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1.  INTRODUCTION

The spinal cord is an essential component of the central 
nervous system (CNS) acting as a pivotal neural relay and 
processing center at the core of the sensorimotor hierar-
chy (Bican et  al., 2013). Its circuitry is topographically 
organized and comprises distinct pools of motor and 
sensory neurons that, in collaboration with interneurons, 
transmit and integrate signals between the brain and 
periphery through spinal nerve roots (Pierrot-Deseilligny 
& Burke, 2012). These pools of neurons are distributed 
throughout the spinal cord in distinct levels, which form 
functional units of the spinal architecture and give rise to 

pairs of nerves emerging between the vertebrae to con-
nect to specific body parts.

Despite its central importance in human sensorimotor 
processes and its involvement in various neurological 
conditions such as spinal cord injuries (Ahuja et al., 2017), 
multiple sclerosis (Filippi et al., 2018), cervical myelopathy 
(Nouri et al., 2022), and chronic pain (Cheng, 2010), the 
large-scale spinal cord’s functional organization remains 
largely unexplored in vivo in humans. Instead, traditional 
methods have primarily focused on characterizing its 
structure, relying on cadaver dissection (Kameyama et al., 
1996; Ko et al., 2004; Mendez et al., 2021; Panjabi et al., 
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1991) or structural magnetic resonance imaging (MRI) 
(Cadotte et al., 2015) to identify vertebral bones (referred 
to as vertebral levels) or nerve roots (known as segmental 
levels). While these approaches have provided valuable 
insights into the spinal cord’s anatomy, they fall short in 
capturing the rich neuronal circuitry that underlies its 
functions (i.e., its functional levels). Therefore, it is crucial 
to advance reliable in vivo methods to map the functional 
architecture of the spinal cord. Such developments are 
essential to achieve a comprehensive understanding of 
its organization in healthy individuals and to illuminate 
the alterations it undergoes in various neurological  
conditions.

In fact, elucidating the functional architecture of the 
CNS has been a long-standing challenge in neurosci-
ence. Over the past decades, functional magnetic reso-
nance imaging (fMRI) has emerged as a powerful tool for 
mapping neural activity (Power et al., 2014) under multi-
ple conditions. Among them, resting-state recordings 
stand out for their minimal experimental burden and have 
proven particularly useful for unraveling neural circuits, 
enabling researchers to study a wide range of partici-
pants, including clinical populations (Lee et  al., 2013). 
Assessing the brain’s spontaneous activity has provided 
valuable information about its intrinsic organization, nota-
bly by using a variety of analytical approaches to delin-
eate patterns of coordinated activity, the so-called 
resting-state networks (Biswal et al., 2010; Fox & Raichle, 
2007). They have demonstrated a considerable degree of 
consistency across methods and datasets (Chen et al., 
2008; Damoiseaux et al., 2006), have yielded insights into 
individual-specific neural organization (Finn et al., 2015; 
Gordon, Laumann, Adeyemo, et  al., 2017; Wang et  al., 
2015), and have proven relevant to both normal and 
pathological brain function (Hohenfeld et al., 2018).

Yet, while fMRI has been extensively deployed to dis-
entangle brain activity, its application to the spinal cord 
has faced significant challenges (e.g., size, inhomoge-
neous magnetic field, physiological noise) that have 
slowed progress in this area. Although recent years have 
witnessed an emergence of studies leveraging technolog-
ical advances to probe spinal cord activity, explorations of 
spontaneous activity of the spinal cord at rest remain 
scarce (for reviews, see Harrison et  al. (2021), Kinany, 
Pirondini, Micera, et  al. (2022), Landelle et  al., (2021)). 
Nonetheless, a handful of studies uncovered spinal cord 
resting-state networks, hence confirming that organized 
spontaneous fluctuations are, indeed, a ubiquitous fea-
ture of the CNS. These studies notably utilized data-driven 
techniques, such as independent component analysis 

(ICA; Kong et al., 2014; Landelle et al., 2023; Vahdat et al., 
2020) or innovation-driven co-activation pattern analysis 
(iCAP; Kinany, Pirondini, Mattera, et  al., 2022; Kinany 
et al., 2020, 2023), to reveal spatially segregated patterns 
of activity at rest. These two methods extract functional 
networks using distinct approaches: ICA aims to retrieve 
spatially independent components by maximizing a mea-
sure of their statistical independence (Beckmann & Smith, 
2004; Calhoun et al., 2001; Varoquaux et al., 2010). While 
spatial ICA has dominated the application to fMRI and is 
employed in this study, it is worth noting that temporal 
ICA can also be used to map temporally independent 
resting-state networks (Smith et al., 2012). On the other 
hand, iCAP is a dynamic functional connectivity method 
that focuses on identifying components characterized by 
similar temporal dynamics (Karahanoğlu & Van De Ville, 
2015). To achieve this, it relies on the temporal clustering 
of individual frames of transient activity and explicitly 
accounts for temporal blurring caused by the hemody-
namic response function.

Here, we argue that the investigation of spinal resting-
state networks presents an untapped potential to disen-
tangle the intricate functional architecture of the spinal 
cord in vivo and, in particular, its functional levels. 
Although previous research has highlighted the organized 
nature of spinal resting-state networks, no study has sys-
tematically characterized their capability to reliably map 
the topographic organization of these functional units. To 
address these gaps, we leveraged and compared two 
techniques for network extraction, ICA and iCAP, across 
two distinct cervical spinal cord fMRI datasets; one col-
lected in Montreal (“mtl”) and the other in Geneva (“gva”). 
Our study had three primary objectives: firstly, to evaluate 
the efficacy of these methods in achieving a functional 
mapping of spinal cord levels; secondly, to systematically 
assess the reliability and generalizability of this mapping 
by probing its robustness (i.e., across methods), replica-
bility (i.e., across datasets), and stability (i.e., across 
time); and finally, to present novel evidence of spinal 
resting-state networks at the individual level, showcasing 
their potential to uncover personalized maps of spinal 
functional levels.

Altogether, our findings provide unprecedented sup-
port for the potential of spinal cord resting-state networks 
as reliable indicators of the spinal cord’s functional orga-
nization, at the group and individual scales. This study 
holds great promise for advancing our understanding of 
human sensorimotor circuits and unlocking new insights 
into residual neural function and nerve root damage in 
individuals with spinal cord injuries or radiculopathies. 
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Mapping the spinal cord’s functional architecture using 
spinal cord fMRI and data-driven functional connectivity 
approaches may have significant translational implica-
tions, paving the way to custom clinical assessments, 
pre-surgical mapping, as well as treatment planning and 
monitoring.

