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Distributed Patterns of Brain Activity Underlying
Real-Time fMRI Neurofeedback Training
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Abstract—Neurofeedback (NF) based on real-time func-
tional magnetic resonance imaging (rt-fMRI) is an exciting
neuroimaging application. In most rt-fMRI NF studies, the
activity level of a single region of interest (ROI) is provided
as a feedback signal and the participants are trained to up
or down regulate the feedback signal. NF training effects
are typically analyzed using a confirmatory univariate ap-
proach, i.e., changes in the target ROI are explained by
a univariate linear modulation. However, learning to self-
regulate the ROI activity through NF is mediated by dis-
tributed changes across the brain. Here, we deploy a mul-
tivariate decoding model for assessing NF training effects
across the whole brain. Specifically, we first explain the NF
training effect by a posthoc multivariate model that leads
to a pattern of coactivation based on 90 functional atlas
regions. We then use cross validation to reveal the set of
brain regions with the best fit. This novel approach was
applied to the data from a rt-fMRI NF study where the par-
ticipants learned to down regulate the auditory cortex. We
found that the optimal model consisted of 16 brain regions
whose coactivation patterns best described the training ef-
fect over the NF training days. Cross validation of the mul-
tivariate model showed that it generalized across the par-
ticipants. Interestingly, the participants could be clustered
into two groups with distinct patterns of coactivation, poten-
tially reflecting different NF learning strategies. Overall, our
findings revealed that multiple brain regions are involved
in learning to regulate an activity in a single ROI, and thus
leading to a better understanding of the mechanisms un-
derlying NF training.
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Fédérale de Lausanne.

Digital Object Identifier 10.1109/TBME.2016.2598818

Index Terms—Basal ganglia, coactivation, functional net-
works, insula, neurofeedback (NF), real-time functional
magnetic resonance imaging (rt-fMRI), thalamus.

I. INTRODUCTION

N EUROFEEDBACK (NF) based on real-time functional
magnetic resonance imaging (rt-fMRI) is an emerging

technique that allows us to train the participants voluntary con-
trol over their own brain activity [25], [26]. In the majority
of rt-fMRI NF experiments, the feedback signal reflects neu-
ronal activity within a single region-of-interest (ROI) and the
participants are taught to up or down regulate the feedback sig-
nal. Previous rt-fMRI NF training studies have demonstrated
that healthy participants can indeed gain control over localized
brain activity, and that such training affects behavior. For ex-
ample, training of the parahippocampal cortex modulated mem-
ory function [77] of the right anterior cingulate cortex (ACC)
reduced pain perception [22], [62], of the precentral gyrus
speeded up motor responses [31], of the inferior frontal gyrus
improved linguistic performance [1], of the insula modulated
emotions [5], of the occipital cortex improved visual perception
[29], [33], and of the right auditory cortex modulated audi-
tory perception [9], [19]. Recent studies have also demonstrated
clinical relevance of rt-fMRI-based NF training. For exam-
ple, chronic pain patients were trained to regulate the ACC
[62], chronic tinnitus patients learned control over the audi-
tory cortex [20], Parkinson’s disease patients learned control
over the supplementary motor area [10], major depression pa-
tients learned to increase activity in brain regions involved in
positive emotions [28], chronic stroke patients learned control
over the ventral premotor cortex [28], nicotine addicts learned
control over the ACC and ROIs in the prefrontal cortex [34],
and schizophrenia patients learned control over the insular
cortex [15].

To shed light on the neural underpinnings of successful self-
regulation, training-related changes in brain networks have been
investigated posthoc for some of the above-mentioned ROI-
based NF studies. For example, Rota et al. analyzed functional
connectivity (FC) by using a seed correlation approach that re-
vealed FC changes with the NF target ROI (i.e., the inferior
frontal gyrus) as a function of NF training [1], [16]. Their FC
analyses revealed changes in pairwise correlations between the
NF target ROI and other brain regions, but FC changes be-
tween brain regions other than the NF target ROI could not
be detected with the seed correlation approach. Ruiz et al.

0018-9294 © 2016 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more information.



