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Purpose: Epitomizing the advantages of ultra short echo time and no chemical shift 
displacement error, high‐resolution‐free induction decay magnetic resonance spec-
troscopic imaging (FID‐MRSI) sequences have proven to be highly effective in pro-
viding unbiased characterizations of metabolite distributions. However, its merits are 
often overshadowed in high‐resolution settings by reduced signal‐to‐noise ratios re-
sulting from the smaller voxel volumes procured by extensive phase encoding and 
the related acquisition times.
Methods: To address these limitations, we here propose an acquisition and recon-
struction scheme that offers both implicit dataset denoising and acquisition accelera-
tion. Specifically, a slice selective high‐resolution FID‐MRSI sequence was 
implemented. Spectroscopic datasets were processed to remove fat contamination, 
and then reconstructed using a total generalized variation (TGV) regularized low‐
rank model. We further measured reconstruction performance for random undersam-
pled data to assess feasibility of a compressed‐sensing SENSE acceleration scheme. 
Performance of the lipid suppression was assessed using an ad hoc phantom, while 
that of the low‐rank TGV reconstruction model was benchmarked using simulated 
MRSI data. To assess real‐world performance, 2D FID‐MRSI acquisitions of the 
brain in healthy volunteers were reconstructed using the proposed framework.
Results: Results from the phantom and simulated data demonstrate that skull lipid 
contamination is effectively removed and that data reconstruction quality is im-
proved with the low‐rank TGV model. Also, we demonstrated that the presented 
acquisition and reconstruction methods are compatible with a compressed‐sensing 
SENSE acceleration scheme.
Conclusions: An original reconstruction pipeline for 2D 1H‐FID‐MRSI datasets was 
presented that places high‐resolution metabolite mapping on 3T MR scanners within 
clinically feasible limits.
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1  |   INTRODUCTION

Proton magnetic resonance spectroscopic imaging 1H

‐MRSI is an advanced MR technique capable of measur-
ing spectral content corresponding to distinct metabolites.1 
Through spectral dataset encoded in space with phase en-
coding in 2 or 3 dimensions, the technique provides rich 
information over the composition of the tissue under ob-
servation and their metabolite distribution. However, tra-
ditional acquisition and reconstruction techniques have 
typically been circumscribed by the limited available signal 
resulting from low metabolite concentrations, ultimately 
culminating in lengthy acquisition durations and severely 
constrained image resolutions. As an added consequence, 
the signal content associated with the resulting coarse vox-
els often reflects contributions from several tissue types, 
thereby limiting accurate quantification. The ability to 
increase image resolution without adversely affecting the 
signal quality would therefore represent a significant step 
forward.

Recent 1H‐FID‐MRSI sequences has proven to be partic-
ularly effective for measuring high‐resolution 2D metabolic 
distributions across the whole brain at ultra‐high field.2–6 
Combining the advantages of ultra short echo time, i.e. pre-
serving the signal of strongly J‐coupled metabolites, and the 
absence of chemical shift displacement errors, the technique 
provides an unbiased characterization of the metabolite dis-
tribution. Moreover, the simple sequence design permits to 
reduce considerably the acquisition time by decreasing repe-
tition time while using optimal Ernst’s flip angle. This novel 
approach in metabolic imaging enables previously unachiev-
able spatial resolutions, revealing metabolic differences be-
tween brain tissues7,8 at ultra‐high field. However, at field 
strengths typically utilized in clinical settings (3T), high‐res-
olution metabolic imaging suffers from weak signal‐to‐noise 
ratios (SNR) due to the small voxel volume (∼0.1 ml), lead-
ing to noisy metabolite distribution images. Nevertheless, 
reconstruction methods based on low‐rank assumptions are 
able to efficiently denoise MRSI dataset using partial separa-
bility.9,10 Also, in combination with accelerated acquisitions 
schemes, methods exploiting spatio‐temporal correlations en-
able reconstruction of high‐resolution metabolite images11–13 
in addition to nuisance signal removal14,15 and fast phospho-
rus MRSI acquisition.16 These approaches efficiently de-
noise MRSI dataset while preserving metabolite distribution 
features.17 The aim of the research presented in this study 
is to explore possibilities of high‐resolution MRSI acceler-
ated with a compressed‐sensing SENSE scheme while com-
bining and adapting existing methods for acquisition, lipid 
suppression, and reconstruction. To this end, a 1H‐FID‐MRSI 
acquisition scheme2 was combined with the lipid suppression 
by orthogonality method18 and low‐rank total generalized 
variation (TGV) reconstruction.19,20 The reconstruction of 

accelerated parallel MRSI was designed building on previous 
framework established by Kasten et al.19 This model has been 
extended to include separately signal from each coil element 
with corresponding sensitivity profile and to perform recon-
struction on undersampled k‐space data. We first demonstrate 
effective lipid suppression on an in‐house fat phantom using 
an optimized variant of the metabolite‐lipid orthogonality 
method. Performance of the low‐rank TGV model is then 
assessed using simulated data from an analytical phantom. 
Metabolite distributions of healthy volunteers resulting from 
the whole reconstruction pipeline are then presented. In addi-
tion, SENSE acceleration along with variable density random 
undersampling of the k‐space—deemed compressed‐sensing 
SENSE (CS‐SENSE)21,22 is performed a posteriori prior to 
reconstruction, and its effect on the reconstructed metabolite 
distributions is analyzed using both simulated datasets and 
those from healthy volunteers.

2  |   THEORY

2.1  |  Experimental framework
Considering MRSI data measured by phased array coils, 
MRSI signal measured by coil element c = 1, … , Nc at time 
t and at Fourier‐space coordinate k can be expressed as 

with ρ(r, t) the local transverse magnetization, Cc(r) the 
coil sensitivity profile and ΔB0(r) the B0 magnetic field 
inhomogeneity profile, Ω being the object spatial support. 
k =

�

2�
∫ �

0
G(t)dt is the Fourier‐space (k‐space) coordinate 

determined via application of a magnetic field gradient G(t) 
during time τ.23 The aim of the MRSI data reconstruction 
is to retrieve ρ(r, t) from sc(k, t) knowing Cc(r) and ΔB0(r). 
Practically, the observed MR signal is sampled on a discrete 
spatio‐temporal grid. The acquired k‐space values are then 
represented as a set of vectors ki with i = 1,… , Nk and the 
acquired time samples as tj = (

j−1

SR
),j = 1,… , T  with SR 

the sampling rate in the chemical shift domain (defined in 
Section 3.1). Cc(r), ΔB0(r) and the solution ρ(r, t) are also 
evaluated at discrete spatial coordinates rl with l = 1, … , Nr,  
the latter utilizing the same temporal grid tj. For 2D MRSI, 
slice selective excitation restricts the spatial acquisition and 
reconstruction domain to a two‐dimensional subspace so long 
as sufficiently thin slices are achieved to justifiably discount 
partial voluming effects. K‐space values are generally acquired 
on a Cartesian grid with Δk = (1∕FOVx, 1∕FOVy) with FOVx, y 
the size of the field of view along the x and y axes, respectively. 
The k‐space grid is filled to different extends following 
specific patterns as described further (Section 3.2). 2D  
spatial coordinates of the reconstructed dataset, rl, cover a 
full rectangular Cartesian grid within the selected slice with 

