

he cerebellum (iCAPs BR 3, 7, 8, 13 and 14). Moreover, multiple areas

nown to be involved in various aspects of motor control and learning

ere present, such as the striatal regions of the basal ganglia (iCAPs BR 

 and 11), the premotor cortex (iCAPs BR 9 and 10) and areas support-

ng visuospatial perception (iCAPs BR 5 and 10). The anterior cingulate

ortex (ACC), which notably plays a role in movement coordination

 Wenderoth et al., 2005 ) and error detection ( Seidler et al., 2013 ) was

lso well represented (iCAP BR 2, 11 and 12). Other regions comprised

he somatosensory areas (iCAPs BR 2, 9 and 15), fronto-parietal networks

iCAP BR 4) and hippocampus (iCAPs BR 1 and 13). At the level of the

pinal cord, eleven iCAPs were identified ( Fig. 2 B), covering a region

xtending between C5 to T1 spinal cord segment levels. As previously

eported ( Kinany et al., 2020 ; Kong et al., 2014 ), all maps spanned a lim-

ted rostro-caudal extent. ICAPs appeared to be divided into dorsal and

entral components, likely reflecting sensory and motor mechanisms.

lthough all patterns appeared to spread bilaterally when visualized at

 threshold of Z > 2, there was a noticeable trend towards right-sided

ateralization (i.e., ipsilateral to the task). This was supported by signif-

cant differences in both the number of voxels ( p < 0.05) and amplitude

 p < 0.001) between the left (1437 ± 101 voxels, mean number of voxels

 SD over iCAPs; 3.03 ± 0.17, mean Z score ± SD over iCAPs) and right

1654 ± 188 voxels; 3.14 ± 0.14) hemicords. 

To ensure that these networks could reliably be used to character-

ze cerebro-spinal activity under different conditions, we assessed their

patial similarity across days and tasks. Spatial patterns were highly

table, both in the brain (cosine similarity = 0.97 ± 0.01, Dice coef-

cient = 0.72 ± 0.20, mean over iCAPs ± SD) and in the spinal cord

cosine similarity = 0.99 ± 0.002, Dice coefficient = 0.86 ± 0.03). Given

he spatial robustness of the functional organization as described using

CAPs, we then probed the temporal expression of these building blocks

n each subject. Task-related changes in activity that were differentially

odulated by SEQ and RND task practice were observed in the brain
5 
nd the spinal cord ( Fig. 2 C), hence suggesting the ability of the iCAP

ramework to capture learning dynamics. 

To rule out the possibility that iCAP signals were confounded by

otion, we investigated whether mean iCAP task activities were cor-

elated with the corresponding framewise displacement across subjects

i.e., correlation of FD SC with the spinal iCAPs and FD BR with the brain

CAPs). Our analysis revealed no significant correlation between motion

nd iCAP activities, for all iCAPs, regions, days, and conditions. 

.3. Cerebro-spinal dynamics are predictive of early and late motor 
earning 

In order to further explore the relevance of these dynamics, we

onducted a multivariate classification analysis to determine whether

pecific activity profiles were associated with different learning stages

 Fig. 3 ). Using mean iCAP task activities as features, we first aimed to

uantify changes in cerebro-spinal activity pertaining to within-session

SL, as reflected by the difference between SEQ and RND task practice.

n both days, the task could be decoded with a high accuracy, as empha-

ized by diagonal confusion matrices ( Fig. 3 A). On Day 1, the average

ccuracy was 64% ( p < 0.05 against chance level, non-parametric per-

utation testing), while it reached 86% on Day 6 ( p < 0.001). Linear Dis-

riminant Analysis (LDA) weights were stable between cross-validation

olds (cosine similarity = 0.98 ± 0.008 on Day 1 and 0.99 ± 0.02 on

ay 6, mean ± SD over folds) and they revealed distinct activity pat-

erns linked to early (Day 1,) and late (Day 6) MSL ( Figs. 3 A, S7A-B).