KOPEL et al.: DISTRIBUTED PATTERNS OF BRAIN ACTIVITY UNDERLYING REAL-TIME FMRI NEUROFEEDBACK TRAINING 1229

studied changes in effective connectivity that were associated
with the NF training of the insular cortex using Granger causal-
ity modeling (GCM), which is a connectivity analysis approach
in which time series from preselected brain regions are used
to predict time courses of another region [3], [12], [13], [15].
They found enhanced effective connectivity of the NF target
ROI with other brain areas but similar as that with thebr seed-
based approach; Granger causality limits the number of brain re-
gions whose connectivity changes were analyzed. Scharnowski
et al. found posthoc connectivity changes associated with the
NF training of the visual cortex using a psychophysiological
interaction (PPI) analysis and dynamic causal modeling (DCM)
[33], [69]. Whereas PPI is exploratory and allows us to identify
task-related correlation changes with the NF target ROI [70],
DCM is hypothesis driven and uses the Bayesian model com-
parison to compare which network architecture explains the
data best [72]. However, similar to the seed-based approach,
PPI allows us to analyze only FC changes with the NF target
ROI, and similar to the Granger causality, DCM allows us to
analyze effective connectivity of only a few predefined ROIs.
Finally, Haller et al. applied independent component analysis
to reveal network changes associated with training the auditory
cortex [9], [19]. Their analysis revealed functionally relevant
independent components (ICs), including the auditory network
that contained the NF target ROI, the default mode network
(DMN), and the executive control network. Even though this
study used a data-driven multivariate approach for the decom-
position into ICs, the FC analysis was done using a univariate
approach (i.e., changes in pairwise correlations between IC time
courses over training days were analyzed separately). Finally, a
recent study by Harmelech et al. demonstrated that even a single
session of ROI-based NF training induced lasting changes of FC
within the DMN [27]. Overall, these posthoc analyses of global
changes associated with ROI-based NF training indicate that
the effects of NF training extend beyond the target ROI. How-
ever, these investigations focused on either hypothesis-driven
multivariate analyses observing connectivity changes between
the target ROI and a limited number of regions, or on whole
brain univariate analyses observing changes in pairwise connec-
tions. Here, we extend these previous approaches by proposing
a posthoc multivariate decoding method to identify changes
in brain activity across the whole brain that are associated
with the NF training. This decoding analysis includes activ-
ity signals from all brain regions, which are used to explain
the NF training effects in a multivariate model. Specifically,
we

1) used a linear model but with a multivariate decoding setup,
where time courses of all brain regions as regressors, and the
interaction between the self-regulation paradigm and a linear
improvement across NF training as the target signal;

2) ranked all brain regions according to their consistency over
subjects;

3) tested this hypothesis that also includes an estimation of the
optimal model size by implementing a leave-one-participant-out
(LOO) cross validation and backward elimination methods.

Our new multivariate approach will decode and identify
coactivation maps of brain regions involved in improved

self-regulation skills, and will thus reveal the coactivation pat-
terns underlying ROI-based NF training. To validate the method,
we applied this novel approach to data from a previous ROI-
based NF study, in which 12 participants learned down regula-
tion of the right auditory cortex activity while being presented
with acoustic stimulation [9], [19].

II. MATERIALS AND METHODS

A. Data Description

Details about the participants, task procedure, and data acqui-
sition can be found in [9] and [19]. For completeness, the main
parameters are summarized here.

1) Participants: Twelve healthy right-handed volunteers
with normal audition took part in the study. Mean age of par-
ticipants was 28.37 years (range 24–33 years). The study was
approved by the local ethics committee, and all participants
gave written informed consent. Before the experiment, volun-
teers received written instructions explaining that they will learn
to down regulate their primary auditory cortex activity with the
help of NF.