(1)sc(k,t)=∫Ω⊂ℝ3

ρ(r,t)Cc(r)e−2𝜋itΔB0(r)e−2𝜋ik⋅rdr,
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Δr = (FOVx∕Nx, FOVy∕Ny) with Nx, y the spatial resolution 
along x or y axis. In contrast to the work of Kasten et al.,19 
spatial resolution in this work was set to the Nyquist limit 
without superresolution reconstruction. The fully discretized 
(1) then reads 

with Bl, j = e−2�itjΔB0l and Fi, l = e−2�iki⋅rl and �c, i, j additive 
measurement noise assumed to be Gaussian. For sake of 
brevity, (2) can be expressed in a vector and operator form as 

 with , applying frequency shift due to B0 inhomogeneity, 
, applying spatial coil sensitivity profiles and  , the Fourier 
transform operator.

2.2  |  Lipid suppression using orthogonality
Bilgic et al. previously demonstrated effective removal of 
contaminating lipid signals by exploiting metabolite‐lipid 
spectral orthogonality.18,24,25 As an illustration, let us define 
two complex time series f M

j
, f L

j
 (j = 1, …, T) that contain sig-

nal from brain metabolites and skull lipids, respectively. The 
spectral orthogonality property reads 

where the over‐line is the complex‐conjugate. This prop-
erty was verified experimentally in vivo.25 MR time series 
acquired with T time samples (e.g. (sc, i, 1, sc, i, 2, … , sc, i, T ) in 
(2) for any coil c and ki) are elements of the complex vec-
tor space ℂT. Let SM and SL be two orthogonal subspaces of 
ℂT that respectively contain metabolite and lipid MR times 
series. We then define the lipid subspace projection P such 
that Pf∈SL with f a general spectrum combining lipid and 
metabolite signals: f = αfM +βfL, fM ∈SM ,fL ∈SL,α,β∈ℂ. 
Because lipid and metabolite time series are orthogonal (fol-
lowing (4)), we have PfM = 0 and the metabolite time series 
can be retrieved from f by 

� being the identity operator. Let us consider now a spatio‐
temporal MRSI dataset contaminated by skull lipids and ac-
quired in vivo as defined in (2). The signal originating from 
each coil element is distinct by a phase offset and a specific 
spatial sensitivity profile, intimating that lipid suppression 
should be performed on each coil element individually. With 
sc ∈ ℂNk × T the MRSI dataset measured by coil element c, 
lipid‐free MRSI data sLipFree

c  are then retrieved by 

with P̃
c
= 𝟙

ℂNk ⊗Pc, the broadcasted projection onto 
ℂNk

⊗ SL with ⊗ the tensor product. The overall sensitivity 
and specificity of the method ultimately hinges upon a pre-
cise determination of Pc to avoid inefficient lipid suppression 
or unwanted removal of metabolite signal. One such Pc can 
be constructed from MRSI data located at the skull using the 
singular value decomposition (SVD): 

with ΩSkull ⊂ℝ2 the skull lipids spatial support and H the 
Hermitian conjugate. Σ, V and U are the singular values, 
the left and the right‐singular vectors respectively. Pc is a 
T‐by‐T matrix defined by the linear combination of the first 
KL right‐singular vectors of V that form an orthogonal basis 
for the approximated lipid subspace. The rank KL is deter-
mined by the brain‐skull lipid energy balance as follows. The 
remaining lipid energy density after lipid suppression over 
spatial support Ω is EΩ =

1

VΩ

∑
rl∈Ω

∑3ppm

𝜔m = 0ppm
�ρ̃LipFree

c,l,m
�2 with 

ρ̃
LipFree

c,l,m
=
∑Nk

i= 1
(Fi,l)

∗
∑T

j= 1
e−2𝜋itj𝜔m s

LipFree

c,i,j
, the spatial and 

temporal Fourier transform of the lipid‐free MRSI dataset 
(6) with �m = SR(m∕T −1∕2) (m = 1…, T), the discrete fre-
quency values. The lipid suppression is considered sufficient 
if the remaining lipid energy density in the skull is equiva-
lent to that in brain regions in the resulting MRSI datasets. 
This condition translates to finding the minimum KL such that 
EΩSkull

EΩBrain

≤1 with ΩBrain the spatial support of the brain tissues . In 
practice, the lipid suppression is repeated while incrementing 
KL until 

EΩSkull

EΩBrain

≤ 1. The use of this criterion enables adaptive 
lipid suppression for each coil element. This metric is based 
on the notion that brain metabolites are contaminated by skull 
lipids because of the discrepancies in signal intensity. If the 
lipid signal at the skull was reduced to a level equivalent to 
that of the metabolite signal (i.e. 

EΩSkull

EΩBrain

≤ 1), lipid contamina-
tion through the point‐spread‐function in brain tissues would 
become negligible.

The method presented here is based on the regulariza-
tion model proposed by Bilgic et al.25,18 but necessitates less 
computation time. Indeed, the �2‐regularization requires the 
computation of a matrix inverse with ((T)3) computational 
complexity, while the SVD‐based method presented above 
requires (KL(T)2). Furthermore, in the adaptive iterative 
process of lipid suppression presented above, SVD and V are 
computed once per coil element. The computation time is sig-
nificantly reduced in comparison with an adaptive iterations 
approach using Bilgic’s method where varying the regular-
ization parameter would entail a full matrix inversion at each 
iteration. The lipid suppression in Equation (6) is performed in 
acquired ki and therefore is still valid when MRSI dataset are 
undersampled in k‐space (as described below in Section 5).  

(2)sc,i,j =

Nr∑

l= 1

Fi,lCc,lBl,jρl,j+�c,i,j,

(3)s = �+�,

(4)
Nt∑

j= 1

f M
j

f L
j
= 0,

(5)(�−P) ⋅ f = αfM ,

(6)
(
�− P̃

c)
sc = sLipFree

c
,

(7)
ρc�,l,j =

∑Nk

i= 1
Fi,lsc�,i,j,

V�UH ={ρc�,l,j�c� = c , rl ∈ΩSkull},

Pc
i,j
=
∑KL

n= 1
Vi,nV∗

n,j
,i,j = 1…T ,
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For the computation of Pc, the discrete Fourier transform in 
(7) is performed only on the acquired ki what is equivalent 
to fill un‐acquired k‐space points with zeros. Because the 
k‐space undersampling is random (see Figure 1), this zero‐
filling creates incoherent spatial interferences26 similar to an 
increase of the noise. A consequence of this random aliasing is 
that voxels located at the skull containing lipid signal are con-
taminated by aliased noise or metabolite signals originating 
from random location in the field of view. However, thanks to 
the much higher signal intensity of lipids relative to noise and 
metabolite signal, voxels in ΩSkull contain sufficient spectral 
quality for an accurate determination of Pc.