n Day 1, iCAP SC 10 and iCAP BR 2 were consistently engaged in clas-

ifying MSL (i.e., SEQ > RND), as highlighted by a high discriminative

ower. These iCAPs correspond, respectively, to the ventral side of C8

ipsilateral to the task, as highlighted in Figure S6) and to ACC and so-

atosensory regions. On Day 6, numerous features carried discriminant

ower, with significant weights found for six iCAPs. In particular, two

pinal iCAPs (iCAPs SC 4 and 6, corresponding to ventral networks at

he C6 and C7 spinal cord segment levels, with iCAP SC 4 spreading bi-

aterally and iCAP SC 6 focused on the ipsilateral side, Fig. S6) and two

rain iCAPs (iCAPs BR 1 and 15, corresponding to striatal regions of the

asal ganglia and to sensorimotor regions) were positively associated

ith MSL. On the other hand, iCAPs BR 6 and 10, which mainly include

otor and visuospatial regions, appeared to be less prominent during

he late phase of MSL. 

To better characterize the temporal evolution of learning-specific

eural correlates, we also classified MSL activity patterns between ses-

ions ( Fig. 3 B). For that purpose, iCAP activity during the SEQ and RND
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Fig. 2. iCAP spatio-temporal properties – The iCAP framework 

was employed to identify cerebral (A.) and spinal (B.) networks 

for all subjects (for both days, 1 and 6, and both conditions, 

SEQ and RND). The average consensus value of the frames 

forming each iCAP is indicated in italic. A. Spatial patterns 

for the 15 iCAPs that were extracted at the level of the brain. 

Networks correspond to regions (see Table S1 for details) with 

distinct functional and anatomical relevance. Maps are over- 

laid on the MNI template. ACC = Anterior Cingulate Cortex. B. 

Spatial patterns for the 11 spinal iCAPs. Networks were clearly 

segregated in the rostrocaudal direction, reflecting the segmen- 

tal anatomy of the spinal cord. Dorsal (i.e., sensory) and ven- 

tral (i.e., motor) iCAPs are present. Maps are overlaid on the 

MNI-Poly-AMU template ( Fonov et al., 2014 ) and spinal cord 

segment levels are provided as reference ( Cadotte et al., 2015 ). 

L = left, R = right, D = dorsal, V = ventral. C. Examples of task- 

related timecourses for one brain iCAP (top panels) and one 

spinal cord iCAP (bottom panels), corresponding to practice 

of the SEQ (left panels) and RND (right panels) tasks, on Day 

1. The brain iCAP corresponds to a motor task-specific iCAP 

(iCAP BR 6), while the spinal cord iCAP (iCAP SC 10) is related 

to the ventral side of spinal cord segment level C8. Timecourses 

are normalized by the mean value during rest for this partic- 

ular iCAP. Each bar corresponds to the mean activity in one 

block (task in orange for SEQ, blue for RND, and rest in gray). 

Values are presented as mean over subjects ± SE. 
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ask practice, on both days, were taken as features. Again, the high clas-

ification accuracy (on average 70%, p < 0.01 against chance level, non-

arametric permutation testing) underlined that cerebro-spinal iCAPs

ere differentially activated during early (fast) and late (slow) MSL

 Figs. 3 B, S7C). LDA weights were stable across cross-validation folds

cosine similarity = 0.98 ± 0.005) and indicated that iCAP SC 6 (ventral

ide of spinal cord segment level C7) along with iCAPs BR 1 and 15 (basal

anglia and sensorimotor) were involved in late motor learning (MSL D6

 MSL D1), in line with within-session observations. In contrast, the fast

otor learning phase (MSL D1 > MSL D6) displayed a functional pat-

ern including iCAP SC 10 (ventral side of C8) as well as iCAPs BR 6 and

0 (motor and visuospatial). 