2) Task Procedure: Each participant had four days (ses-
sions) of NF training with approximately 1 week intervals be-
tween them. At each day, participants had four runs, which led
to a total of 16 runs per participant. Before each training ses-
sion, the participants primary auditory area was identified using
a standard fMRI auditory block-design paradigm, consisting of
20 s ON and 20 s OFF bilateral auditory stimulation using a
1000 Hz pulsating sine tone, repeated five times. Following the
localizer, four rt-fMRI NF training runs were performed, the
right localized auditory region was the target ROI. Each run
was composed of five 30 s baseline blocks, interleaved with
60 s down-regulation blocks. The same pulsating sine tone of
1000 Hz was provided as an auditory stimulation during down-
regulation blocks. The signal from the target ROI was provided
as a visual feedback during the entire run as a moving line graph.
The participants were informed about the data processing delay
of about 1 s and of the intrinsic physiological hemodynamic
response delay of about 6 s during the down-regulation periods.
No specific regulation strategy was recommended to the partic-
ipants, but it was emphasized that they should find an individual
strategy that worked best for them. For online data analysis and
feedback presentation we used the Turbo BrainVoyager soft-
ware package (Brain Innovation, Maastricht, The Netherland)
in combination with in-house MATLAB (Mathworks Inc., Nat-
ick, MA, USA) scripts.

3) Data Acquisition: The experiment was performed on
a 3 T whole-body MR sc anner with a standard 12-channel head
coil (Siemens Magnetom Verio, Siemens Erlangen, Germany).
Functional data were acquired with an echo-planar imaging se-
quence (echo time 40 ms, repetition time 2000 ms, matrix size
64 × 64, voxel size 3 × 3 × 3 mm3 , and 19 repetitions). Ad-
ditionally, we acquired an anatomical T1-weighted whole brain
image using a magnetization prepared rapid gradient echo se-
quence (matrix size 256 × 256, 176 partitions, 1 mm3 isotropic
voxels, 26 slices with 1 mm thickness).
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Fig. 1. Construction of the Ztarget signal. (a) Zblo ck block paradigm of
all runs concatenated in time, indicating the regulation and rest periods.
(b) Ztra in ing a linear descending training signal over four training days.
(c) Ztarget element-wise multiplication between Ztra in ing and Zblo ck .

B. Data Preprocessing

Preprocessing was performed using an SPM8 software (Well-
come Department of Imaging Neuroscience, London, UK). All
functional volumes were spatially realigned to the first volume
of each run and normalized into MNI space (Montreal Neuro-
logical Institute, resampled voxel size: 2 × 2 × 2 mm3) by using
cubic B-spline interpolation. Image series were then parcelated
into V = 90 regions based on the Greicius functional atlas [11],
and time courses were regionally averaged, demeaned and lin-
early detrended using MATLAB standard functions. For each
participant n, data were concatenated into a single matrix for

all 16 runs: Y
(n)

= [Y (n)
1 Y

(n)
2 . . . Y

(n)
16 ], where Y

(n)
k is the

spatio-temporal matrix of run k.

C. Within-Subject Model

We deploy a linear model to reveal the main effect of reg-

ulation. For each participant n time courses Y
(n)

are used to
explain the block paradigm Zblock . Zblock is a vector of length
16 · 195, constructed by 16 concatenated block designs, nor-
malized to zero mean and unit variance (see Fig. 1). This linear
model is defined for each participant n as follows:

Zblock = Y
(n)T · β(n)

main + ε
(n)
main (1)

where β
(n)
main is the parameter vector and ε

(n)
main is the noise term.

The optimal parameter estimates ̂β
(n)
main are found by minimizing

the sums of squares of the residuals ê
(n)
main = Zblock − Y

(n)T ×
̂β

(n)
main between the predicted and the fitted models, which is

optimal assuming ε
(n)
main is independent identically distributed

normally distributed.
Next, we deployed another linear model to reveal the train-

ing effect over days, here, the time courses Y
(n)

are used to
explain the interaction between the linear improvement across
training days and the block-design paradigm. For this purpose,

we defined the improvement signal as

Ztarget = Ztraining � Zblock (2)

where ZT
training = [3 . . . 3

︸ ︷︷ ︸

4·195

1 . . . 1
︸ ︷︷ ︸

4·195

−1 . . . − 1
︸ ︷︷ ︸

4·195

−3 . . . −3
︸ ︷︷ ︸

4·195

].