2.3  |  Low‐rank TGV reconstruction

The full MRSI dataset contains highly correlated measure-
ments and is often assumed to be partially separable with a 
limited number of components K.9,15,19,27 This low‐rank ap-
proximation for the reconstructed MRSI data ρ reads (follow-
ing notation in (2)) 

This space‐time decomposition leads to factorization of 
the MRSI dataset into a finite set of characteristic time se-
ries V that are spatially distributed over the measured vol-
ume according to U. Because the MRSI dataset is assumed 
to contain a finite number of distinct metabolite resonance 
frequencies that are independent of spatial location, the low‐
rank approximation is suitable. Moreover, noise contained in 
the dataset follows a random distribution in time and space 

and, therefore, cannot be represented by few characteristic 
spectra with specific spatial distribution. Accordingly, fitting 
of a low‐rank model results in efficient denoising of MRSI 
datasets.9 In addition to noise filtering effect, the separation 
of the MRSI dataset into spatial and temporal components (8) 
allows to apply specific constrains such as total generalized 
variation (TGV).28,29 TGV regularization on spatial metabo-
lite components permits effective denoising in space while 
preserving edges and avoiding stair‐casing artifacts present in 
traditional first‐order total variation schemes. The low‐rank 
approximation and TGV regularization are applied through a 
reconstruction model proposed by Kasten et al.,19 which has 
been extended here to account for the sensitivity profiles. U 
and V are determined by the minimization problem: 

with ∇ and  being first‐ and second‐order derivative opera-
tors (more details given in28) and A ∈ ℂNr × 2 an auxiliary 
vector field. Since the TGV penalty enforces the spatial com-
ponents to be sparse in finite absolute differences and because 
the coil sensitivity information is included, the model allows 
for CS‐SENSE acceleration21,22,26,30 if k‐space is sparsely 
and randomly sampled. As the temporal signal is always 
fully sampled and effectively denoised by the low‐rank con-
straint, no further regularization was performed on V. Also 
the absence of additional constraint on time components per-
mit to preserve original temporal characteristics. The recon-
struction described by the optimization problem in (9) was 
carried out following procedure described fully by Kasten  
et al.19 In short, to solve the low‐rank TGV optimization 

(8)
ρl,j =

∑K

n= 1
Ul,nVn,j,

or � =UV,

where U∈ℂNr×K ,V∈ℂK×T ,

(9)
arg minU,V ‖s−{UV}‖2

2
+�

∑K

n= 1
TGV2{U

n
},

where TGV2{U
n
} =

arg minA
��∇U

n
−A��1

+
1

4
‖(A)‖1

F I G U R E  1   A, Diagram of the FID‐
MRSI sequence with radio‐frequency signal 
(RF) and gradients intensities along z, y and 
x directions (Gz, Gy, Gx). B, Illustration of the 
elliptical k‐space sampling corresponding to 
acceleration factor 1, 2, 3, 4

(A) (B)
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problem, a primal‐dual method is used for convergence of the 
spatial components in combination with projected gradient 
descent for the temporal components. Unfortunately, the full 
procedure for jointly estimating the spatial and spectral com-
ponents is typically non‐convex and can be time‐consuming. 
To cope with these limitations, the initial estimates, V0 and 
U0, were determined through a singular value decomposi-
tion of the adjoint solution, which is presumed to lie close 
to the true inverse in the solution space. An SVD is then per-
formed on the adjoint solution to compute initial conditions 
()Hs = U0VH

0
 where U0 includes the left‐singular vec-

tors multiplied by the singular value matrix.

3  |   METHODS

3.1  |  Sequence
A slice selective high‐resolution 1H‐FID‐MRSI2,3,6–8 includ-
ing a prior WET31 water suppression (Figure 1) was imple-
mented on a 3T Prisma fit MRI scanner (Siemens, Erlangen, 
Germany) using a receiver head coil with Nc = 64 elements. 
The duration of phase‐encoding and refocusing gradients 
were shortened to achieve an echo time (TE) of 1.1 ms. The 
FID signal was acquired with T =  1024 points at a 4 kHz 
sampling rate followed by spoiler gradients with a repetition 
time (TR) of 370 ms. Assuming that the maximum T1 value 
among metabolite is 1400 ms,32 the Ernst angle for the ex-
citation pulse was computed to be 40 degree. A smaller flip 
angle permits larger excitation pulse bandwidths while keep-
ing within system voltage limits. A slice selective excitation 
pulse of 0.9 ms duration and 9.5 kHz bandwidth was opti-
mized with a Shinnar‐LeRoux algorithm.33 To determine the 
coil sensitivity profiles, two successive fast reference water 
acquisitions with head coil and body coil were added to the 
protocol. For this purpose, the same FID‐MRSI sequence and 
encoding scheme was used but without WET and with a TR 
of 31 ms, 48 FID sample points and a 5 degree flip angle.

3.2  |  A posteriori k‐space undersampling 
acceleration
Acquisition time can be significantly reduced by CS‐SENSE 
acceleration. For the 2D‐MRSI acquisition scheme described 
above, acceleration is achieved through random k‐space un-
dersampling in both phase encoding directions.26 The accel-
eration factor (AF) is then the inverse of the k‐space filling. 
Here, an CS‐SENSE acceleration was simulated a posteriori 
via variable density random removal of data points in k‐space. 
Non‐uniform undersampling schemes have been shown to 
perform better than uniform patterns because low spatial 
frequencies carry most of the signal energy.22,26 In practice, 
acquired k‐space values ki were removed randomly from s 
in (2) until reaching the desired AF with i = 1, … , Nk∕AF 

(after re‐indexing). The random undersampling was con-
strained to result in a 1/|k| density distribution but with a 
fully sampled center for |k| ≤ 1

8
max (|k|) = 8

220
mm−1 for 

a 220 mm square Field‐of‐View and 64 × 64 matrix size 
(Figure 1). To create real acceleration conditions, the ran-
dom undersampling was performed on raw data prior to the 
data processing pipeline (i.e. before water suppression, lipid 
suppression and reconstruction). Lipid suppression (6) and 
the reconstruction model (9) remained the same but with a 
reduced size for s ∈ ℂ

Nc ×
Nk

AF
×T and with a Fourier encoding 

operator  =
∑Nk∕AF

i= 1
Fi, l.