In summary, these findings underscored the functional relevance of

he iCAP-derived organization, demonstrating that it can be leveraged

o decode learning phases with a high accuracy. Furthermore, we could

elineate the neural signatures underlying learning across cortical, sub-

ortical, and spinal levels. This provides a clear and concise system-level

escription of the complex neuro-functional changes underlying MSL. 
6 
.4. Late motor learning changes brain-spinal cord interactions 

To better understand the mechanisms by which the brain and the

pinal cord support MSL, we next investigated whether their relationship

xhibited learning-dependent characteristics. To this end, we used the

pinal iCAP networks as seeds and examined their functional connectiv-

ty with supraspinal regions across days and conditions. Specifically, we

ompared connectivity patterns related to performance of both sequen-

ial and random conditions on both days. No significant difference was

bserved on Day 1. In contrast, the same analysis revealed significant

earning-dependent connectivity changes on Day 6 ( Fig. 4 A). In particu-

ar, we observed an increased interaction between iCAP SC 3 (i.e., dorsal

ide of C6) and the left cerebellum (Crus I), as well as between iCAP SC 

 (i.e., ventral side of C8) and the left sensorimotor cortex (hand area).

oth spinal iCAPs exhibited a lateralized focus on the right side, ipsilat-

ral to the task (Fig. S6). In order to gain additional insights into these

hanges, we finally assessed the mean correlation between the reported

erebral clusters and the associated spinal iCAPs, for the different days
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Fig. 3. Decoding cerebro-spinal correlates of early and late MSL. A. Independently within each session (i.e., Day 1 and Day 6), two-class LDA classifiers (leave-one- 

subject-out cross validation) were employed to discriminate between SEQ and RND task practice using iCAP activities as features. The accuracy of these classifications 

is highlighted by the confusion matrices, for both days (left panel). On Day 1, the average accuracy was 64%, while it reached 86% on Day 6. LDA weights (mean 

over cross-validation folds ± SD) are displayed in the middle panel. Significant values are indicated and the corresponding iCAPs are summarized in the right panel. 

B. A two-class LDA classifier (leave-one-subject-out cross validation) was used to discriminate between activity patterns associated with MSL (defined as the contrast 

SEQ > RND) between the two sessions (i.e., Day 1 and Day 6). The resulting confusion matrix is displayed in the left panel and shows an average accuracy of 70%. 

LDA weights (mean over cross-validation folds ± SD) and the iCAPs corresponding to significant weights are presented in the middle and right panels, respectively. 
∗ corresponds to p < 0.05, ∗ ∗ to p < 0.01 and ∗ ∗ ∗ to p < 0.001 (non-parametric permutation testing). ACC = anterior cingulate cortex, S1 = primary somatosensory 

cortex, M1 = primary motor cortex. 
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nd conditions ( Fig. 4 B). This underscored that, in the late phase of mo-

or learning, a positive synchronization with the cerebellum emerged in

EQ task practice, while RND task performance led to a negative corre-

ation between the caudal cervical cord and the sensorimotor cortex. 

Altogether, these results emphasized the potential of iCAP-driven

unctional connectivity to shed light on the specific brain-spinal cord

nteractions that arose during the early and late learning phases of mo-

or skill acquisition. 

. Discussion 

In this study, we aimed to evaluate the potential of a data-driven

ramework that combines large-scale cerebral and spinal networks de-

ived from iCAPs with multivariate classification to decipher how CNS

tructures dynamically operate to mediate human behavior. Drawing
7 
n a recent dataset ( Khatibi et al., 2022 ), in which fMRI time series

