
OR I G INA L ART I C L E

Learning Control Over Emotion Networks Through
Connectivity-Based Neurofeedback
Yury Koush1,2, Djalel-E. Meskaldji1,2, Swann Pichon3,4,5, Gwladys Rey3,
Sebastian W. Rieger3,4, David E.J. Linden6, Dimitri Van De Ville1,2,
Patrik Vuilleumier3,4 and Frank Scharnowski1,2,7,8

1Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1202 Geneva, Switzerland,
2Department of Radiology and Medical Informatics, 3Geneva Neuroscience Center, Department of Neuroscience,
4Swiss Center for Affective Sciences, 5Faculty of Psychologyand Educational Science,University of Geneva, CH-1211
Geneva, Switzerland, 6School of Medicine, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff
University, Cardiff CF24 4HQ, UK, 7Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric
Hospital, University of Zürich, 8032 Zürich, Switzerland and 8Neuroscience Center Zürich, University of Zürich
and Swiss Federal Institute of Technology, 8032 Zürich, Switzerland

Address correspondence to Yury Koush, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Chemin desMines 9,
CH-1202 Geneva, Switzerland. Email: yury.koush@epfl.ch; yurykoush@gmail.com

Abstract
Mostmental functions are associatedwith dynamic interactionswithin functional brain networks. Thus, training individuals to
alter functional brain networks might provide novel and powerful means to improve cognitive performance and emotions.
Using a novel connectivity-neurofeedback approach based on functional magnetic resonance imaging (fMRI), we show for the
first time that participants can learn to change functional brain networks. Specifically, we taught participants control over a key
component of the emotion regulation network, in that they learned to increase top-down connectivity from the dorsomedial
prefrontal cortex, which is involved in cognitive control, onto the amygdala, which is involved in emotion processing. After
training, participants successfully self-regulated the top-down connectivity between these brain areas even without
neurofeedback, and this was associated with concomitant increases in subjective valence ratings of emotional stimuli of the
participants. Connectivity-based neurofeedback goes beyond previous neurofeedback approaches, which were limited to
training localized activity within a brain region. It allows to noninvasively and nonpharmacologically change interconnected
functional brain networks directly, thereby resulting in specific behavioral changes. Our results demonstrate that connectivity-
based neurofeedback training of emotion regulation networks enhances emotion regulation capabilities. This approach can
potentially lead to powerful therapeutic emotion regulation protocols for neuropsychiatric disorders.

Key words: connectivity-based neurofeedback, dynamic causal modeling (DCM), emotion networks regulation, functional
magnetic resonance imaging (fMRI), positive emotions

Introduction

When Bertrand Russell wrote: “Control your emotion, or it will
control you”, he expressed emphatically a necessity thatwe all ex-
perience in everyday life: the capacity to control our emotions.

Emotion regulation allows us to adaptively cope with negative
and positive events; failure to do so can result in burdening
affective disorders. The psychological and the neural processes
underlying emotion regulation have been intensely studied over
the past decade, leading to the formulation of well-established
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models of emotion regulation (Ochsner et al. 2012). According to
these models, emotion regulation is achieved through the modu-
lation of bottom-up emotional responses in limbic areas by cogni-
tive top-down processes originating in the prefrontal cortex.
Deficiencies in such regulating network dynamics can result in
hyperactivity of the limbic cortex (particularly the amygdala)
and hypoactivity in the dorsomedial prefrontal cortex (dmPFC),
which are biological correlates of depression (Disner et al. 2011).

However, these advances have not yet led to more direct,
brain-based approaches for learning to better regulate emotions,
nor have they been reciprocated in current therapeutic ap-
proaches to neuropsychiatric disorders related to emotion regu-
lation failure such as medication, neurosurgery, or cognitive
behavioral therapy. Neurofeedback of brain signals based on
functional magnetic resonance imaging (fMRI) is an effective
neuromodulation approach that integrates biological and psy-
chological factors (Sulzer et al. 2013), and that might be used to
enhance emotion regulation capabilities. Real-time fMRI-based
neurofeedback allows participants to learn control over the
own brain activity in a regionally specific manner, which has
been shown to lead to behavioral effects that are specific to the
functional role of the targeted region of interest (ROI) (Shibata
et al. 2011; Linden et al. 2012; Young et al. 2014). Using neurofeed-
back to learn control over a brain region requires the recruitment
of, and changes in, associated brain networks (Lee et al. 2011
2012; Rota et al. 2011; Haller et al. 2013; Scharnowski et al. 2014;
Yuan et al. 2014; Sarkheil et al. 2015; Shen et al. 2015), but brain
connectivity (rather than just activity in isolated ROIs) has proven
more difficult to assess for neurofeedback purposes. So far, the