3.3  |  MRSI data processing and 
reconstruction
MRSI data acquired with full or undersampled k‐space pat-
terns were processed with the same pipeline described here-
after and illustrated by the Supporting Information Figure S1. 
First, residual water in MRSI data s was removed for each 
coil element and k‐space position separately using Hankel 
singular value decomposition (HSVD) method.34 Then, sc the 
signal of each coil element was decontaminated from skull 
lipids using metabolite‐lipid orthogonality (6). To determine 
the necessary ΩSkull for the computation of Pc, a mask was 
created by manual delineation of skull tissues on anatomi-
cal images (3D MPRAGE sequence). Coil sensitivity pro-
files were computed using data from the two fast water signal 
acquisitions. Because the signal measured by the body coil 
is presumed to be spatially homogeneous, the ratio of head 
coil element signal over body coil signal provided sensitivity 
profiles needed for the operator . Operator  was estimated 
using the multiple signal classification algorithm (MUSIC)35 
on the combined water signal from all the head coil elements. 
The spatio‐temporal magnetization, ρ, was then recon-
structed from lipid‐free MRSI data sLipFree

c  with the low‐rank 
TGV model (9) using aforementioned operators  and . ρ 
become the input for the quantification step described below.

3.4  |  LCModel quantification
The MRSI dataset ρ resulting from the reconstruction (8,9) 
is eventually quantified using LCModel36 to estimate me-
tabolite distributions. As a reference basis for LCModel, 
metabolite spectra were simulated with the GAMMA pack-
age,37 at 3T and with an acquisition delay corresponding to 
the aforementioned employed acquisition scheme. Due to 
the rather low SNR in each voxel, only high signal metabo-
lites were included in the spectrum basis: N‐acetylaspar-
tate, N‐acetyl aspartylglutamate, creatine, phosphocreatine, 
phosphorylcholine, glycerophosphorylcholine, myo‐inositol, 
scyllo‐inositol, glutamate, glutamine, lactate, beta‐glucose, 
and alanine. As an output, we obtain the spatial distributions 
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DM of metabolite M being: tNAA (N‐acetylaspartate and N‐
acetyl aspartylglutamate), tCr (total creatine), Cho (Choline 
containing compounds), Ins (Myo‐inositol), Glx (Glutamate 
and Glutamine). LCModel quantification estimates the 
Cramer‐Rao Lower bound (CRLB) and SNR for each voxel38 
as spectral quality metrics. These outputs were then used to 
create CRLB and SNR maps for each measurement.

3.5  |  Fat phantom experiment
To assess lipid suppression performance, an in‐house phantom 
was assembled to mimic a human head. To this end, MRS Braino 
phantom (GE Medical Systems, Milwaukee, WI, USA) contain-
ing an homogeneous metabolite solution (12.5 mM of N‐acetyl‐
L‐aspartic acid, 10 mM of creatine hydrate, 3 mM of choline 

chloride, 7.5 mM of myo‐inositol, 12.5 mM of L‐glutamic acid, 
5 mM of DL‐lactic acid, sodium azide (0.1%), 50 mM of potas-
sium phosphate monobasic, 56 mM of sodium hydroxide and 1 
mL/L of Gd‐DPTA) was wrapped in a layer of hypodermic swine 
fat (Figure 2). Prior to experimentation, the fresh fat layer (<24 h) 
was kept at 4◦C to avoid lipid structure degradation. The phan-
tom fat layer was wrapped as tight as possible to prevent air pres-
ence at the interface with Braino. MRSI data were acquired on 
a 10 mm slice with a 220 × 220 mm Field‐of‐View (FoV) and 
64 × 64 elliptical in‐plane encoding. A structural volume for the 
delineation of the lipid layer was acquired with a 3D T1‐weighted 
MPRAGE sequence. After residual water removal, lipid contami-
nation was removed using the method described above. Resulting 
lipid‐free data from all coil elements were recombined using 
Roemer’s weights39 and quantified using LCModel to estimate 

F I G U R E  2   Fat Phantom FID‐MRSI content before A, and after B, lipid suppression by orthogonality. The 64 spectra originate from line of 
red voxels in the anatomical image C. The contamination of the metabolite spectra inside the phantom is clearly visible in the original data (blue 
line) over the whole diagonal. The spectra after lipid suppression (green line) are magnified 3 times for ease of reading. Detailed spectra are shown 
on same scale in insets D and E. They correspond to locations near the lipid layers shown by the red arrows. Contaminating lipid peaks are removed 
from the spectra over the whole phantom without affecting metabolite signal
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concentration distributions DM following the aforementioned no-
tations (see No Model Pipeline in Supporting Information Figure 
S1). For comparison, the same processing pipeline was applied 
but without lipid suppression. The No Model Pipeline was chosen 
to highlight the efficacy of the lipid suppression in its own right, 
independent of the reconstruction.

3.6  |  Simulated data experiment

To benchmark the reconstruction using the low‐rank TGV 
model, simulated MRSI dataset were produced with an ana-
lytical phantom40 containing 10 compartments (8). The phan-
tom represents an ideal and unbiased framework for assessing 
reconstruction performance, as it can be expressed in an ana-
lytical form in both image space and k‐space. To approximate 
realistic experimental conditions, a B0‐induced frequency 
shift was added to the simulated data. This shift was added as 
a final step, as the introduction of a space dependent fre-
quency shift precludes analytical solutions to the forward im-
aging equation. The 10 compartments comprising the 
phantom were created out of ellipses and Bézier curves 
(Figure 3). Each compartment was associated with a time se-
ries containing simulated resonances (1024 pt at 4 kHz with 
GAMMA package37) corresponding to N‐acetylaspartate, 
creatine, glycerophosphorylcholine, myo‐inositol, glutamate, 
glutamine, and lactate (Figure 3). The k‐space MRSI data 

from 16 coils (positioned in a circular fashion around the ana-
lytical phantom with Biot‐Savart sensitivity profiles) was cal-
culated for a 64 × 64 elliptical encoding matrix. MRSI data 
were then frequency shifted in accordance with a random B0 
field map constructed by filling a 8 × 8 with random frequen-
cies taken from a Gaussian distribution 
 (� = 0 Hz, σ = 10 Hz) and then spline interpolating up to 
the full 64 × 64 spatial grid. The resulting B0 field map 
(Figure 4) exemplifies the spatial smoothness and frequency 
range typically found in vivo. Eventually, random Gaussian 
noise was added to the simulated MRSI dataset with varying 
amplitude to obtain a desired SNR (defined by the ratio of the 
signal and noise standard deviations). The Matlab (The 
MathWorks, Inc., Natick, Massachusetts, US) scripts gener-
ating simulated MRSI dataset are available online.41 A spa-
tio‐temporal magnetization dataset �recon was reconstructed 
with the low‐rank TGV model (9) and was compared with the 
analytical phantom solution in image space �exact. The perfor-
mance of the reconstruction was assessed by a normalized 
root mean square error 

where l, j span the spatial and temporal dimension (nota-
tion in Section 1). Three batches of tests were performed 
on the model: (1) varying the regularization parameter λ in 