Ztraining is also normalized to unit variance, and then multiplied
element wise (�) with Zblock to generate the improvement sig-
nal Ztarget (see Fig. 1). The linear model for each participant n
was defined as follows:

Ztarget = Y
(n)T

· β(n) + ε(n) (3)

where β(n) is the parameter vector and ε(n) is the noise term.
To test the null hypothesis so that the improvement signal

is explained better than by chance, we phase-randomized the

matrix Y
(n)

(along its rows) in the temporal Fourier domain.
The null is rejected if the estimation error for the real data is
significantly better than for surrogate data. Specifically, gener-
ating 19 surrogate datasets allows significance to be established
at 5%. Participants that fit the model well are those with real-
data residual sum of squares (RSS) values lower than all 19
surrogates RSS values (confidence intervals of 95%). For fu-
ture use, we defined a 195 × |N | matrix based on a general set
N : ̂β +

N = [· · · ̂βj · · · ], j ∈ N . According to the RSS single-
participant performances, we defined M as the set of “good”
participants that successfully fitted the model, and the estimated
parameter matrix ̂β +

M accordingly.

D. Regions Involved in Improvement of Self-Regulation

In order to investigate the key regions involved in the im-
provement of self-regulation, we analyzed ̂β +

M , by performing
a two-sided one-sample t-test on each row (i.e., per brain region
across participants). Based on the results, we ranked the regions
according to their t-values. We also included the anatomical lo-
cation of the functional network regions (see Table I). Next, the
generalizability of the model across participants was tested with
a LOO cross-validation scheme (see Fig. 2). In this approach,
the fitted model for |M| − 1 training participants was used to
establish the corresponding ̂β, which was then applied to the
left-out participant. In each LOO iteration, we selected a left-
out participant n, defined the training set M(n) = M\ {n},
and updated matrix ̂β +

M(n ) accordingly. Due to the high in-

terparticipant variability, we clustered ̂β +
M(n ) into two groups

using k-means clustering that used the cosine distance measure
with 10 000 replicates, resulting in two sets of participants:
M(n)

i = {j : j ∈ M(n) |j ∈ group i}, i = 1, 2. To avoid dou-
ble dipping, k-mean clustering was calculated within each fold
and the number of clusters was consistently set to two based
on the Calinski–Harabasz criterion [71]. For each group i, we
adjusted the fitted data matrix ̂β +

M(n )
i

, based on which we calcu-

lated the training response

βM(n )
i

= 1/(|M(n)
i |) · ̂β +

M(n )
i

· 1 (4)
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TABLE I
BRAIN REGIONS RANKED ACCORDING TO THEIR CONSISTENCY OVER SUBJECTS WITHIN EACH GROUP
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Fig. 2. Overview of the processing pipe line with cross validation. The
model estimation was done for all participants but one (test participant).
The model validation for test participant used the model estimation re-
sults. Backward elimination for brain regions repeats this procedure for
all possible model sizes. Regions were eliminated based on the ranking
of each set which was calculated once using the full model (i.e., m = V ).
Results are the measure of fit calculated for each possible model order
size.

where 1 is a one vector of length |M(n)
i |. The prediction for the

left-out participant n was defined as follows:

Z
(n)
i = Y

(n)T · βM(n )
i

. (5)

Furthermore, we defined the measure of fit as the correlation
between the improvement paradigm Ztarget and the prediction
signal

F
(n)
i = corr

(

Ztarget , Z
(n)
i

)

. (6)

The group level coactivation maps were calculated separately
for each of the two groups using the following steps:

1) rankings βM(n )
i

according to one-sample t-test were cal-

culated for each group in each fold;
2) the optimal model (top 16 regions, see Section II-E) in

each fold was identified;
3) a list counting the times each region was a part of the

optimal model was created;
4) coactivations maps were defined based on the list created

in step (3), regions that were ranked within the top 16 regions
for more than 6 out of 11 folds were selected.