2.  METHODS

2.1.  Participants & acquisition

Two T2*-weighted gradient-echo echo-planar imaging 
datasets of healthy participants were used in this study, 
namely the “gva” dataset (data acquired at Campus 
Biotech Geneva (Kinany et  al., 2020)) and the “mtl” 
dataset (data acquired at the Neuro, Montreal Neurolog-
ical Institute (Landelle et al., 2023)). Both datasets were 
acquired using a 3-Tesla MRI Scanner (Magnetom-
Prisma, Siemens, Erlangen, Germany) equipped with a 
64-channel head (“gva”: inferior element 7 active, “mtl 
1-7 elements active) and neck coil (1-2 elements active). 
In both datasets, functional data were acquired during 
rest (i.e., no explicit task) with eyes open. Participants 
were instructed to relax and to minimize motion and 
swallowing. Physiological recordings were acquired 
using a pulse sensor and a respiration belt (“gva”: 
Biopac MP150 system, California, USA, “mtl”: Siemens 
Physiology Monitoring Unit).

2.1.1.  Dataset “gva”

Nineteen right-handed healthy participants (11 females, 
28.5 ± 3.5 years old) from the “gva” dataset were included 
in the study. All participants gave their written informed 
consent in accordance with the Helsinki Declaration, and 
the study was approved by the Commission Cantonale 
d’Éthique de la Recherche Genève (CCER, study 2019-
00203). Functional images (i.e., blood-oxygen-level-
dependent – BOLD – time series) were acquired using a 
ZOOMit selective field-of-view imaging, focusing on the 
cervical enlargement (Repetition Time (TR) = 2500 ms, 
Echo Time (TE) = 34 ms, axial field of view (FOV) = 48 x 144 
mm2, flip angle = 80°, in-plane resolution = 1 x 1 mm2, slice 
thickness = 3 mm, transversal acquisition, number of slices 
= 32, number of volumes = 360; duration = 15 min). High-
resolution anatomical images covering a region from C1 to 
the upper part of the thoracic spine were acquired using a 
T2-weighted image (TR/TE  =  1500/135  ms, echo train 
length = 74, flip angle = 140°, resolution = 0.4 x 0.4 x 0.8 mm3, 
sagittal acquisition).

2.1.2.  Dataset “mtl”

Twenty-one right-handed healthy participants (16 
females; age 50.1 ± 14.1 years old) from the “mtl” dataset 
were included in this study. We included the 12 younger 
healthy controls (age under 65 years old) from our previ-
ous study (Landelle et al., 2023) and introduced an addi-
tional 9 new participants. The experiment was approved 
by the local ethics committee (MUCH REB 2019-4626), 
and all participants gave their written consent in accor-
dance with the Helsinki Declaration. Functional images 
were acquired using a multiband gradient-echo EPI 
sequence covering the brain and cervical spinal cord (TR/
TE = 1550/23 ms, axial FOV = 192 x 192 mm2, general-
ized autocalibrating partially parallel acquisition (GRAPPA) 
with integrated parallel acquisition technique (iPAT) 
acceleration factor for phase encoding direction = 2 and 
multiband factor for slice encoding direction  =  3, flip 
angle  =  70°, in-plane resolution  =  1.6  x  1.6  mm2, slice 
thickness  =  4  mm, transversal acquisition, number of 
slices = 69, number of volumes = 230, duration = 6 min). 
It is worth noting that multiband acquisitions may be sus-
ceptible to slice leakage artifacts (Risk et al., 2021; Todd 
et  al., 2016). While the chosen values are expected to 
mitigate this issue, it is important to acknowledge that a 
systematic analysis of its impact has not been conducted 
in this study. Anatomical images were acquired using a 
high-resolution T1-weighted sequence covering the 
whole brain and the cervical spinal cord up to T1 verte-
brae in most participants (TR/TE = 2300/3.3 ms, MPRAGE 
sequence, GRAPPA iPAT acceleration factor  =  2, flip 
angle = 9°, resolution = 1.3 x 1.3 x 1.3 mm3, transversal 
acquisition). A T2*-weighted sequence covering the 
whole cervical spinal cord was also acquired from C1 to 
C7 vertebrae in most participants (TR/TE = 34/14 ms, flip 
angle = 5°, resolution = 0.47 x 0.47 x 5 mm3, transversal 
acquisition). For both functional and anatomical scans, 
only slices covering the spinal cord were kept for the fol-
lowing analyses.

2.2.  Data processing

The spinal cord functional and structural images were 
pre-processed using an in-house pipeline (for details see 
Landelle et al. (2023)) based on the Spinal Cord Toolbox 
(SCT, version 5.0) (De Leener et  al., 2017), the Oxford 
Center for fMRI of the Software Library (FSL, version 5.0), 
the Tapas PhysiO toolbox (release 2022a, V8.1.0) (Kasper 
et  al., 2017), and the Nilearn toolbox (version 0.9.1), a 
Python package that uses scikit-learn library (Abraham 
et  al., 2014). The same pipeline was applied to both 
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datasets, except for the type of anatomical image used, 
which was T2w for “gva” and T1w for “mtl.” Signal quality 
(motion and temporal signal-to-noise ratio) were evalu-
ated in both datasets (see Supplementary information 
and Figure S1).

2.2.1.  Preprocessing

The following preprocessing steps were performed: i) 
slice-timing correction (FSL), ii) motion correction using 
slice-wise realignment and spline interpolation (with SCT, 
sct_fmri_moco). Outlier volumes were identified within the 
spinal cord mask for subsequent motion scrubbing (with 
FSL, using the root mean square intensity difference of 
volume N to volume N+1, i.e., DVARS), iii) segmentation of 
functional and structural images (with SCT, sct_deepseg, 
followed my manual correction), iv) time series denoising 
(see details in Time series denoising), v) coregistration of 
functional images to anatomical image and, then, to the 
PAM50 template (with SCT, sct_register_multimodal and 
sct_register_to_template), and vi) anisotropic smoothing 
using a 3D Gaussian kernel with a full width half maximum 
(FWHM) of 2 x 2 x 6 mm3 for “gva” and 3 x 3 x 6 mm3 for 
“mtl” (with nilearn, nilearn.image.smooth_img).