(10)NRMSE =

����
∑

l,j �ρexact
l,j

−ρrecon
l,j

�2
∑

l,j �ρexact
l,j

�2

F I G U R E  3   The 10 compartments of 
the simulated MRSI analytical phantom are 
displayed next to their contained spectra. On 
each diagram is shown the real part of the 
spectrum that is a mix of N‐acetylaspartate, 
creatine, glycerophosphorylcholine, 
myo‐inositol, glutamate, glutamine, and 
lactate. All 10 spatio‐spectral components 
are overlayed in the resulting dataset. The 
four top compartments are representative 
of a white matter, gray matter, mixed gray 
matter‐cerebrospinal fluid (CSF), and CSF. 
The six lower elliptic compartments mimic 
small local modifications in metabolite 
concentrations
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(9) for SNR values  = 1, 2, 4 for K = 20 components (8). 
(2) varying the number of component K from 2 to 128 with 
optimal λ and SNR  = 2. (3) varying λ for AF  = 2, 3, 4, 6 
with SNR  = 2 and K = 20 model components. The results 
of the tests were assessed with the NRMSE. To contextual-
ize reconstruction accuracy, the performance of the low‐
rank TGV model was contrasted with that of other models 
proposed in the literature. As the first alternative model, 
Wu et al. proposed the same model but with fully static 
temporal components V.20 In this case V is computed dur-
ing reconstruction initialization by SVD of the Casorati 
matrix representing the B0 corrected MRSI dataset.11 V 
is then kept constant during the reconstruction procedure, 
in contrast with the scheme presented here (9) where V 
and U converge simultaneously. As the second alterna-
tive model, TGV was replaced by first‐order total varia-
tion (TV) regularization in (9) with TV{Uc} = ‖∇Uc‖1. 
As the third and last alternative model, the low‐rank ap-
proximation was removed from the reconstruction. (9) 
then becomes arg min

�
‖s−{�}‖2

2
+�

∑T

j= 1
TGV2{�j} 

(with notations from (2)). Reconstructions performed using 
each model were assessed with NRMSE (10) with vary-
ing λ. Results were compared without acceleration or with 
AF = 2 and AF = 4.

3.7  |  Healthy brains experiment
MRSI Data from healthy volunteers were acquired with a 
protocol approved by the institutional ethics committee and 

written informed consent was given by all subjects before 
participation. Structural volume for positioning, was first 
acquired with a 3D T1‐weighted MPRAGE sequence. Two 
FID‐MRSI 10 mm‐thick slices were positioned axially at 
different locations. Elliptical 64 × 64 encoding over a FoV 
of 220 × 220 mm resulted in a nominal voxel size of 3.4 × 
3.4 × 10 mm. A pair of fast water sequences were acquired  
(see Section 3.1) to create a reference signal for each slice. 
The total FID‐MRSI data acquisition time was 21  minutes 
per slice (including water reference acquisitions). The result-
ing metabolite distributions DM and spectral quality metric 
maps (CRLB and SNR) were computed for each subject ac-
quisition. Results were compared to metabolite distributions 
reconstructed without the low‐rank TGV modeling step. 
This no model pipeline consisted of HSVD water suppres-
sion, lipid suppression by orthogonality, coil signal com-
bination using Roemer’s method,39 inverse spatial Fourier 
transform and quantification with LCModel (sketch shown 
in Supporting Information Figure S1). A CS‐SENSE accel-
eration was simulated a posteriori with AF  = 2, 3, 4, and re-
sulting accelerated DM were compared to their fully sampled 
counterparts.

4  |   RESULTS

4.1  |  Fat phantom experiment
Results of the lipid suppression method on the fat phantom are 
shown in Figures 2 and 5. Spectra without lipid suppression 
displayed in Figure 2A show that the lipid signal originating 

F I G U R E  4   Top, B
0
 field 

inhomogeneity map and energy image of 
the analytical phantom in real space. The 
phantom is the combination of 10 overlay 
spectral compartments (Figure 3). Bottom, 
spectrum real parts at three locations spotted 
by the arrows are shown with identical scale. 
The 3 colors correspond to three levels of 
noise added to the simulated dataset before 
the low‐rank TGV model reconstruction
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from the fat layer contaminates the entire metabolite volume. 
Spectra from two voxels located at the fat layer are shown 
in Figure 2D and E. After lipid suppression by orthogonal-
ity, results from the same voxels are displayed in Figure 2B 
and no noticeable lipid signal remains. The effect of the lipid 
suppression on metabolite distribution maps quantified by 
LCModel are displayed in Figure 5. The presence of lipid 
contamination in the MRSI dataset strongly alters the quan-
tification of all metabolite concentrations and their ratios. 
When lipid suppression is applied beforehand, the quantifica-
tion results reveal the actual homogeneous metabolite distri-
butions. Metabolite distributions on the side of the phantom 
appear more intense due to the fact that coil element signals 
were combined with Roemer’s method39 without correction 
for their sensitivity profiles. The two metabolite ratios exhibit 

constant values inside the phantom when lipid suppression is 
applied.

4.2  |  Simulated data experiment

Results on the analytical phantom with different noise levels are pre-
sented in Figure 6 top. In the low regularization regime (λ ≤ 10−4),  
the error in the reconstructed dataset is influenced by the noise 
level present in the original dataset and decreases for greater λ. 
The minimal error is achieved within the optimal regularization 
parameter range (5 ⋅10−4 ≤ λ ≤ 10−3) and NRMSE minimum 
values are nearly the same for the three SNR levels. For λ ≥ 10−2,  
the reconstruction produces over‐regularized solutions that 
are nearly independent of λ. The reconstructed solution is 
not affected markedly by the number of components K for 

F I G U R E  5   Results of the fat phantom experiment. On top, the concentration distributions estimated by LCModel with or without the 
preceding lipid suppression step. The scale of each metabolite image with lipid suppression ranges from 0 to the 99th data percentile. The identical 
scale was then applied to the same metabolite image without lipid suppression. Bottom right, metabolite ratio with or without lipid suppression are 
displayed with scale from 0 to 1. Bottom left, the MPRAGE image of the fat phantom with the MRSI FoV (yellow square) are shown
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K ≥ 8 (Figure 6 inset). When K < 6, the model lacks the 
number of components to fit the data. However, for K > 32 
the model absorbs measurement noise into superfluous 
components, increasing NMRSE accordingly. Qualitative 
observation of spectral and spatial components, Vn, Un,  
with n > 20 reveals mainly noise (not shown here). For compari-
son, NRMSE values of the analytical phantom data reconstructed 
using a simple inverse Fourier transform are 0.378, 0.27, 0.216 
for SNRs of 1, 2, and 4, respectively. Simulated data reconstruc-
tion using the TGV low‐rank model allowed therefore to reduce 
the error roughly tenfold using the optimal regularization param-
eter, and fivefold in the under‐regularized regime compared to 
inverse Fourier transform. Sample spectra reconstructed with 
the low‐rank TGV model compared to the exact solution are  
presented in Supporting Information Figure S6.