ere acquired simultaneously from the brain and spinal cord during

arly (Day 1) and late (Day 6) stages of MSL, we illustrate the abil-

ty of this approach to provide a strikingly concise view of the neu-

al states linked to learning-induced functional plasticity at multiple

NS levels and timescales. A compelling observation was a shift from

he caudal spinal cord segment level C8 at the onset of learning to the

ore rostral C6 and C7 spinal cord segment levels following long-term

ractice of the sequence. In the brain, extended learning generated a

ransition from motor and visuospatial networks to striatal and sensori-

otor networks. Using iCAP-informed functional connectivity analyses,

e also uncovered changes in neural synchronization in late learning,

ith the interaction between the spinal cord and cerebellum becoming

tronger during sequential practice while the spinal cord became less

ynchronized with cortical sensorimotor regions during random move-
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Fig. 4. Brain-spinal cord interactions during motor learning. An iCAP-informed correlation analysis (i.e., correlating spinal iCAPs time courses with brain activity 

inducing signals) was used to inspect learning-induced brain-spine connectivity patterns (i.e., SEQ vs RND) during the two sessions. A. While no significant difference 

was observed during Day 1, two brain-spinal cord networks emerged in late MSL (i.e., stronger during SEQ task practice than RND task practice on Day 6). The 

first network (left) encompasses iCAP SC 3 and a region in the left cerebellum (Crus I). The second one (right) corresponds to iCAP SC 8 and a brain region in the left 

sensorimotor cortex (hand area). Spinal iCAPs are presented along with the corresponding brain statistical maps (corrected for multiple comparison using Gaussian 

Random Field (GRF) theory, p < 0.001). B. For the two brain-spinal cord networks, we present bar plots showing the mean Fisher Z-transformed correlations values 

independently for the different days and conditions. Values are provided as mean ± SE. SMC = sensorimotor cortex. 
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ents. Taken together, our findings not only corroborate observations

erived from inferential univariate approaches, but support the use of

ur data-driven framework to disentangle cerebro-spinal signals into

ell-delineated and interpretable signatures, here in the context of mo-

or learning, and more generally to probe the large-scale neural corre-

ates of human behavior in healthy and impaired populations. 

.1. Modular description of task-relevant brain and spinal functional 
etworks 

To parse out the building blocks of cerebral and spinal activities,

e deployed a dynamic connectivity approach based on hemodynamic-

nformed deconvolution of BOLD time courses ( Karahano ğlu and Van De

ille, 2015 ; Kinany et al., 2020 ). Even though this methodology has pre-

iously been used in resting-state studies ( Kinany et al., 2022a , 2020 in

he spinal cord; Piguet et al., 2021 ; Pirondini et al., 2022 ; Tarun et al.,

021 ; Zöller et al., 2019b in the brain), this is the first demonstration,

o our knowledge, that it can be extended to probe task-related signals.

ere, we have highlighted its ability to isolate the constituent elements

f neural activity, which are dynamically combined to meet the demands

f the tasks. 

Unsurprisingly, the 15 brain networks did not correspond to com-

only observed resting-state patterns, but rather exhibited motor- and

earning-relevant structures ( Fig. 2 A, Table S1). Notably, iCAP BR 6 in-

luded contralateral sensorimotor cortices, bilateral premotor cortices

nd superior parietal lobules, as well as ipsilateral cerebellum. These

egions correspond to well-known structures involved in movement gen-

ration ( Miall, 2013 ); their lateralization advocating for the task-specific

ature of this network. In addition, the iCAP-derived organization de-

ineated networks that comprised striatal regions of the basal ganglia,

s well as distinct anatomically and functionally meaningful subregions

f the cerebellum. This is also in line with knowledge on the neural sub-

trates mediating motor skill learning, as both the cortico-striatal and

ortico-cerebellar circuits have been proposed to play a critical role in

his form of procedural memory ( Dayan and Cohen, 2011 ; Doyon et al.,

018 ). Several networks also included parietal regions involved in rep-

esentation of the hands and in visuospatial guidance ( Hardwick et al.,

013 ), an expected result owing to the nature of the motor task (vi-

ual presentation of targets to be reached using a joystick). The latter

egions were combined with the premotor cortex, also implicated in

patial planning of movement ( Tanji, 2001 ). Finally, the anterior cin-

ulate cortex (ACC), known to participate in movement coordination

 Wenderoth et al., 2005 ) and error processing ( Seidler et al., 2013 ), was

lso observed in several networks. 