2.2.2.  Time series denoising

For each participant, we modeled nuisance regressors to 
account for physiological noise using the Tapas PhysiO 
toolbox (Kasper et al., 2017). First, we used the CompCor 
approach (Behzadi et al., 2007) to identify non-neural fluc-
tuations by extracting the first five principal components 
of the unsmoothed cerebrospinal fluid (CSF) signal in the 
participant’s native space. Second, we generated noise 
regressors from peripheral physiological recordings (heart 
rate and respiration) using the RETROspective Image 
CORrection (RETROICOR) procedure (Glover et al., 2000). 
Specifically, we modeled four respiratory, three cardiac 
harmonics, and one multiplicative term for the interac-
tions between respiratory and cardiac noise (18 regres-
sors in total, similar to Harvey et al. (2008); Kinany et al. 
(2019); Tinnermann et  al. (2017)). The first five discrete 
cosine transform (DCT) basis functions were added for 
detrending. These nuisance regressors were combined 
with the two motion parameters (x and y) and motion out-
liers. The removal of the noise confounds was based on a 
projection on the orthogonal of the fMRI time-series space 
and was applied orthogonally to the high-pass temporal 
filter (0.01 Hz) using the Nilearn toolbox (clean_img func-
tion). This noise modeling approach has the advantage of 

preventing the reintroduction of artifacts that had previ-
ously been removed from the data (Lindquist et al., 2019).

2.3.  Extraction of resting-state networks

Two data-driven approaches (ICA and iCAP) were 
deployed to identify spinal cord resting-state networks in 
each dataset. Components were extracted at the group-
level as well as for each individual participant.

2.3.1.  ICA approach

Generalized canonical correlation analysis (CanICA or 
ICA) is a hierarchical model for group-level ICA analysis 
that has demonstrated a high degree of component 
reproducibility (Varoquaux et  al., 2010). The estimation 
procedure is based on three main steps: i) The 20 princi-
pal components that explained most of the variance for a 
given participant were selected at the participant level 
using a principal component analysis. This procedure 
guaranteed uniformity among participants, ensuring that 
each individual had an identical number of components 
utilized for the selection of independent components at 
the group level. These patterns of interest were then con-
catenated across participants. ii) A canonical correlation 
analysis was used to identify the subspace common to 
the group. iii) Source separation was performed using 
spatial ICA on the previous group-subspace (500 itera-
tions) in order to retrieve spatially independent compo-
nents at group level. Note that for analysis conducted at 
the participant level only the last step was applied.

2.3.2.  iCAP approach

By contrast, the iCAP framework (Karahanoğlu & Van De 
Ville, 2015; Kinany et  al., 2020) employs hemodynamic 
deconvolution to retrieve temporal dynamics of spatially 
overlapping networks identified by similar transient activ-
ities. Using denoised time series, activity-inducing signals 
were extracted by applying Total Activation, a regularized 
deconvolution of fMRI signals (Karahanoğlu et al., 2013). 
Transients, also referred to as innovation signals, were 
obtained by calculating the temporal derivative of these 
activity-inducing time courses. A two-step thresholding 
process was then used to select significant innovation 
frames: i) temporal thresholding based on a 5% confi-
dence interval derived from a surrogate distribution gen-
erated by applying TA to phase-randomized data, and ii) 
spatial thresholding to retain only frames containing more 
than 5% active voxels. Frames with significant and similar 
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transitioning activities were k-means clustered together to 
obtain innovation-driven coactivation patterns (iCAPs).

2.3.3.  Number of components

We hypothesized that the number of spinal functional lev-
els (i.e., the spinal networks extracted using data-driven 
connectivity approaches) should align with the number of 
spinal segmental levels (i.e., anatomically identified nerve 
roots). This hypothesis is driven by the goal of isolating 
topographically organized signals associated with the 
neuron pools giving rise to each pair of nerve roots. Thus, 
we aimed to match the number of components extracted 
with ICA and ICAP analyses (denoted as K), with the 
expected number of spinal segmental levels. To account 
for the different coverages of each dataset, K was inde-
pendently defined for “mtl” and “gva.” The expected 
number of spinal cord segmental levels was determined 
using anatomical knowledge (Frostell et  al., 2016, SCT 
v6.1 or later) and was further verified through visual iden-
tification of nerve roots in the PAM50 template space 
(Fig. 1). Note that we opted not to use the probabilistic 
levels from the SCT (De Leener et al., 2017), and favored 
instead measurements summarized from Frostell et  al. 
(2016), which aggregated data from multiple studies and 
more closely aligned with the nerve roots. Levels of the 
SCT are provided for reference. Respectively, five and 
nine spinal cord levels were expected for “gva” and “mtl” 
datasets. To validate the choice of K values, we imple-
mented a subsampling scheme that systematically eval-
uated the similarity of components extracted from 
random subsets of the dataset to those extracted from 
the entire dataset. We generated 100 subsets of 10 par-
ticipants for each dataset (bootstrap across participants 
with replacement) and extracted iCAPs and ICs for the 
targeted K ± 2 components (i.e., “gva”: 5 ± 2 and “mtl”: 
9 ± 2 components). In both ICA and iCAP approaches, 
the resulting component maps appear as blobs of voxels 
with higher intensity standing out from a background 
voxel intensity. Thus, the voxel intensity was normalized 
using a Z-score, and a threshold of Z > 1.6 was applied 
to retain only the tail of the voxel intensity distribution 
(~5% of the map’s voxels). Resulting component maps 
were binarized and the stability of the components across 
the subsets was established using Dice coefficients 
between subset maps and whole-group maps (computed 
as the ratio between twice the number of overlapping 
voxels and the sum of the number of voxels in the two 
maps). Dice coefficients were statistically tested between 
each K using a linear mixed model (lmer function in the R 

package “lme4”) which took into account the effect of K 
values (fixed-effect), the variability between “subsets” 
(random effects) and the residual error. Main effect was 
analyzed using Wald test (Anova function in the R pack-
age “car”), and effect sizes were calculated using Cohen’s 
d coefficients (d, chisq_to_cohens_w function in the R 
package “effectsize”). Significant main effects (p < 0.05) 
were further analyzed using post-hoc pairwise compari-
sons of the estimated marginal means (emmeans pack-
age in R). All post-hoc tests were two-sided and corrected 
for multiple comparisons using False discovery rate (FDR) 
correction for p-value adjustment. Comparisons were 
considered significant at adjusted-p < 0.05.