Results from simulated data with acceleration are pre-
sented in Figure 6, bottom. The minimum NRMSE is 
achieved around � = 5 ⋅10−4. In this optimal regularization 
region, the NRMSE increases with AF as expected. Energy 
maps (Figure 6, right) exhibit the same trend with results con-
verging closer to the analytical solution when the accelera-
tion factor decreases. When λ > 5 ⋅10−3, the model converges 
to over‐regularized solutions as illustrated by the correspond-
ing energy maps. For small regularization values (λ ≤ 10−5),  
spatial regularization almost vanishes from the model re-
construction, yet random aliasing resulting from the k‐space 
undersampling is still minimized by coil sensitivity profiles 

included in the reconstruction model (9). This regime cor-
responds to a SENSE‐like acceleration with NRMSE mini-
mized for AF  = 2. This particular result is also illustrated 
by the energy maps that better coincide with the analytical 
solution when AF  = 2. An explanation can be found by ob-
serving the presence of Gibbs ringing artifacts in the fully 
sampled results. When k‐space is undersampled (AF >1), the 
spatial distribution is smoothed, thereby reducing the arti-
facts and hence the NRMSE. Gibbs ringing artifacts are suc-
cessfully removed by the TGV regularization for λ ≥ 10−4.  
Reconstruction results from different models are presented 
in Figure 7. Without acceleration, Wu’s reconstruction with 
pre‐determined V offers the lowest error for all λ values. The 
low‐rank TGV reconstruction and the low‐rank TV recon-
struction produce similar results with slightly higher error 
than Wu’s reconstruction. The model including TGV but not 
the low‐rank condition shows the largest error for all λ values. 
For AF  = 2, the low‐rank TGV reconstruction and the low‐
rank TV reconstruction show the lowest NMRSE followed by 
Wu’s and TGV no‐low‐rank reconstructions. With AF  = 4, 
results follow the same trend but with larger NMRSE dis-
crepancies. Overall, with or without acceleration, all methods 
produce minimum error in the same range 10−4 ≤ λ ≤ 10−3.  
Processing time was 40 minutes for Wu’s method, 80 min-
utes for low‐rank TV, 120 minutes for low‐rank TGV and 
180 minutes for the TGV no‐low‐rank method, independently 
of acceleration. Computations were performed in Matlab 

F I G U R E  6   Left, normalized root mean square error (NRMSE) of the reconstructed simulated MRSI data with respect to the analytical 
solution as function of the regularization parameter λ (9). Top left, three datasets with different signal‐to‐noise ratio (SNR) are shown. Minimum 
NRMSE do not depend on SNR and is located at the same λ values for all SNR. Top left inset shows NRMSE of the simulated MRSI dataset with 
SNR = 2 when reconstructed with λ = 5 ⋅10

−4 and different model rank K (8). Bottom left, simulated data reconstruction with SNR = 2 as function 
of the regularization parameter λ (9) and with different acceleration factors. Right, energy maps in real‐space at targeted resolution of the exact 
analytical phantom (center) and of the model reconstruction (right) at several λ values and acceleration factors
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(Matlab2017a, The MathWorks, Inc., Natick, Massachusetts, 
US) on a workstation equipped with an Intel(R) Xeon(R) 
E5‐2620 v3, 2.40 GHz cpu and 64 Gigabytes RAM memory.

4.3  |  Healthy brains experiment

Metabolite distributions measured in vivo and reconstructed 
with the low‐rank TGV model are presented in Figure 8. 
Each metabolite shows distinct concentration patterns that 
are common to the two subjects (and similar for the two ad-
ditional subjects shown in Supporting Information Figure 
S2). The gray/white matter contrast is particularly evident 
in the tCr, tNAA and Glx maps while Cho is present in high 
concentration through the frontal and cingulate white matter 
regions and in low concentration in the occipital lobe. The 
Ins distribution exhibits constant concentration through-
out the whole brain. Metabolite datasets were quantified 
using an arbitrary institutional units scale that is identical 
for each metabolite (see LCModel documentation38). The 
effect of the low‐rank TGV reconstruction step on the final 
metabolite distributions is shown in Figure 9. A significant 
noise reduction is visible in the results with the low‐rank 
TGV reconstruction, particularly in the maps of low sig-
nal metabolite: Cho, Ins and Glx. The Cramer‐Rao Lower 
bound (CRLB) and SNR estimated by LCModel distinctly 
reflect this improvement with systematic lower CRLB and 
higher SNR in results from the model reconstruction. The 

distributions reconstructed without model suffer also from 
poor signal homogeneity as particularly visible on tNAA 
and tCr maps where the signal decreases with the distance 
to the coil elements. This inhomogeneity is corrected in the 
low‐rank TGV reconstruction by the spatial coil sensitivity 
profiles  (9). Effect of the coil sensitivity correction in the 
model is also particularly visible in Figure 9 on Cho which 
is a metabolite mainly present in white matter at the center 
of the brain. In Figure 10, the effect of CS‐SENSE accel-
eration on the metabolite distribution maps is displayed. 
The patterns specific to each metabolite are preserved 
through the acceleration up to AF = 4 but the fine details 
of the maps are blurred. (see extended data in Supporting 
Information Figure S5).

To contrast performances for in vivo MRSI, reconstructions 
with the aforementioned models (presented in Section 3.6) 
were performed on a healthy brain dataset. Results without 
acceleration and with AF  = 2,4 are presented in Supporting 
Information Figure S3. Resulting metabolite distributions DM 
were compared qualitatively and show similar tendencies as 
the simulated data experiments. Without acceleration Wu’s 
(static V), low‐rank TGV and low‐rank TV reconstructions 
produce similar metabolite distributions. TGV (no low‐rank) 
reconstruction exhibits noisier metabolite distributions. With 
acceleration factor 2 and 4, greater differences between the 
methods are visible in the metabolite distributions. Low‐rank 
TGV reconstruction seems to perform better than low‐rank 

F I G U R E  7   Normalized root mean square error (NRMSE) of the 
simulated MRSI dataset with SNR = 2 as function of the regularization 
parameter λ reconstructed with different models. Bottom, center and 
top curves correspond to data with no acceleration and acceleration 
factor (AF) 2 and 4 respectively. low‐rank TGV is the model used in 
this study (9), low‐rank TGV (static V) is the same model but with 
pre‐determined time components, low‐rank TV is identical but with 
first‐order total variation regularization and TGV (no low‐rank) is a 
reconstruction model including only TGV regularization without low‐
rank approximation
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TV and Wu’s reconstructions which show slightly greater 
distortions.