E. Model Order Selection

Region ranking for optimal model size analysis was calcu-
lated once for each LOO fold. A one-sample t-test was calcu-
lated for the training set matrix βM(n )

i

that included all regions

(i.e., full model m = V ) , results were sorted in descending
order that sets the ranking of regions. The search for the op-
timal model order was done by using the backward elimina-
tion approach [43] that was executed separately for each fold,
where at the initial step all regions are included and in follow-

ing steps regions are eliminated based on the ranking that was
determined. The performances analysis of all possible model
sizes was done separately for each fold by exploring the model
estimation of the training set (i.e., two group clustering and
βM(n )

i

in each of the groups) and model validation [i.e., the mea-

sure of fit F
(n)
i,m , (6)]. Based on those results, we could assign the

left-out participant n to one of the two clusters M(n)
i , i = 1, 2

by maximizing the mean measure of fit between the two clusters:

{n ∈ M(n)
k | ∑V

j=1 F
(n)
k,j >

∑V
j=1 F

(n)
t,j }. The performance re-

sults of all the folds were consolidated by averaging the measure
of fit over all folds, resulting in one measure for each possible
model size. The selection of the optimal model size was based
on comparing that average measure of fit to the performances of
1000 surrogate datasets, and choosing the order size that max-
imizes the data performance and exceed the 98th percentile of
the surrogate distribution.

III. RESULTS

A. Learned Down Regulation of Primary Auditory Cortex

As reported previously, over the course of four days of NF
training, participants learned to down-regulate activity in the NF
target region, i.e., the right auditory cortex [9], [19].

During the experiment, feedback was only based on the ac-
tivity level of a single subject-specific target single ROI that was
determined by using a functional localizer. Here, we investigated
training effects based on the combined activity from multiple
brain regions that were taken from a predefined functional atlas.

B. Within-Subject Discriminative Model

In the analysis of the main effect, we found positive bilat-
eral activation in the auditory regions and frontal medial cor-
tex, contralateral thalamic activity, caudate and middle occipi-
tal lobe (left regions with activations while right regions with
deactivation); and bilateral deactivation of insula, medial su-
perior frontal gyrus, and calcarine. Next, for the training ef-
fect analysis we found that all except one participant showed
significant training effect as function of training days (see
Fig. 3) M = {1, 2 . . . 9, 11, 12}. For those who did, the linear
combination of activity in the V regions was related to changes
in regulation strength across NF days. Table I shows the brain
regions ranked according to the t-values and also reports the
average linear combination values (i.e., β values).

C. Regions Involved in Improving Self-Regulation

A complete view of the learning effect needs to consider two
results, the first is the main effect that corresponds to the average
activation level during down-regulation session and the second
is the change of activation over training sessions. The multivari-
ate analysis of the training shows the coactivated regions that
explain a linear change in activation over sessions. The cluster-
ing analysis revealed two distinct groups of participants. Cross
validation identified distinct sets of brain regions that were in-
volved in training (see Fig. 4). Here, we closely examine the two
groups: the optimal model for group 1 includes left crus l, right
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Fig. 3. RSS for all participants. RSS of the original data (circles) was
significantly lower than the RSS of the surrogate data (�) for eight par-
ticipants (1, 2, 3, 4, 5, 9, 11, 12; indicated by ∗). Participants 6, 7, and 8
present low performances but still within the 95% significant levels (also
indicated by ∗). One participant (number 10) did not show a significant
learning effect across NF training.

Fig. 4. Coactivation maps shown as axial slices in neurological con-
vention. (a) T-value of the main effect analysis for all brain regions. (b)
Optimal model for the rt-fMRI training effect over four sessions. Shown
here are the positive and negative t-values averaged across the within-
subject multivariate models.

insula, caudate, right midcingulate cortex, right angular gyrus,
right thalamus, and putamen areas that are associated with neg-
ative beta values (an increase of activation over the session),
while left frontal operculum, left crus I, and right middle frontal
gyrus are associated with positive beta values (a decrease of
activation over the session). In the optimal model for group 2 it
was found that right inferior parietal lobule, right angular gyrus,
left inferior temporal gyrus, and left inferior frontal gyrus are as-
sociated with negative beta values and an increase of activation,
while midcingulate cortex, left middle temporal gyrus, right su-
perior temporal gyrus (i.e., the target auditory ROI), and right
supramarginal gyrus are associated with positive beta values and
thus a decrease of activation.