2.4.  Analyses of resting-state networks

2.4.1.  Matching between spinal segmental and functional levels

The matching between anatomically derived segmental 
levels (i.e., segmental organization defined based on 
Frostell et  al. (2016)) and data-driven functional levels 
(i.e., spinal resting-state networks, extracted using ICA 
and ICAP analyses) was estimated using the percentage 
of voxels of each IC or iCAP (thresholded at Z > 1.6 and 
binarized) falling in each spinal segmental level. Maxi-
mum weight matching (Crouse, 2016) was employed to 
match components and segmental levels.

2.4.2.  Robustness and replicability of the spinal networks

To assess the robustness (i.e., between methods) and rep-
licability (i.e., between datasets) of the spinal resting-state 
networks, components maps were binarized (Z > 1.6) and 
Dice coefficients were computed to measure their spatial 
similarity. Maximum weight matching (Crouse, 2016) was 
employed to match components across methods and 
datasets. For the sake of completeness, Dice coefficients 
were also reported for Z > 2 and Z > 2.3, as well as for a 
threshold-free similarity measure (i.e., 1 - cosine distance).

2.4.3.  Temporal stability of the spinal networks

To probe the temporal stability of the spinal networks, we 
evaluated whether networks identified from shorter time 
intervals of data remained consistent with those derived 
from full-length runs. To this end, we divided each partic-
ipant’s functional run into two equal parts for the “mtl” 
dataset and four equal parts for the “gva” dataset, result-
ing in splits of approximately 3.5 min (132 and 90 volumes 
long for “mtl” and “gva”, respectively). We performed the 
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ICA and iCAP procedures independently for each split, 
with K set to 9 for “mtl” and 5 for “gva.” We then com-
puted Dice coefficients to evaluate the similarity between 
the spatial maps obtained from each split and those 
obtained from the entire run.

2.4.4.  Stability of individual-specific spinal networks

To evaluate the efficacy of ICA and iCAP pipelines in 
identifying individual-specific spinal functional levels, we 
conducted both analyses in each participant. The num-
ber of components (i.e., K = 5 for “gva” participants and 
K = 9 for “mtl” participants) was selected to align with the 
expected segmental organization. To assess this match-
ing, we computed the percentage of voxels of each IC or 
iCAP (thresholded at Z > 1.6 and binarized) falling in each 
anatomically derived spinal segmental level (Frostell 
et  al., 2016). These overlap values were statistically 
tested for each dataset, between methods using two-
sided paired-t-tests. Cohen’s d coefficients (d) were cal-
culated to quantify the effect size of these tests (t_to_d 
function in the R package “effectsize”). To visualize the 
overall distribution of participant-specific components, 
heatmaps were generated by sorting ICs and ICAPs 
based on the center-of-mass of their largest clusters and 
summing the binarized components across participants.

To visually assess the correspondence between per-
sonalized components and individual neuroanatomy, we 
utilized the T2*w (for “mtl”) and T2w (for “gva”) anatomi-
cal images of each participant. Although these images 
were not specifically acquired for this purpose, we 
attempted to identify the approximate location of nerve 

roots. Both modalities were used to mark roots in the 
axial plane. However, due to the large slice thickness in 
the “mtl” T2*w images (5 mm), we exclusively used T2w 
images from the “gva” to isolate nerve roots in the coro-
nal plane. To this end, we projected nerve roots and com-
ponents along the dorso-ventral axis to enhance the 
visualization of their respective rostro-caudal positions 
(minimal intensity projection for the nerve roots and max-
imal intensity projection for the components).

3.  RESULTS

Hereafter, anatomically derived levels refer to the spinal 
segmental levels as defined in Frostell et al. (2016), while 
functional levels correspond to the data-driven levels 
extracted using ICA or iCAP.

3.1.  Number of spinal levels and components

To achieve our main goal of functionally identifying the 
organization of the spinal cord, specifically its functional 
levels, we first determined the optimal number of inde-
pendent components (ICs) or innovation-driven co-
activation patterns (iCAPs) to extract (referred to as K). 
This determination was based on a combination of ana-
tomical priors and stability measures.

Given that the neuron pools constituting functional 
levels give rise to the pairs of nerves forming segmental 
levels (Fig. 1a), we initially hypothesized that K should be 
matched with the expected number of segmental levels 
covered in each dataset, so as to delineate one functional 
component per level. To achieve this, we first assessed 

Fig. 1.  Number of spinal levels and components. (a) Schematic views of the upper spinal cord depicting pairs of nerves 
(formed by dorsal and ventral nerve roots), corresponding to spinal segmental levels C1 to T1. Dashed line represents the 
axial view. (b) Masks coverage of the functional analyses displayed on coronal views of the PAM50-T2w template. Sagittal 
views of the PAM50-T1w and -T2w are provided to identify vertebrae. (c) Schematic views of spinal segmental and vertebral 
(indicated with a *) levels. The expected number of segmental levels in each dataset was determined using anatomical 
tables (Frostell et al., 2016) and hypothesized to match the number of functional levels. The analysis masks encompass 
nine segmental levels for “mtl” (i.e., levels C1 to T1, facing vertebrae C1* to C7*) and five for “gva” (i.e., levels C5 to T1, 
facing vertebrae C4* to C7*). Probabilistic segmental levels from the SCT are provided as reference (De Leener et al., 2017), 
emphasizing the distinction between these conventionally used levels and those utilized in the current study. Of note, from 
SCT v6.1, the atlas of segmental levels has been modified to use levels reported in Frostell et al. (2016). (d) We confirmed 
the expected number of spinal segmental levels by visually identifying nerve roots in PAM50 T2w and T1w images. The left 
panel indicates the structures of interest, while the right panels show representative slices for each spinal segmental level in 
both imaging modalities. Coordinates are in PAM50 space. (e) We tested the stability of the selected number of components 
for both datasets, by extracting components in random subsets of the data (10 participants in 100 repetitions, bootstrap 
across participants with replacement) for each targeted K (i.e., 9 for “mtl” and 5 for “gva”) ± 2. The similarity of these 
components with those extracted in the full datasets was evaluated. Each box represents the distribution (i.e., from the 25th 
to the 75th percentile) of Dice coefficients for each K value, with medians represented by the horizontal white line inside the 
box. Vertical lines denote the extreme values within a 1.5 interquartile range and dots represent Dice values for each of the 
100 subsets. CSF: cerebrospinal fluid, L: left, R: right, V: ventral, D: dorsal. ** p < 0.01, *** p < 0.001, FDR-corrected.
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the spinal coverage of the masks used in the “mtl” and 
“gva” analyses (Fig. 1b) and determined the correspond-
ing number of segmental levels based on anatomical 
knowledge (Frostell et al., 2016) (Fig. 1c). Our examina-
tion suggested a coverage of nine spinal segmental lev-
els for the “mtl” dataset (C1 to T1 spinal segmental levels, 
corresponding to vertebral levels C1* to C7*), and five for 
the “gva” dataset (C5 to T1 spinal segmental levels, cor-
responding to vertebral levels C4* to C7*). These estima-
tions were confirmed by visual identification of the nerve 
roots in axial views of the PAM50 template (Fig. 1d), cor-
roborating the use of nine and five components to extract 

spinal functional levels in the “mtl” and “gva” datasets, 
respectively.