5  |   DISCUSSION

In this study, an original processing pipeline for 2D MR spec-
troscopic data acquired with a 1H‐FID‐MRSI sequence is 
presented. The resulting reconstructed metabolic distribution 
maps are devoid of skull lipid contamination, and reveal in-
creased spectral SNR and spatial fidelity. The reconstruction 
model was proven to be compatible CS‐SENSE acceleration 
scheme. The effect of each pipeline step was analyzed and 
tested individually. The reconstruction method was compared 
to other alternative approaches proposed in the literature. The 
FID‐MRSI sequence was implemented with a particular ef-
fort to reduce the echo‐delay that causes 1st order phase dis-
tortion and T∗

2
 signal loss. To this end, the refocusing gradient 

combined with the phase encoding gradients following the 
slice selective excitation pulse were made as short as possible 
within hardware limits. The metabolite signal acquired with 
1.1 ms TE is highly quantitative without significant relaxa-
tion effects. The phase distortion present in the spectra was 
taken into account in the LCModel reference basis that was 
simulated with a FID sequence scheme and the utilized exper-
imental TE. The fat phantom experiment was an attempt to re-
produce the challenging measurement conditions encountered 
in vivo when MRSI data are acquired over a whole subject 

head including the skull fat layer. Without lipid suppression, 
metabolite signal from the brain would be thoroughly con-
taminated by the skull lipid signal as illustrated in Figure 5 
top. As mentioned by Bilgic et al.,25 the metabolite‐lipid or-
thogonality approximation is not always valid. The positive 
results of the fat phantom experiment confirm nevertheless 
that this approximation is still sound for data acquired with 
ultra‐short TE 1H‐FID‐MRSI sequence. The lipid suppression 
method presented here is strongly based upon the method of 
Bilgic et al.18,25 which has been successfully utilized in a num-
ber of recent publications.7,8 Bilgic et al.,18 lipid suppression 
is expressed as an optimization problem that can be translated 
into the formalism of (6) with (�−Pc) =

(
�+βLL∗

)−1 ((12) 
Bilgic et al.18). The advantage of the SVD‐base approach is 
the reduced computational cost that allows for adjustment of 
lipid suppression strength via rank KL for each coil element 
in a reasonable computing time (approx. 10 minutes). The 
low‐rank TGV regularized model used for reconstruction was 
shown to be effective in several regards. In the absence of 
acceleration, the model‐based approach improved reconstruc-
tion accuracy over inverse Fourier as exhibited with the simu-
lated data experiment (Figure 6). For λ = 10−6, the effect of 
spatial regularization is effectively negligent, and the recon-
struction reduces to a low‐rank approximation.9 In this case, 
NRMSE is reduced fourfold in comparison to spatial inverse 
Fourier transform for all SNR values on account of the im-
plicit denoising. Reintroducing spatial regularization into the 
model with λ set to optimal value of around 5 ⋅10−4 achieve 

F I G U R E  8   Metabolite distributions DM from two healthy volunteers reconstructed with the low‐rank TGV model with optimal regularization 
parameter (λ = 10

−3) and rank K = 20 without acceleration (two extra healthy volunteer results are shown in Supporting Information Figure S2). 
The maximum of the scale was set to the 95

th percentile (PCT) of each metabolite image separately
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a tenfold reduction in NRMSE resulting in the lowest error 
when compared with ground truth data. Accordingly, recon-
struction of the fully sampled in vivo MRSI dataset also re-
sults in improvements of precision as reflected by the CRLB 
and SNR, particularly for low signal metabolites (Figure 9). 
Our analysis confirms previous reports19 demonstrating that 
the low‐rank TGV model significantly improves reconstruc-
tion accuracy over traditional inverse Fourier transform. CS‐
SENSE results of simulated MRSI datasets (Figure 6) show 
that acquisition acceleration by random k‐space undersam-
pling is possible without adversely affecting metabolite dis-
tributions when reconstructed with an optimal regularization 
parameter (10−4 ≤ λ ≤ 10−3) and with AF ≤ 4. Comparison 
between reconstruction methods shows that, in absence of 
acceleration, Wu’s reconstruction performs slightly better 
than the low‐rank TGV reconstruction used in this study, as 
illustrated by simulated data (Figure 7). Reconstruction per-
formance was also slightly better when using first‐order total 

variation regularization. This is not an unexpected result, as 
the simulated phantom consists of exactly the type of piece-
wise constant geometries promoted by first‐order total vari-
ation penalties. Under real‐world experimental conditions, 
metabolite distributions from the acquired in vivo MRSI data-
sets exhibited similar quality between all methods without 
acceleration (Supporting Information Figure S3). However, 
when acceleration was used, superior reconstruction quality 
was achieved with the low‐rank TGV‐regularized method pre-
sented for both simulated and healthy volunteer MRSI data.

Inhomogeneities in the radio‐frequency transmit field 
(B+

1
) may be a non‐negligible source of error in quantitative 

MRI techniques due to the flip angle spatial inhomogeneity. 
However, with steady‐state magnetization following from the 
use of Ernst’s flip angle, the effect of B+

1
 deviation on the signal 

remains small. Indeed, letting single slice B+
1
 deviation to rep-

resent a maximum 20% variation in the flip angle,42,43 and with 
T1 metabolite values ranging from 1000 to 1400 ms,32 steady 

F I G U R E  9   Top, effect of the low‐rank TGV reconstruction on the final metabolite distributions DM . For Low‐Rank TGV Recon., 
distributions were reconstructed with the model and λ = 10

−3
, K = 20. The metabolite distributions reconstructed without model (No Model Recon.) 

result from a pipeline including only lipid suppression and LCModel quantification. The scale ranges from 0 to the 95
th percentile (PCTL) of each 

concentration distribution separately. Bottom, Two real parts of spectrum samples are shown with their respective locations. The red line belongs to 
the reconstruction without model and the blue line corresponds to the low‐rank TGV reconstruction (Extended figure with CRLB and SNR maps in 
Supporting Information Figure S4)
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state magnetization would be expected to change by only 5% 
at maximum (see Supporting Information Figure S7). Low flip 
angle excitation enable the use of high bandwidth excitation 
pulse thereby minimizing chemical shift displacement error in 
the slice direction. For example, slice excitation of two chemi-
cal species separated by 500 Hz are shifted by 0.5 mm.