feasibility of simple correlation measures between brain areas
as an index of brain connectivity has been explored offline (Zil-
verstand et al. 2014) or has been integrated as an add-on to stand-
ard activity-based neurofeedback (Kim et al. 2015). Rather than
computing simple statistical dependencies for the feedback, we
have recently shown, using dynamic causal modeling (DCM),
that even causal interactions within brain networks can be
used for neurofeedback (Koush et al. 2013). Such a DCM-based
approach allows to determine the directionality of connectivity,
describes how neural dynamics propagates through a network,
and allows for modeling effective connectivity at the neuronal
level (Friston et al. 2003; Stephan et al. 2010). Here, for the first
time, we used a connectivity-based neurofeedback signal for
brain training and applied it to emotion regulation. We hypothe-
sized that such trainingwould allowhealthy participants to learn
control over specific aspects of the emotion regulation network,
and that such training would affect the subjective response to
emotional stimuli. To test these hypotheses, we trained 15
healthy volunteers (9 participants in the experimental group; 6
in a matched control group) to voluntarily increase top-down ef-
fective connectivity from the dmPFC onto the bilateral amygdala,
which is one of the key connections of emotion regulation net-
works (Banks et al. 2007; Barbas and Zikopoulos 2007; Pessoa
2008; Ochsner 2010; Ochsner et al. 2012) (Fig. 1). Neurofeedback
training was accomplished by 1) processing fMRI signals in near
real-time, 2) comparing amodel representing top-downmodula-
tion from the dmPFC onto the amygdala with amodel represent-
ing bottom-up flow of information from the amygdala onto the
dmPFC using dynamic causal modeling (DCM) (Fig. 1C), and 3)

Figure 1. Experimental design. (A) Prior to neurofeedback training, participants rated their subjective responses to target pictures, filled out psychological questionnaires, and

performed self-regulation without neurofeedback (pretraining transfer run). They then started neurofeedback training, which took place in six 17.5 min runs spread over 3

days. After training, participants again performed self-regulation in the absence of neurofeedback (posttraining transfer run), rated their subjective responses to target pictures,

and filled out psychological questionnaires. (B) Example of a neurofeedback trial. Per neurofeedback training day, participants performed 2 runs, which were each composed of 7

trials. Each neurofeedback trial was composed of 5 baseline and 4 regulation blocks of 12 s each, a rest period of 38 s, and a feedback display lasting 4 s. During the baseline blocks,

images of neutral objects were presented, and participantswere asked to passively look at them. During regulation blocks,moderately positive social imageswere presented, and

participantswere asked to imagine experiencing the depicted positive social situation. During the rest period, a black screenwas presented. The feedback display consisted of the

logarithmic Bayes factor value (whichwas red if the trial was successful, i.e., positive, and blue otherwise), and the cumulative reward that had been earned until then. (C) During

neurofeedback training, participants learned to voluntarily increase top-down effective connectivity from the dmPFC onto the bilateral amygdala. This was accomplished by

providing a feedback signal that indicated the degree of dominance of a top-down model (=target model, left panel) compared with a bottom-up model (right panel).
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providing the participants in the fMRI scanner with online feed-
back about the dominance of the top-down model (Koush et al.
2013). If the top-downmodel fitted the ongoing brain activity dur-
ing a training trial better than the bottom-upmodel, the feedback
signal was positive; if the bottom-upmodel dominated, the feed-
back signal was negative (Fig. 1B). Using this connectivity-based
neurofeedback information across several successive training
sessions, participants attempted to learn, by trial and error and
using a freely chosen strategy, to increase the top-down connect-
ivity from the dmPFC onto the amygdala. Traditional imaging re-
search has generally focused on the downregulation of negative
emotions, but herewe focus the neurofeedback training on upre-
gulating positive emotions. This approach is more relevant for
targeting the anhedonia aspect of emotion regulation disorders
such as depression and anxiety (Disner et al. 2011; Treadway
and Zald 2011), and avoids exposure to disturbing visual scenes
that might be problematic in these patients. Hence, participants
were presented with images depictingmoderately positive social
situations during training and asked to appraise the positive con-
tent with a personal perspective. The goal of the neurofeedback
training was to strengthen the top-down connectivity from the
dmPFC onto the amygdala, thus potentially mimicking the effect
produced by reappraisal (Ochsner and Gross 2005; Banks et al.
2007; Kim et al. 2011; Zotev et al. 2013).