To further evaluate the validity of these choices as well 
as their functional stability, we extracted components in 
100 random subsets (bootstrap across participants with 
replacement) of each dataset for different K values around 
these target values. Specifically, we tested their spatial 
similarity with components extracted using the full data-
sets in order to evaluate network stability across subsets 
(Fig. 1e). In the “mtl” dataset, both methods showed a 
peak value at K = 9 (0.75 [0.1] for ICA, reported as median 
Dice coefficient [interquartile range, IQR], and 0.92 [0.03] 
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for iCAP), which had significantly higher subsampling 
stability than surrounding possibilities. For the “gva” 
dataset, a common peak value was observed at K = 5 for 
iCAP (0.9 [0.04]) and ICA (0.4 [0.14]), even though the lat-
ter also exhibited a higher peak value at K  =  7 (0.51 
[0.11]). Using a linear mixed model analysis, we con-
firmed that there were significant main effects of K values 
(in “gva”: χ2(4) = 94.8, p < 0.001, d = 0.44, for the iCAP 
method, and χ2(4) = 1706.4, p < 0.001, d = 1.85, for ICA; 
in “mtl” χ2(4) = 94.7, p < 0.001, d = 0.37 for iCAP, and 
χ2(4) = 446.4, p < 0.001, d = 0.94, for ICA). Post-hoc two-
sided paired-t-tests (FDR-corrected) were used to high-
light the statistical differences between the similarity 
values of the target K and surrounding K values (see 
details in Tables S1 and S2). For the sake of complete-
ness, IC maps obtained for the observed stability peak at 
K = 7 are presented in Figure S2.

3.2.  ICA and iCAP can robustly detect group spinal functional levels

Our investigation into the ability of data-driven approaches 
to reveal the functional architecture of the spinal cord 
began with an assessment of spinal organization at the 
group level in the “mtl” dataset, which encompasses the 
entire cervical spinal cord (C1 to T1). We first evaluated 
whether data-driven functional levels (derived using ICA 
or iCAP approaches) were in line with anatomical seg-
mental levels (Frostell et al., 2016). Consistent with our 
hypothesis, extracting nine components using both ICA 
and iCAP methods revealed nine rostro-caudally segre-
gated resting-state networks, seemingly corresponding 
to the spinal segmental levels covered in the dataset 
(Fig. 2a). To validate their accuracy, we assessed the spa-
tial agreement of these components with the anatomi-
cally derived spinal segmental levels (Frostell et al., 2016). 
A substantial majority of component voxels—86.8 ± 16.2% 
(mean over components ± SD) for ICA and 92.5 ± 6.1 % 
for iCAP—matched segmental levels, confirming their 
alignment (see Table  S3 for details). In addition, we 
observed a remarkable level of robustness across meth-
ods, evidenced by the high degree of spatial overlap 
between the functional segments identified using ICA 
and iCAP. This was confirmed by the strong diagonal pat-
tern observed in the Dice coefficient matrix between the 
corresponding components maps (mean Dice  ±  SD 
across components = 0.77 ± 0.1, Figure 2c, see Table S5 
for all similarity measures). Furthermore, the rostro-
caudal positions of the component’s center of mass was 
also highly stable across methods (mean absolute dis-
tance between ICs and iCAPs z-axis center of mass ± SD, 

2.44 ± 1.8 mm, more details in Table S3). For the sake of 
completeness, the same analyses were also conducted 
in the “gva” dataset (Fig. 2b, Table S4), highlighting that 
the segmental organization could be captured with over-
all robustness, although with a reduced agreement 
between methods (mean Dice  ±  SD across compo-
nents = 0.42 ± 0.1, Figure 2c, see Table S5 for all similar-
ity measures). For both datasets and methods, Figure S1e 
highlights the positions of components relative to tSNR 
variations, confirming their alignment with segmental lev-
els rather than with periodic signal variations linked to 
intervertebral disks.

3.3.  Spinal functional levels are replicable across datasets

Next, we sought to extend our analysis beyond the “mtl” 
dataset and assess the replicability of our results (i.e., sim-
ilarity across “mtl” and “gva” datasets). To allow compari-
son, the five components extracted from the “gva” dataset 
were compared to the five more caudal components from 
the “mtl” dataset. As anticipated, these two sets of com-
ponents largely aligned with spinal segmental levels C5 to 
T1, for both methods and datasets (Fig. 3a). While both 
methods enabled the retrieval of components underlying 
spinal functional levels, iCAPs appeared to be more repli-
cable across datasets than their ICA counterparts (mean 
Dice coefficient across components ± SD = 0.42 ± 0.1 for 
ICA, and 0.75 ±  0.2 for iCAP) (Fig. 3b, see Table S5 for 
other similarity measures). In addition, we found that  
components extracted from the “gva” dataset exhibited a 
smaller extent than those of “mtl”, in particular for ICA 
(mean across components: “gva”  =  2339 voxels vs. 
“mtl” = 5680 voxels, Tables S3 and S4), and to a lesser 
extent for iCAPs (“gva”  =  5488 voxels vs. “mtl”  =  7241 
voxels). However, regardless of the components extent, 
the rostro-caudal positions of their centers of mass 
remained stable across datasets (mean ± SD absolute dis-
tance between “mtl” and “gva” z-axis center of mass for 
ICA: 3.3 ± 2.9 mm and iCAP: 2.4 ± 2.4 mm).