With regards to the 11 spinal iCAPs ( Fig. 2 B), we isolated networks

orresponding to spinal cord segment levels and exhibiting both dorsal
8 
i.e., sensory) and ventral (i.e., motor) components, similar to resting-

tate studies ( Barry et al., 2014 ; Kinany et al., 2020 ; Kong et al., 2014 ;

ahdat et al., 2020 ). Interestingly, all networks were bilateral, despite

he unilaterality of the task. Although unilateral networks could emerge

ith higher numbers of components ( Kinany et al., 2020 ; Kong et al.,

014 ), the current study instead resorted to a limited level of granular-

ty, with the aim of accessing simple large-scale building blocks of spinal

ord’s functional architecture. 

Importantly, we also harnessed the time-varying nature of the iCAP

ethod to confirm that the temporal dynamics of both cerebral and

pinal modules displayed fluctuations in activity related to task perfor-

ance ( Fig. 2 C), further underscoring their functional relevance. 

.2. Data-driven signatures of early and late motor learning 

Capitalizing on this modular description, we implemented a multi-

ariate classification approach to identify patterns reflecting MSL at dif-

erent timescales. To this end, we relied on the availability of fMRI time

eries acquired during RND and SEQ tasks in the early (Day 1) and late

Day 6) stages of learning. Importantly, the behavioral results ( Fig. 1 )

onfirmed that within- and between-session improvements were specific

o the SEQ task, hence suggesting that we could distinguish skill learning

rom the subjects’ motoric performance. In line with these observations,

e showed that activity patterns associated with the SEQ and RND tasks

n each session could be classified with high accuracy ( Fig. 3 A). This en-

ailed an increase in discriminability from Day 1 (64%) to Day 6 (86%),

uggesting a stabilization of the underlying neural structures as the skills

ecame consolidated and increasingly automatic ( Diedrichsen and Ko-

nysheva, 2015 ). Further advocating for the specificities of the neural

ctivity patterns associated with early and late MSL, we also noted that

hey could be classified between days with a mean accuracy of 70%

 Fig. 3 B). Nonetheless, the observation that late MSL could occasionally

e misclassified as early MSL suggests that there may also be partial

verlap in the learning mechanisms across sessions. 

Critically, distinct cerebro-spinal structures were involved in dis-

riminating between tasks. In the brain, we found a number of iCAPS

howing significant discriminative power. On Day 1, one cortical iCAP

iCAP BR 2) was found to be associated with SEQ practice. Composed of

egions in the ACC and S1, we posit that this network may contribute to

he initial learning of the sequence through processes supporting sensory

eedback and error correction ( Hardwick et al., 2013 ). Likewise, we ob-

erved that networks encompassing premotor areas (iCAPs BR 6 and 10)

ere tied to early MSL, in line with evidence pointing at a dominant

ontribution of these regions during the formation of sequence-specific

nowledge ( Lohse et al., 2014 ; Penhune and Steele, 2012 ; Wymbs and

rafton, 2015 ). Following training, a global decrease was observed in
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ask-specific sensorimotor areas (iCAP BR 6), along with visuospatial re-

ions (iCAP BR 10), potentially indicating that sequential movements

ere done effortlessly after several days of practice, with minimal re-

iance on visual information. These diminutions occurring with late

earning were accompanied by an increase of activity in other cortical

nd subcortical domains, in particular in a network comprising striatal

nd hippocampal regions (iCAP BR 1), and in an iCAP including bilat-

ral sensorimotor regions (iCAP BR 15). Importantly, cortico-striatal sys-

ems are presumed to mediate MSL consolidation ( Doyon et al., 2018 ,

003 ; Doyon and Benali, 2005 ; Lohse et al., 2014 ), notably by means

f interactions with the hippocampus ( Albouy et al., 2013 ). Further-

ore, these observations are in agreement with a reported shift from a

ask-specific cortical network in short-term learning, to a bi-hemispheric

ortical and subcortical network in long-term learning ( Floyer-Lea and

atthews, 2005 ). 