As proof of concept, results on healthy volunteers illus-
trate demonstrable improvement in SNR and CRLB, partic-
ularly for lower signal metabolites: Cho, Ins and Glx (Figure 
9, Supporting Information Figure S4). The reconstructed 
metabolite maps of two distinct volunteers as presented in 
Figure 8 and Supporting Information Figure S2 show the 
same metabolic features as previously published data at 7T 
and higher field7,8 affirming the in vivo reconstruction results. 
Consistency of the distribution across all volunteers for each 
metabolite demonstrates qualitative reproducibility of the 
methodology. Metabolite distributions are expressed in insti-
tutional units that are identical for each metabolite, thereby 
allowing comparison between cross‐sectional or longitudi-
nal subject data. Absolute metabolite quantification should 
therefore be possible using the reference water measurement 
if appropriate calibrations are done, and if the water signal is 
corrected for relaxation effects. However, water referencing 
might bias the estimated concentrations due to proton density 
variations between gray and white matter.

Results of in vivo metabolite maps accelerated with k‐
space undersampling (Figure 10, Supporting Information  

Figure S5) in combination with the simulated data results 
(Figure 6) indicate that the MRSI acquisition can be safely 
accelerated by CS‐SENSE with AF  = 2 without introducing 
significant quantitative and qualitative errors into the result-
ing metabolite distributions. This important license to clini-
cians to shorten the acquisition time of the 2D‐FID‐MRSI 
to 11 min per slice, and thereby bringing the technique in 
line with clinical requirements. The results presented in this 
article represent a proof of concept for the low‐rank TGV 
reconstruction of 2D‐FID‐MRSI. We showed that the meth-
odology is effective in generating high‐resolution metabo-
lite distributions but further reproducibility tests should be 
performed in order to measure precision and robustness, 
and to assess results on slices positioned in different brain 
regions. Indeed, like for most MRSI sequences, the quality 
of a FID‐MRSI dataset strongly depends upon the local B0 
homogeneity. Further investigation should be done to de-
termine measurement feasibility in regions located near the 
temporal lobes or around hippocampi. Whole brain spec-
troscopic imaging is a topic gathering significant attention 
in the research community due to the original nature of the 
produced metabolite images and their possible applications 
in neurological and neuroscientific clinical research.44–46 
Numerous previous studies presented methodology based ei-
ther on specific acquisition sequences47,48 and/or reconstruc-
tion techniques.15,17,25,27,49 Spatial‐spectral encoding and 
echo planar schemes have been shown to be fast and efficient 

F I G U R E  1 0   Effect of k‐space undersampling acceleration on metabolite distribution maps for an in vivo dataset. Reconstruction was 
performed with rank K = 20, optimal regularization parameter (λ = 10

−3) and with acceleration factors  = 1, 2, 3. The scale ranges from 0 to the 95
th 

percentile (PCTL) of each concentration distribution and acceleration factor separately (additional in vivo dataset and AF = 4 shown in Supporting 
Information Figure S5)
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for acquiring whole brain MRSI data in 3D, but at the cost 
of a lower SNR and longer TE.50–54 Recent developments 
in FID‐MRSI acquisitions at ultra high fields combined 
with acceleration techniques are particularly promising due 
to the high SNR and resolution of the resulting metabolite 
maps.2,3,6–8,55–57 The method presented in this article is an ad-
aptation of the FID‐MRSI approach for lower field strength. 
Although SNR is reduced by half compared to 7T, MRSI ac-
quisition at 3T benefits from improved B1 and B0 homogene-
ity, which may be particularly advantageous for FID‐MRSI 
measurements in brain regions with less homogeneous B0. 
Also, new B0‐shimming methods with, for instance, dynamic 
multi‐coil schemes58 would certainly improve result quality 
in these conditions. To summarize, an original methodology 
for acquiring high‐resolution metabolite distributions was 
presented. The technique developed on a 3T clinical MR sys-
tem, requiring just 11 minutes with AF = 2 for acquisition 
of an entire 2D slice of the brain, should be of considerable 
interest for clinical research and applications.
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SUPPORTING INFORMATION

Additional supporting information may be found online in 
the Supporting Information section at the end of the article.

FIGURE S1 Sketch of the pipeline used for the reconstruc-
tion of acquired MRSI mulit‐coil datasets. Pipeline to the 
left represents the full reconstruction including the low‐rank 
TGV model. To the right, the pipeline without model is pre-
sented (this pipeline is used for comparison) 
FIGURE S2 Metabolite distributions DM from two extra 
healthy volunteers reconstructed with the low‐rank TGV 
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model with the optimal regularization parameter (λ = 10
−3)  

and rank K = 20 without acceleration. The maximum of the 
scale was determined by the 95

th percentile (PCTL) of each 
metabolite image separately 
FIGURE S3 Metabolite distributions DM reconstructed with 
different models. low‐rank TGV is the model used in this 
study, low‐rank TGV (static V) is the same model but with 
pre‐determined time components, low‐rank TV is identical 
but with first‐order total variation regularization and TGV (no 
low‐rank) is a reconstruction model including only TGV reg-
ularization without low‐rank approximation. Reconstructions 
were performed with λ = 10

−3 and K = 20 (except no low‐
rank) and without acceleration or with AF  = 2,4 
FIGURE S4 (Extended version of article Figure 9) Effect 
of the low‐rank TGV reconstruction on the final metabo-
lite distributions DM and spectral quality parameters CRLB 
and SNR computed from LCModel. For Low‐Rank TGV 
Recon., distributions were reconstructed with the model and 
λ = 10

−3
,K = 20. The metabolite distributions reconstructed 

without model (No Model Recon.) result from a pipeline in-
cluding only lipid suppression and LCModel quantification. 
The scale ranges from 0 to the 95

th percentile (PCTL) of 
each concentration distribution separately. Three real parts 
of spectrum samples are shown with their respective loca-
tions on the right. The red line belongs to the reconstruction 
without model and the blue line corresponds to the low‐rank 
TGV reconstruction 

FIGURE S5 (Extended version of article Figure 10) Effect 
of k‐space undersampling acceleration on metabolite distri-
bution maps for two in vivo dataset. Both MRSI datasets were 
reconstructed with rank K = 20, optimal regularization pa-
rameter (λ = 10

−3) and with acceleration factors  = 1, 2, 3, 4. 
The scale ranges from 0 to the 95

th percentile (PCTL) of each 
concentration distribution and acceleration factor separately 
FIGURE S6 Sample spectra of the exact solution with-
out noise and the low‐rank TGV reconstruction from the 
simulated MRSI dataset at several locations. Data were re-
constructed with λ = 5 ⋅10

−4 and rank K = 20 without accel-
eration. Left, energy image of the analytical exact solution 
and the low‐rank TGV reconstructed solution 
FIGURE S7 Steady state signal, ∝ sin (α)

1−e−TR∕T1

1−cos (α)e−TR∕T1
, com-

puted for flip angle, α, ranging from 30 to 50 degree and for 
T

1
= 1000, 1200 and 1400 ms. The Ernst angle (40 degree) is 

located at a saddle point that implies signal to be only slightly 
dependent on α deviation
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