3.4.  Spinal functional levels are temporally stable

We next assessed whether spinal functional levels could 
be reliably identified when the datasets were split in 
shorter time intervals. We observed that the impact of 
temporally dividing the runs varied depending on the 
method and dataset tested (Fig.  4). Specifically, ICA 
exhibited a lower ability to reliably identify spinal func-
tional levels, with only two out of the four splits of the 
“gva” dataset showing fair performance (two fair Dice 
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coefficients of 0.49 and 0.44 and two low Dice coeffi-
cients of 0.21 and 0.25, Fig. 4a). Performance was less 
strongly impacted for the “mtl” dataset, with ICs extracted 
in each split showing a high degree of spatial similarity 
(Dice coefficients of 0.72 and 0.69) with those of the 

entire run. In contrast, the performance of iCAP in identi-
fying spinal functional levels was largely preserved in sin-
gle splits (Fig.  4b), with Dice coefficients obtained 
between each split and the entire run ranging from 0.82 
to 0.96 for both datasets.

Fig. 2.  Uncovering spinal functional levels across methods. ICs (in yellow) and iCAPs (in blue) were extracted in the “mtl” 
(a) and the “gva” (b) datasets. Component maps (nine for “mtl” and five for “gva”) obtained with the two approaches are 
displayed on the PAM50-T2w template and presented in rostro-caudal order. A white outline indicates the overlap between 
two components. Coronal and axial views are presented. Spinal segmental levels derived from anatomical tables (Frostell 
et al., 2016) are displayed on the left for reference. Segment borders are represented on coronal views of the component 
maps by white lines of reduced opacity. The number of each component is provided below each map. (c) The robustness 
(i.e., similarity across methods) of the spinal networks was evaluated using Dice coefficients between the binarized 
(Z > 1.6) ICs and iCAPs maps (see Table S5 for other similarity measures) for the “mtl” (top panel) and “gva” (bottom 
panel) datasets. The mean ± standard deviation Dice coefficient across matched components (i.e., diagonal) is reported in 
the top right corner of each similarity matrix. IC: Independent components, ICA: Independent component analysis, iCAP: 
innovation-driven co-activation pattern analysis, SD: standard deviation.
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Fig. 3.  Uncovering spinal functional levels across datasets. (a) The components extracted from the “gva” dataset (in pink) 
were compared to the five more caudal components of the “mtl” one (in green). Component maps, presented in rostro-
caudal order, are displayed on coronal views of the PAM50-T2w template. A white outline indicates the overlap between 
two components. Spinal segmental levels derived from anatomical tables (Frostell et al., 2016) are displayed on the left 
for reference. Segment borders are represented on coronal views of the component maps by white lines of reduced 
opacity. The number of each component is provided below each map. (b) The replicability (i.e., similarity across datasets) 
of the spinal networks was evaluated using Dice coefficients between the maps obtained in the two datasets (“gva” vs. 
“mtl”). Results are presented for ICA (upper panel) and iCAP (lower panel). The mean ± standard deviation Dice coefficient 
(i.e., diagonal) is reported in the top right corner of each similarity matrix. ICA: Independent component analysis, iCAP: 
innovation-driven co-activation pattern analysis, SD: standard deviation.

Fig. 4.  Uncovering spinal functional levels across time intervals. The temporal stability (i.e., similarity across shorter 
time intervals) of the spinal networks was evaluated using Dice coefficients between components maps of each time 
split and those from the full-length run for ICA (a) and ICAP (b) methods in the two datasets (“gva” and “mtl”). Functional 
runs were divided into two and four equal parts for the “mtl” and the “gva” dataset, respectively. This resulted in splits 
lasting approximately 3.5 min for each dataset. The average diagonal Dice coefficient is reported in the top right corner of 
each similarity matrix (mean ± SD). ICA: Independent component analysis, iCAP: innovation-driven co-activation pattern 
analysis, SD: standard deviation.
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3.5.  Spinal functional organization is detectable  
at the individual level

To evaluate whether individual-specific spinal functional 
levels could be isolated in a data-driven manner, we 
extracted ICs and iCAPs for each participant from the 
two datasets. Notably, we observed limitations with ICA 
in identifying distinct resting-state networks at the indi-
vidual level. While some components exhibited a clear 
segregation along the rostro-caudal axis (Fig. S3a), the 
majority of maps displayed a speckled pattern with small 
activations spanning multiple segments (Fig. S3b). Com-
paring these participant-level maps with anatomically 
derived segmental levels revealed a limited percentage  
of voxels aligning with the overall neuroanatomy 
(50.3 ±  6.7% for “mtl” and 51.7 ±  9% for “gva”, mean 
over participants  ±  SD). Likewise, the ICA-generated 
maps exhibited broad spatial distribution and demon-
strated only a partial rostro-caudal organization (Fig. S3).

In contrast, maps obtained using iCAP analysis had a 
narrow and well-organized distribution (Fig. 5a), similar to 
the arrangement of the group-level maps (Figs. 2 and 3). 
Accordingly, the correspondence with spinal segmental 
levels appeared to be more preserved in both the “mtl” 
(68.1 ± 6%) and “gva” (74.5 ± 8.7%) datasets compared 
to IC maps (iCAP vs ICA in “mtl” dataset: t(39) = 9.06, p < 
0.001, d = 1.04; or “gva” dataset: t(35) = 7.97, p < 0.001, 
d = 0.85). The extraction of individualized iCAPs not only 
matched the overall topographic organization of spinal 
levels but also allowed for the capture of participant-
specific organization of the spinal functional levels. We 
illustrate examples of these components extracted from 
two participants in each dataset in Figure 5b. While the 
anatomical images were not specifically acquired for this 
purpose, we attempted to leverage the T2*w (for “mtl”) 
and T2w (for “gva”) scans of each participant to gain a 

qualitative understanding of the matching with individual 
neuroanatomy (Fig. 5c). Axial views suggested that indi-
vidual components maps fell in the vicinity of nerve roots 
(Fig.  5c, left panel). To better highlight this correspon-
dence, maximal intensity projection maps were employed 
to emphasize the rostro-caudal organization of personal-
ized spinal functional levels and their position relative to 
segmental levels (Fig. 5c, right panel; all participants are 
provided in Videos S1 and S2). This further confirmed 
that components were largely located in close proximity 
to the nerve roots

4.  DISCUSSION

Mapping the functional organization of the spinal cord in 
vivo in humans has been a long-standing challenge due 
to the lack of non-invasive and reliable techniques. In this 
study, we have taken a significant step towards address-
ing this limitation by demonstrating that spontaneous 
activity acquired using fMRI can be harnessed to map 
the topographic organization of spinal functional levels in 
a principled and data-driven manner, at both the group 
and individual scales. These findings have broad implica-
tions, notably for spinal cord fMRI processing, and as a 
first step towards future applications such as personal-
ized diagnostics, and treatment monitoring.