In the spinal cord, our findings emphasized several networks posi-

ively associated with MSL, with disparate regions dominating during

he early and late learning intervals. Specifically, a shift from caudal

C8, iCAP sc 10) to rostral (C6-C7, iCAPs sc 4 and 6) spinal cord segment

evels occurred from Day 1 to Day 6. These networks were located ven-

rally, pointing to their motor essence, and coincided with innervation

ites of fingers and wrist muscles, respectively ( Kendall et al., 2005 ;

inany et al., 2019 ). We hypothesized that the shift in rostro-caudal

ctivity arising throughout learning may indicate a temporal evolution

f the motor strategies employed by the participants to achieve smooth

equential motion. Initially, accurate movements would rely on distal

uscles, as finger grip enables precise control of the joystick and allows

or prompt trajectory correction in the event of errors. In contrast, a

ore optimal muscle control scheme would develop following practice,

eading to a decrease in finger activations, coupled with the emergence

f synergistic strategies involving more proximal muscles, such as the

rist actuators. As a matter of fact, synergies have been proposed as

 way to simplify complex motor control, by simultaneously recruiting

uscles (i.e., muscle synergies, D’Avella et al., 2003 ; Mussa-Ivaldi et al.,

994 ) or joints (i.e., postural synergies, Santello et al., 1998 ) in a coor-

inated fashion. Here, such an hypothesis is also supported by changes

n muscular activations in the different phases of learning ( Khatibi et al.,

022 ). 

In conclusion, we have exposed distributed networks of cortical,

ubcortical and spinal structures that selectively contribute to the ac-

uisition and consolidation of novel skills. While this study corrobo-

ates prior GLM-based investigations of task-related activity during MSL

 Khatibi et al., 2022 ), it also extends them by revealing a concise low-

imensional representation of large-scale learning-induced plasticity in

 data-driven manner. From a methodological viewpoint, these results

end support to the use of this framework to delineate clear and in-

erpretable signatures of MSL and, more generally, of other aspects of

uman behavior. 

.3. Integrated brain-spinal cord networks in late learning 

Finally, we leveraged the ability of the iCAP framework to retrieve

ime series unblurred from the hemodynamic lag, and thus conducted an

CAP-informed correlation analysis to further characterize the cerebro-

pinal interplay underlying learning. This revealed that two brain-spinal

ord networks emerged following long-term practice ( Fig. 4 A), involving

n increased correlation between the spinal cord and the cerebellum, ac-

ompanied by an increased anti-correlation with the sensorimotor cor-

ex during performance of the RND condition. Interestingly, cerebro-

pinal networks have been formerly reported, during task ( Khatibi et al.,

022 ; Vahdat et al., 2015 ) and at rest ( Khatibi et al., 2022 ; Vahdat et al.,

020 , 2015 ). In particular, connectivity changes have been highlighted

n networks comprising the spinal cord, the cerebellum and the sen-

orimotor cortex within a session of sequential finger tapping practice

 Vahdat et al., 2015 ), hinting at the importance of these interactions in

kill acquisition. 
9 
Yet, our results indicate the involvement of the same integrated

etworks in the later stage of learning when using a different, wrist-

ontrolled task. Accordingly, the regions involved in the reported spino-

erebellar network are congruent with the nature of the task. Indeed,

xperiments in primates and humans have linked Crus I with forelimb

ovements ( Lu et al., 2007 ; Mottolese et al., 2013 ) and the dorsal side

f the C6 spinal cord segment level with sensory signals from muscles,

oints and skin from the same region. We speculate that the enhanced

ynchronization between these regions may reflect the integration of

uscular synergies relying on wrist muscles, in line with previous re-

earch suggesting a role of spino-cerebellar interactions in synergy re-

ruitment ( Jörntell, 2016 ). According to this hypothesis, the spinal cord

dapts to the optimal muscle coordination patterns based on the task’s

inematic and biomechanical constraints, while the cerebellum times

he use of these synergistic components. This notion is supported by

vidence that cerebellar damage impacts the spatiotemporal structure

f muscle synergies ( Berger et al., 2020 ). While these conclusions re-

ain conjectural, future studies could explicitly compare synergistic and

on-synergistic hand movements, similar to previous work in the brain

 Ehrsson et al., 2002 ). 