Materials and Methods
Participants

Fifteenhealthy humanvolunteers (7male, 8 female, age 26.2 ± 1.4
years) gavewritten informed consent to participate in the experi-
ment, whichwas approved by the local ethics committee. All par-
ticipants had normal or corrected-to-normal vision and had no
prior history of neurological or psychiatric diseases. Before the
experiment, participants received written instructions describ-
ing that they would perform a 3-day neurofeedback training
experiment duringwhich theywould be asked to attempt to con-
trol the emotion networks. The instructions included explana-
tions of the experimental procedure and of the neurofeedback
display. Participants were informed that they should regulate
their brain activity to maximize positive feedback and recom-
mended as potential regulation strategies to imagine one-self en-
gaged in the depicted positive social situation. In common with
established practice in the neurofeedback field, we were not pre-
scriptive about the strategy that participants should adopt during
learning (Sulzer et al. 2013). It was emphasized that participants
should find an individual strategy that worked best for them. In
addition to a fixed amount of 20 CHF/h for their participation in
the experiment, a bonus of 1 CHF was rewarded for each success-
ful neurofeedback trial. Six of the 15 participants were allocated
to an age- and gender-matched control group (control group: 3
males, 3 females, 25.7 ± 2.9 years; experimental group: 4 males,
5 females, 26.4 ± 4.7), to determine whether the hypothesized
learning effects can also be achieved with unrelated feedback.
Participants in this control group were provided with the same
instructions and underwent identical training procedures but
unknown to them received sham feedback. Sham feedback was
derived from the feedback values of one of the 6 best performing
participants in the learning group, rather than their own brain
activity. Debriefing interviews conducted after the experiment
confirmed that the control participants were unaware that they
had received sham feedback. After each scanning session, parti-
cipants were asked to fill in a written questionnaire and, among
other questions, describe how they tried to manipulate the

feedback signal, how effective the strategy was, and how they
rated the attentional demands (i.e., rate on a scale from 1 to 5 if
they were focused or absent-minded during the training runs).

Stimuli

The stimuli consisted of 2 sets of photographs that were taken
from the International Affective Picture Set (IAPS) (Lang et al.
1993), the Nencki Affective Picture System (NAPS) (Marchewka
et al. 2013), and the Geneva Affective Picture Database (GAPED)
(Dan-Glauser and Scherer 2011). Images in the first set (684
photographs) depicted social situations with a moderately posi-
tive content, among which 504 images were used for neurofeed-
back training (mean and standard deviation for normative
valence 6.73 ± 0.92, arousal 4.48 ± 1.00), and 180 images were
used for the pre- and posttraining tests (mean and standard de-
viation for normative valence 6.40 ± 0.93, arousal 4.22 ± 0.92).
From the test sets, we randomly selected 60 images for the pre-
and posttraining transfer runs (mean and standard deviation
for normative valence 6.43 ± 0.95, arousal 4.20 ± 0.92), of which
30 images were randomly selected for the pretraining and 30
for the posttraining transfer runs. The remaining 120 images
from the test set were used for the pre- and posttraining behav-
ioral ratings (mean and standard deviation for normative valence
6.38 ± 0.92, arousal 4.23 ± 0.92), of which 60 images were random-
ly selected for the pretraining and 60 images for the posttraining
behavioral ratings. There were no valence and arousal differ-
ences between pre- and posttraining image sets (P > 0.20). Note
that the images in the test setswere of significantly lower valence
and arousal levels than the images used during the neurofeed-
back training (2-tailed 2-sample t-test comparing 180 images
used for tests and 504 images used for training; valence: t(682) =
4.16, P < 0.01, arousal: t(682) = 2.97, P < 0.01). We used slightly less
emotional images during testing to avoid ceiling effects and to
thereby allow detection of training-related changes. We also
wanted to test whether learned self-regulation transfers not
only to situations without neurofeedback, but also to situations
with different valence levels. Due to these differences, the loga-
rithmic Bayes factors for the training and transfer runs (for de-
tails see “Connectivity-based neurofeedback signal” section) are
not directly comparable (Fig. 2A,C). The order of presentationwas
pseudorandomized, andno imagewas presentedmore than once
to any participant.