Using two datasets (“mtl” and “gva”) with distinct 
acquisition protocols, as well as two different data-
driven approaches (ICA and iCAP), we aimed to test the 
efficacy and reliability of these methods to uncover 
resting-state networks that would correspond to the spi-
nal cord segmental levels. ICA is a powerful blind source 
separation technique that has been widely used to 
decompose brain fMRI datasets into a bilinear represen-
tation with spatially independent maps and associated 

Fig. 5.  Uncovering spinal functional levels in individual participants. (a) Distribution maps of nine components (left, “mtl” 
dataset) and five components (right, “gva” dataset) extracted at the individual level using the iCAP approach. The heatmap 
represents the number of participants with a component corresponding to each spinal segmental level. Heatmaps 
are overlaid on coronal views of the PAM50-T2w template and presented in rostro-caudal order. Spinal segmental 
levels derived from anatomical tables (Frostell et al., 2016) are displayed on the left for reference. Segment borders are 
represented on component maps by white lines of reduced opacity. The number of each component is provided below 
each map. (b) Component maps extracted from one participant from “mtl” (green) and one participant from “gva” dataset 
(pink) using the iCAP approach. Functional maps are overlaid on coronal and axial views of the individual T2*w (“mtl”) 
and T2w (“gva”) anatomical images coregistered in the PAM50 space. (c) The left panel demonstrates the identification 
of nerve roots, highlighted by white arrows, on axial views in both T2*w (for “mtl”) and T2w (for “gva”) images. The right 
panel illustrates the detection of nerve roots in coronal views of the T2w images (i.e., for “gva” only). Maps correspond to 
the maximum intensity projection of the maps shown for the “gva” participant panel (b), overlaid on a minimum intensity 
projection of the corresponding anatomical image to emphasize nerve roots. ICA: Independent component analysis, iCAP: 
innovation-driven co-activation pattern analysis.
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time courses (Beckmann & Smith, 2004; Calhoun et al., 
2001; Varoquaux et al., 2010). In contrast, iCAP is a more 
recent dynamic functional connectivity approach that 
identifies spatial patterns with similar functional dynamic 
behavior, characterized by simultaneous increases or 
decreases in activity (Karahanoğlu & Van De Ville, 2015). 

ICAP uses transient signals, also known as innovation 
signals, which are obtained as the derivative of the HRF-
deconvolved fMRI time courses (Karahanoğlu et  al., 
2013). Then, clustering of the innovation volumes identi-
fies consistent patterns of transient activity, termed 
iCAPs, which correspond to functional networks.
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As a matter of fact, a handful of studies have explored 
spinal cord networks at varying levels of detail using ICA 
(Kong et al., 2014; Landelle et al., 2023) and iCAP (Kinany, 
Pirondini, Mattera, et al., 2022; Kinany et al., 2020). While 
they delineated networks exhibiting a distinct rostrocau-
dal organization (e.g., alignment with vertebral levels 
(Kong et  al., 2014)), these studies did not fully exploit 
their ability to specifically reveal the functional levels of 
the spinal cord architecture in a data-driven manner. Cru-
cially, selecting the appropriate number of components 
to extract was a pivotal factor in this endeavor, as it can 
greatly impact the resulting networks. Given our aim of 
identifying spinal functional levels, we opted to set the 
number of components (K) to match the expected cover-
age in each dataset. In contrast to our earlier work (Kinany 
et al., 2020), where we defined coverage using a probabi-
listic atlas (De Leener et al., 2017), we refined our estima-
tion by combining neuroanatomical knowledge (Frostell 
et al., 2016) and visual identification of nerve roots. The 
validity of these estimations was further underscored by 
the stability of components for the selected K values.

Using this procedure, we identified spinal resting-state 
networks aligned with neuroanatomy, as evidenced by 
their spatial convergence with segmental levels derived 
from anatomical tables (Frostell et al., 2016). Specifically, 
the extracted networks corresponded to spinal segments 
C1 to T1, and C5 to T1, for “mtl” and “gva,” respectively. 
These spinal segments play a crucial role in the transmis-
sion and integration of signals between the brain and the 
periphery, with the upper cervical segments (C1-C3) pro-
jecting to the face and neck, and the lower cervical seg-
ments as well as the first thoracic segments (C4-T1) to 
the upper limbs (Kendall et al., 2005). Importantly, unlike 
prior investigations that relied solely on assessing the 
rostro-caudal location of nerve rootlets (Cadotte et  al., 
2015) our data-driven approaches go beyond mere ana-
tomical localization. By disentangling signals from dis-
tinct pools of neurons, they allow for the isolation of 
spinal levels with a functional emphasis, thus effectively 
reflecting the underlying spinal circuitry. The clear rostro-
caudal segregation of the retrieved components sug-
gests that this circuitry is predominantly intrinsic to 
individual spinal segments, rather than intersegmental. 
This observation aligns with earlier studies that reported 
either no significant correlations between resting-state 
components (Kong et  al., 2014) or a decrease in func-
tional connectivity as the distance between them 
increases (Kinany et al., 2020; Landelle et al., 2023; Wu 
et al., 2019). We anticipate that higher resolution imaging 
will offer better insight into the location of this functional 

intrinsic organization relative to the nerve root insertions. 
This holds great potential for future studies, enabling 
investigations into the modulation of these building 
blocks of the spinal cord’s functional architecture during 
tasks or following pathological conditions such as nerve 
compression or spinal cord injury.

To ensure the reproducibility of our findings, which is a 
major concern for scientific research and neuroimaging in 
particular (Nichols et al., 2017; Poldrack et al., 2017), we 
demonstrated the robustness (i.e., across methods) and 
replicability (i.e., across datasets) of the identified spinal 
cord networks. Specifically, our results outlined a large 
spatial agreement between components derived using 
ICA and iCAP, in both datasets. While networks derived 
using ICA exhibited a smaller spatial extent, likely owing 
to the spatial independence requirement of this approach, 
both methods could capture the rostro-caudal positions 
of spinal functional levels. It should be noted, however, 
that iCAP consistently outperformed ICA, especially in 
the “gva” dataset, which had a lower tSNR and temporal 
resolution. This underscores the potential of the dynamic 
iCAP approach, particularly when dealing with more chal-
lenging datasets.