D. Model Order Selection

The performance of the proposed model was evaluated using
the average measure of fit, i.e., correlation between the improve-
ment paradigm and the prediction for the test participant. Each
test participant n was assigned to its best fitted group. In Fig. 5,
we present these cross-validation results for the real and sur-
rogate data. The distribution of the test statistic under the null

Fig. 5. Performance of cross validation over different model sizes. Mea-
sure of fit indicate average group level correlation between Ztarget and
test participants prediction. Dashed line represents the results for group
1, dotted line for group 2; solid line for assigned group, i.e., each test
participant was assigned to the group with the best fit; red line without
subdividing into two groups, i.e., for each left-out subject, the model is es-
timated based on all other subjects. Gray scale represents the percentile
of the surrogate distribution.

hypothesis indicated that 16 regions can be considered as an
optimal model order. An examination of the optimal models
across the folds revealed that the t-values used for the ranking
of the top 16 regions where significant ( two-tailed uncorrected
t-value > 2, p < 0.05) It is important to note that for the op-
timal model size the cross-validation results indicated that the
two groups analysis with real training data outperformed the
analysis including all subjects with real data (i.e., without sub-
dividing subjects in two groups) as well as with surrogate data
(see Fig. 5). Despite the high interparticipant variability, this fur-
ther confirmed that the top-ranked regions can be generalized to
out-of-fold participants.

IV. DISCUSSION

Voluntary control over brain activity in a single ROI can be
learned using rt-fMRI NF. Here, we deployed a multivariate
data-driven model to reveal how the coactivation of multiple
brain regions explains the successful NF training. For evaluating
the consistency of the activated regions across participants, we
used cross validation to determine the most economical and
generalizable model, which consisted of 16 brain regions. Our
results show that

1) NF training of a single ROI caused distributed changes
across the whole brain.

2) A multivariate model of coactivated brain regions that
generalizes across participants can be identified.

3) Participants can be clustered into two distinct groups who
each coactivated different sets of brain regions.

A. Posthoc Analyses of Functional Network
Reorganization

Training brain activity in a single ROI using rt-fMRI NF
does not only affect the NF target ROI, but also other regions
across the brain. A better characterization of these changes is
important for understanding the neural underpinnings of NF
training, thus potentially improving its efficacy. As presented



1234 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 64, NO. 6, JUNE 2017

in Section I, the methods that were previously used to investi-
gate global distributed changes include seed-based correlation,
whole-brain pairwise correlation, GCM, DCM, and PPI. Each
of these approaches has its advantages and disadvantages. For
example, GCM and DCM allow us to determine the direction-
ality of connectivity changes, and DCM allows for modeling of
effective connectivity at the neuronal level [72]. On one hand,
these multivariate approaches are limited to analyzing connec-
tivity changes of only a limited number of brain regions that
have to be defined a priori. On the other hand, seed-based cor-
relation, whole-brain pairwise correlation, and PPI can handle
more brain regions, but they can consider only pairwise connec-
tions, and therefore cannot detect interactions between multiple
brain regions. Our proposed multivariate approach is comple-
mentary in that it allows for investigating changes related to
NF training by activity traces across the entire brain. This does
not require any prior assumption about how brain regions in-
teract. Such multivariate interactions that are characterized by
coactivation patterns and that are specific to the improvement of
self-regulation across NF training days could not be revealed by
the previously used methods. Therefore, our approach extends
previous investigations of changes related to NF training.

Previous analyses were all carried out on the group level, even
though NF learning success, strategies, and its neural underpin-
ning vary substantially between participants [25]. We examined
generalization and consistency of the results using cross valida-
tion, as it was implemented in our approach that allows ensuring
and quantifying how the coactivation maps generalize across
participants. To account for the high interparticipant variability
of learning in NF experiments, we applied clustering procedures
where participants were clustered according to similarities in
their coactivation maps. Our analysis revealed two distinct and
consistent groups of participants, which showed differences and
commonalities in NF learning across participants.