Images in the second set (696 photographs) depicted nonsocial
neutral objects that were used for neurofeedback training (630
images, mean and standard deviation for normative valence 5.34
± 0.72, arousal 3.67 ± 0.97) and for the pre- and posttraining trans-
fer runs (66 images, mean and standard deviation for normative
valence 5.41 ± 0.52, arousal 3.65 ± 0.84). From the 66 images for
the transfer runs, we randomly selected 33 for the pretraining
and 33 for the posttraining transfer run. There were no valence
and arousal differences between training and transfer run sets,
and between the images used for pre- and posttraining transfer
runs (P > 0.40).

Neurofeedback Training

Participants took part in 3 neurofeedback training sessions
spread over 3 days. On average, neurofeedback training was pro-
vided 4.7 ± 0.8 days apart (the duration between sessions did not
correlate with learning success [i.e., the slope of the learning
curve]: Pearson’s ρ =−0.05, P = 0.85). Every training session started
with a structural scan to coregister the current head positionwith
the anatomical template containing the ROIs. This ensured that
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the same ROIs were targeted across the 3 different training
sessions (for details about the selection of the ROIs, see Supple-
mentary Materials and Methods). In each training session, parti-
cipants performed 2 training runs of 17.5 min each. Each of the 2
training runs consisted of 7 neurofeedback trials. A neurofeed-
back trial was composed of four 12 s regulation blocks that were
interleaved with 5 baseline blocks of the same duration (Fig. 1B).
During the baseline blocks, images of neutral objects were pre-
sented and participants were asked to passively look at them.
During the regulation blocks, moderately positive social images
were presented, and we suggested potential regulation strategies
such as, for example, imagining experiencing the depicted posi-
tive social situation. However, it was emphasized that partici-
pants should find individual strategies that work best for them.
Note that the feedback signal did not depend on a comparison be-
tween baseline and regulation conditions (as in most previous
neurofeedback studies), but that it was based on a comparison be-
tween how well our 2 network model alternatives described the
fMRI data acquired during each trial, which included both baseline
and regulation conditions (for details, see “Connectivity-based
neurofeedback signal” section). Per block, 3 images with a diam-
eter of 12° visual angle were presented centrally for 4 s each
using the Psychtoolbox-3 (Brainard 1997). After each repetition of
the 5 baseline and the 4 regulation blocks, participants were given
the chance to rest for 38 s, while a black screen was presented.

After this rest period, participants were presented with feed-
back about their success for 4 s. The feedback display consisted of
the logarithmic Bayes factor value (for details, see “Connectivity-
based neurofeedback signal” section), which was red if the trial

was successful (i.e., a positive Bayes factor) and blue otherwise
(i.e., a negative Bayes factor), and the total reward that had
been earned until the present trial. We used intermittent rather
than continuous feedback because 1) it allows for improved feed-
back signal quality due to more scans being available for aver-
aging, 2) the intrinsic hemodynamic delay does not have to be
taken into account by the participant, and 3) it is easier for the
participants to focus on self-regulation (there is no dual-task
interference with the simultaneous evaluation of the feedback
signal). At least for fMRI, these advantages seem to be more im-
portant for promoting efficient neurofeedback learning than is
tight temporal contiguity (Johnson et al. 2012; Sulzer et al. 2013).

To promote learning, we applied a shaping procedure accord-
ing to which the threshold for reward was gradually increased
across training days: On the 1st day, all positive log Bayes factors
were rewarded, on the 2nd day, Bayes factors needed to be larger
than 2 to qualify for reward, and on the 3rd day, rewardwas given
for Bayes factors larger than 3 (Skinner 1953).

MRI Data Acquisition

MRI data were acquired on a 3T MRI scanner (Trio Tim, Siemens
Medical Solutions, Erlangen, Germany) equipped with a 32-chan-
nel head receive coil at the Brain and Behavior Laboratory (Univer-
sityofGeneva). At the beginning of eachscanning session, foreach
participant we acquired a T1-weighted structural image (3D
MPRAGE, voxel size = 1 mm3 isotropic, flip angle α = 9°, TR = 1900
ms, TI = 900 ms, TE = 2.27 ms), and a double-echo FLASH fieldmap
(TE1 = 5.19 ms, TE2 = 7.65 ms, voxel size = 3 × 3 × 2.2 mm3).