Altogether, the generalizability of our results under-
scores the idea that an accurate, unbiased, and 
population-specific data-driven parcellation of the spinal 
cord topographic organization can be achieved. This is 
particularly relevant for region-of-interest based func-
tional connectivity studies, where the choice of parcella-
tion can significantly impact results (de Reus and van den 
Heuvel, 2013; Thirion et al., 2014). To date, such studies 
in the spinal cord (Eippert et al., 2017; Weber et al., 2018) 
have largely relied on probabilistic levels provided by the 
SCT (De Leener et al., 2017). Although atlases are useful 
in providing an estimate of the spinal cord organization, it 
is noteworthy that we observed a discrepancy between 
our data-driven spinal functional levels and the probabi-
listic segmental levels provided in the SCT, with the latter 
consistently shifted caudally, including a nearly one-level 
shift for T1 (see Fig. 1c). Several factors may contribute 
to these differences, including variations in normalization 
procedures and inter-participant variability. Indeed, SCT’s 
spinal segmental level locations are based on T2w ana-
tomical scans of a separate group of 20 participants 
(Cadotte et  al., 2015), which may not fully capture the 
variability in our populations. Moreover, nerve roots were 
only manually identified from C3 to C8, omitting spinal 
segmental levels C1 and C2, and extrapolating levels 
from T1 to T12, which potentially introduced inaccura-
cies. Therefore, our findings highlight the need for caution 
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when interpreting results based on atlases and empha-
size the importance of data-driven approaches in captur-
ing the complex functional organization of the spinal 
cord. In line with the observed discrepancy, the atlas of 
segmental levels included in the SCT has been recently 
updated (v6.1 and later), aligning it with the spinal levels 
described in Frostell et al. (2016).

To further investigate the temporal stability of these 
data-driven parcellations and estimate the required data 
volume for reliable outcomes, we conducted additional 
analyses to probe the ability of ICA and iCAP methods to 
delineate spinal functional levels within shorter intervals 
of the data from the “mtl” and “gva” datasets (i.e., split-
ting the datasets in distinct periods of time). While both 
methods could uncover spinal functional levels when 
provided with entire runs, iCAP outperformed ICA when 
the datasets were split into shorter intervals. This was 
particularly evident in the “gva” dataset, where ICA failed 
to identify levels in half of the data splits. Comparatively, 
networks extracted using iCAP in shorter periods 
remained highly stable for both datasets. We thus posit 
that the superiority of iCAPs may result from the unblur-
ring effect obtained through HRF-deconvolution and the 
analysis of single volumes, making it less reliant on the 
amount of data compared to ICA. In sum, this outlines 
the potential of this method to retrieve spinal functional 
organization in settings where time or participant cooper-
ation may be limited, such as clinical environments.

To advance spinal cord fMRI as a clinically valuable 
tool, it is crucial to move beyond group-level analyses 
and account for individual variations (O’Connor & Zeffiro, 
2019). Indeed, although organized fluctuations have been 
documented utilizing slice-wise seed-based functional 
connectivity in individual participants (Barry et al., 2014), 
no study to date had explored their large-scale rostro-
caudal arrangement. Our study marks a significant stride 
in this direction, as we present the first report of data-
driven spinal resting-state networks in individual partici-
pants and demonstrate their ability to unveil personalized 
spinal functional levels. Of note, these individual-specific 
spinal levels exhibited noisier profiles than the group-
level ones and could only be consistently observed using 
the iCAP framework. Again, we attribute this to the supe-
riority of this approach in handling limited data, owing to 
the deconvolution-based denoising and the use of single 
frames. While this novel description of individualized spi-
nal functional levels remains primarily qualitative, it lays a 
foundation for future research to build upon these auspi-
cious results. Further investigations, possibly through 
multimodal anatomical-functional acquisitions, will pro-

vide a more comprehensive characterization of these 
personalized spinal resting-state networks, in order to 
unequivocally confirm their link with the underlying anat-
omy and probe their reliability. Additionally, utilizing highly 
sampled individuals, similar to previous studies in the 
brain (Gordon, Laumann, Gilmore, et al., 2017; Laumann 
et al., 2015), can shed light on their spatial properties and 
stability. From a methodological perspective, disentan-
gling spinal functional levels in individual participants 
offers a promising avenue for improving inter-participant 
alignment and normalization procedures by using func-
tional in place of traditional anatomical landmarks (Wang 
et al., 2015). Furthermore, segmental parcellations sensi-
tive to individual variation may have broad implications 
for clinical practice, allowing for better surgical planning, 
for instance in the context of targeted spinal stimulation 
(Wagner et al., 2018), and facilitating the identification of 
functional biomarkers of disease (Wang et al., 2015).

In conclusion, our study demonstrates the potential of 
data-driven approaches as a powerful tool for identifying 
functional levels of the cervical spinal cord at both the 
group and individual levels. Although these results repre-
sent an important step in mapping the functional architec-
ture of the spinal cord, it stands to reason that much 
remains to be explored. In particular, future studies could 
extend these investigations to a higher number of compo-
nents. This extended analysis could yield multiple compo-
nents per level, potentially allowing for the delineation of 
the dorsal and ventral horns of the gray matter. Thoroughly 
assessing the reliability of these finer parcellations will 
provide an unprecedented window into sensorimotor 
pathways. Additionally, a complete understanding of the 
spinal cord will require exploration of the organization of 
thoracic and lumbosacral regions, which can be challeng-
ing due to the smaller dimensions of spinal segmental lev-
els in these regions (Frostell et al., 2016). Ultimately, the 
continued development of data-driven approaches to 
map the spinal cord will pave the way for a more compre-
hensive understanding of spinal function and dysfunction, 
with far-reaching implications for fundamental and clinical 
neuroscience.

DATA AND CODE AVAILABILITY

The data for the “gva” dataset can be accessed on Men-
deley Data with the identifier doi: 10.17632/n2k7zz2xyt.1. 
For the “mtl” dataset, the data are available upon reason-
able request due to ongoing analyses and are not pub-
licly accessible at this time. The code to conduct ICA 
analyses can be found in the Nilearn package, specifically 

https://doi.org/10.17632/n2k7zz2xyt.1
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the nilearn.decomposition.CanICA function. The code for 
conducting iCAP analysis can be accessed from the fol-
lowing source: https://c4science​.ch​/source​/iCAPs/.
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