B. Self-Regulation of Activity in Auditory Cortex
Implicates Distributed Set of Regions

When applying the proposed analysis method to data from
an NF training study where participants learned to down reg-
ulate the ROI auditory cortex, we found evidence of changes
in a distributed set of brain regions, which was associated with
NF learning. Specifically, we found that a coactivation model
with 16 brain regions best explained the NF training effect. The
clustering analysis had revealed two groups, each with a distinct
coactivation pattern. In the first group, the coactivation pattern
consisted of brain regions mainly related to self-awareness (e.g.,
precuneus, insula, angular gyrus) [73]–[75], cognitive control
(e.g., frontal operculum) [76], and skill learning (e.g., caudate
nucleus, putamen) [85]. Especially the latter is interesting, be-
cause they have frequently been reported to be involved in NF
experiments [22], [58], [59], [77], [86], and it has recently been
proposed that NF learning is linked to skill learning [78]. In
contrast, in the second group, the coactivation pattern consisted
of brain regions related to the auditory/language pathway (e.g.,
right superior temporal gyrus, which contains the target ROI,
as well left inferior frontal gyrus, and supramarginal gyrus)

[79], [80], sensory information processing (e.g., inferior parietal
lobe) [81], [82], and reward-related learning (e.g., midcingulate
gyrus) [48], [54].

To support the validity of the two group clustering, we have
compared the group performances against the one obtained
when not separating the subjects into two groups, i.e., for each
left-out subject, the model was estimated based on all other
subjects. The results suggest that the models for the subgroups
were not only different, but also lead to a more accurate model
than the one obtained jointly from all subjects. Although inter-
preting the differences in coactivation patterns between the two
subgroups would require extensive meta-analytic profiling, their
functional differences already suggest different learning strate-
gies. For example, participants in group 1 might have adopted
an explicit skill learning strategy, whereas participants in group
2 were more prone to implicit reinforcement- and reward-based
learning [65]. Detailed reports of the cognitive strategies that
participants used during the NF experiment would be useful
to further elaborate this speculation, but no such reports are
available for this study. Those coactivations maps could po-
tentially be used for additional purposes, for example, monitor
self-regulation aptness. Recent method proposed to detect on-
line arousal level using only fMRI data [87] can be adapted for
this purpose, coactivations maps could be projected onto online
rt-fMRI volumes and generating rt-fMRI self-training index.

C. Limitations

The first limitation is that we used a linear model as a first-
order approximation of the NF learning effect. Although the
cross-validation results confirm that the linear assumption holds,
it might have not been the optimal model.

The second limitation is that in this multivariate analysis we
included all brain regions, including the right auditory region
based on the Greicius atlas. Since the atlas-based definition of
the auditory region differs from that of the auditory NF target
ROI (which was based on a functional localizer for each par-
ticipant), these regions are not identical and thus there is no
“double-dipping.” Including the atlas auditory ROI in the model
allows discovering whether it plays a role (or not) in the learning
effects of NF.

Finally, our sample size is low for clustering the participants
into two groups. However, our unsupervised clustering showed
a clear separation into two groups, and despite the lower sam-
ple size per group, the cross-validation results are superior in
the subgroups compared to all subjects combined. Since inter-
subject variability in training strategies is an important topic
in NF training studies, future rt-fMRI studies in larger samples
might use similar clustering approaches to identify different
learning strategies.

D. Conclusion

The proposed multivariate approach revealed interactions be-
tween distributed brain regions that contributed to learning
control over a ROI through NF training. Using a cross-validation
scheme, we examined the generalization and consistency of the
model, as well as similarities and differences between NF learn-
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ing strategies across participants. Our results suggest that future
NF research could exploit distributed information in the brain
to improve the efficiency of the NF signal [18], [83], [84], or
to monitor and even guide the control strategy used by the par-
ticipants. Finally, this approach is not limited to analyzing data
from NF experiments, but can in principle be useful for gaining
new insights in other types of longitudinal data from learning
experiments.
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