In contrast to the spino-cerebellar network, the increased negative

orrelation between activity in the ventral part of the C8 spinal cord

egment level and the sensorimotor cortex may rely on corticospinal

nhibitory processes. Indeed, changes after long-term practice were in

hat case observed for the random condition and not the sequential

ne, which may suggest that participants had to inhibit the sequence

rogram during the random performance. Although there is no direct

nhibitory corticomotoneuronal connections, neurons originating from

he sensorimotor cortex also project to inhibitory spinal interneurons,

hich in turn synapse directly with motoneurons to control their ex-

itability ( Goulding et al., 2014 ; Jankowska, 2001 ; Nielsen, 2004 ). This

ensorimotor integration at the spinal level may have functional signif-

cance in regulating ongoing motor activity during visuomotor training

hrough the gating of spinal motoneurons via inhibitory mechanisms

 Floeter et al., 2013 ; Perez et al., 2005 ). Given the change in speed re-

orted for the random sequence from Day 1 to Day 6, it is also plausible

hat the changes observed during the random practice may have been

nfluenced by a confounding effect of sequence practice (during Day 2

o Day 5) on the random task performance on Day 6. 

. Limitations 

Although a thorough discussion and investigation of learning versus

erformance is beyond the scope of the present methodological study, it

s important to stress that these two constructs are often intertwined and

ifficult to disentangle ( Doyon et al., 2018 ; Orban et al., 2010 ). Here,

e set out to use a serial reaction time (SRT) task, a well-established

nd widely-used approach for studying learning (see Janacsek et al.,

020 for review) that allows for the control of several confounding fac-

ors (e.g., perceptuo-motor) through the comparison of SEQ and RND

onditions. However, we observed a slight improvement in speed for

he RND condition on Day 6, which could be due to general task exe-

ution improvement linked to the SEQ task practice during Days 2 to

. Despite this limitation, our approach revealed marked improvements

n movement smoothness that were specific to the SEQ task, providing

vidence that we were able to isolate learning-specific effects. 

From a methodological standpoint, denoising spinal cord fMRI time

ourses is notoriously challenging, and physiological noise such as

reathing and cardiac signals is a prominent issue ( Brooks et al., 2008 ;

ratini et al., 2014 ). Although we followed recommended practices for

hysiological noise removal ( Eippert et al., 2017 ; Kong et al., 2012 ),

o study to date has investigated the impact of different denoising ap-

roaches on the spatiotemporal properties of iCAPs. Likewise, we care-

ully removed motion-related noise and established that motion was not

orrelated with iCAP activity. However, given the observed differences

n motion across conditions, it is possible that residual motion effects



N. Kinany, A. Khatibi, O. Lungu et al. NeuroImage 275 (2023) 120174 

c  

m

 

u  

i  

s  

n  

a  

i  

c  

r  

t  

p  

t  

n  

l  

a  

o  

c

 

a  

(  

i  

j  

s  

(  

f  

w  

i  

2  

p  

a

6

 

n  

c  

t  

a  

t  

a  

p

 

p  

W  

o  

s  

d  

t  

p  

l  

b

 

c  

c  

c  

s  

c  

t  

i

7

 

s  

c  

o  

t  

n  

o  

t  

h

D

C

 

i  

i

r  

i  

P  

V  

S

r

r

D

A

 

s  

R  

S

S

 

t

R

A  

 

B  

 

B  

B  

B  

 

B  

 

C  

 

C  

C  

 

D  

D  

D  

 

ould have influenced our results to some extent, despite our efforts to

inimize this potential impact. 

While our data-driven multivariate framework using iCAPs allowed

s to uncover cortical, subcortical, and spinal functional networks dur-

ng motor learning, it is important to note that our approach is sen-

itive to the number of iCAPs selected. In our study, we chose the

umber of iCAPs based on stability metrics and our goal of achieving

 low-dimensional space. This may explain why spinal iCAPs exhib-

ted a stronger ipsilateral focus, yet still spread bilaterally. While this

hoice allowed us to reveal large-scale networks and concisely summa-

ize learning-related mechanisms, it cannot provide detailed informa-

ion on the underlying sensorimotor processes. Future studies could ex-

lore the impact of varying the number of iCAPs on the results, to assess

he balance between model complexity and capturing finer underlying

eural states. Moreover, our choice of applying a mask on regions re-

ated to motor control and motor learning at the brain level, while it

lso helped limit the dimensionality of our analyses, may have masked

ther unexpected – but potentially interesting – regions, something that

ould also be explored in future work. 

The iCAP analysis was conducted independently on the brain

nd spinal cord, drawing on prior work in each respective region

 Kinany et al., 2022a , 2020b ; Zöller et al., 2019a ). However, an interest-

ng avenue would be to explore the potential of our approach to extract

oint brain and spinal cord components. Yet, conducting such analy-

es poses unique challenges due to differences between the two regions

acquisition parameters, signal-to-noise ratio, sensitivity to noise con-

ounds, number of voxels), and to the high computational cost associated

ith a large number of voxels. To date, only one study has attempted to

nvestigate joint cerebro-spinal cord networks, using ICA ( Vahdat et al.,

020 ) and future work could focus on establishing a robust pipeline to

erform such analyses, beginning with resting-state data and eventually

ddressing more complex questions, such as those explored here. 

.1. Broader potential for fundamental and clinical applications 

A key strength of this framework is its versatility, which opens up

umerous possibilities for future research. By combining simultaneous

erebro-spinal fMRI with data-driven multivariate techniques, it offers

he prospect of uncovering the complexities of large-scale CNS activity

nd translating them into relevant signatures. We have demonstrated

he potential of this approach in the context of MSL, but it can be readily

pplied to other facets of human behavior, such as pain processing or

roprioceptive perception. 

Interestingly, its data-driven nature can also allow researchers to by-

ass certain limitations of traditional inferential analyses (e.g., GLM).

hile the latter demands knowledge of the underlying task paradigm,

ur framework can be extended beyond the study of task execution it-

elf. Thus, it offers the flexibility to harness resting-state recordings to

elve into the intrinsic functional organization of the CNS. In the con-

ext of MSL, for instance, this could be deployed to reveal the long-term

lastic reorganization that takes place in the brain and spinal cord fol-

owing learning (i.e., by decoding changes in the organization at rest

efore and after training). 

Altogether, this can have profound implications for clinical appli-

ations, enabling the study of cerebro-spinal signatures of neurological

onditions in patients with various levels of disability. By rendering a

oncise view of the impact of these conditions on large-scale cerebro-

pinal networks and connectivity, relative to control populations, this

ould not only play a crucial role in advancing our understanding of

he impaired CNS but also help delineate biomarkers of its functional

ntegrity. 

. Conclusion 

Using a data-driven multivariate framework, we uncovered cortical,

ubcortical and spinal networks and demonstrated that their dynamics
10 
ould be leveraged to accurately decode the cerebro-spinal signatures

f early versus late MSL. Our approach offers a complement to tradi-

ional univariate analyses by providing a concise and modular view of

eural function and plasticity throughout the neural axis. The potential

f such approaches to disentangle CNS activations paves the way to fu-

ure investigations of the large-scale cerebro-spinal networks underlying

ealthy and impaired human sensorimotor behavior. 
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