Figure 2.Neurofeedback learning and behavioral effects. (A) Top-down control of the dmPFCover the amygdalawasmeasured asmedian log Bayes factor, which indicated

the degree of dominance of the top-down model over the bottom-up model. Participants in the experimental group (n = 9) showed an increase in top-down control with

training. Participants in the control group (n = 6) did not learn to control the emotion network. (B) Participants in the experimental group showed significantly larger

training success than those in the control group, that is, the slopes of the learning curves were significantly steeper than those of the control group. (C) Learned

control over the emotion networks when feedback was no longer available. Note that the median values of the transfer and the training runs are not directly

comparable and are thus scaled differently. (D) The experimental group, but not the control group, showed significantly more positive responses to the target stimuli

after than before training. (E and F) Significant positive correlation between the degree to which an individual learned control over the emotion network (i.e., the slope

of the learning curve), and post- versus pretraining differences in valence and arousal ratings across all participants. In (A–C), symbols represent themedian and error bars

represent the lower and upper quartile; in (D) error bars represent the standard error of the mean. Asterisks denote statistical significance.
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Functional imageswere acquiredwith a single-shot gradient-echo
T2*-weighted EPI sequence,with 1050 and 252 repetitions for train-
ing and transfer sessions, respectively (TR = 1100 ms, TE = 30 ms,
18 slices, matrix size = 120 × 120, voxel size = 1.8 × 1.8 × 1.8 mm3,
flip angle α = 70°, bandwidth = 1.54 kHz/pixel, TE = 30 ms, GRAPPA,
iPAT = 3). The EPI protocol had a high resolution to allow for a pre-
cise subdivision of the preselected frontal and limbic brain areas,
andhada short TR to limit the effects of slice timingdifferences on
the DCM (Kiebel et al. 2007; Koush et al. 2013). Positive phase-en-
coding polarity and slice tilt approximately −42° in combination
with relatively high spatial resolution at 3T was applied to opti-
mize sensitivity for frontal and limbic brain areas (Weiskopf
et al. 2006, 2007).

Visual stimuli were displayed using a rectangular projection
screen at the rear of the scanner bore and were viewed with a
mirror positioned on top of the head coil. All participants were
instructed to breathe steadily and to remain as still as possible.
Heart rate and respiration were continuously monitored through-
out the experiment and did not showany differences between the
experimental conditions (for details about the cardio-respiratory
variables, see Supplementary Materials and Methods).

Connectivity-Based Neurofeedback Signal

The connectivity-based neurofeedback signal was calculated
using our recently developed real-time DCM approach (Koush
et al. 2013). DCM is a Bayesian framework for modeling a func-
tional brain network as a set of differential equations that
describe the architecture of the network (i.e., the ROIs and the
connections) and dynamic changes within the network due to
external inputs (e.g., the presentation of images) and due to con-
textual modulations (e.g., imagining experiencing the depicted
scenes) (Friston et al. 2003). Using Bayesian model comparison,
DCM allows to test which model architecture explains the fMRI
data best (Penny et al. 2004). The specific models that we com-
pared using real-time DCM were a target model that represented
top-down modulation from the dmPFC onto the bilateral amyg-
dala, and a model that represented bottom-up flow of informa-
tion from the bilateral amygdala onto the dmPFC (Fig. 1C; for
details about the selection of the ROIs, see Supplementary Mate-
rials and Methods). For the top-down model, external inputs en-
tered the network via the dmPFC, andmodulatory inputs affected
the top-down connections from the dmPFC onto the amygdala.
For the bottom-up model, external inputs entered the network
via the amygdala, and modulatory inputs affected the bottom-
up connections from the amygdala onto the dmPFC.

To compare these model alternatives in real time, the fMRI
images were exported to a high-end PC immediately after the ac-
quisition (CPU Intel Core i7-3930 K 3.2 GHz, 32 GB RAM). On this
computer, custom-made, real-time fMRI software running onMa-
tlab (Mathworks Inc., Natick,MA, USA)was used to performonline
motion correction; extraction of the time courses from the ROIs;
removal of signal drift, spikes, and high frequency noise; and cal-
culation of the feedback signal (Koush et al. 2012, 2013). The feed-
back signal was the result of the Bayesian model comparison
between the 2 model alternatives using our real-time adaptation
of DCM10 (as implemented in SPM8; Wellcome Trust Centre for
Neuroimaging, Queen Square, London, UK, http://www.fil.ion.ucl.
ac.uk). If the top-down model fitted the data of a neurofeedback
trial better than the bottom-up model, the logarithmic Bayes fac-
torwas positive, and the participantwas rewarded for a successful
trial. If the bottom-up model dominated, the logarithmic Bayes
factor was negative, and the participant was not rewarded
(Fig. 1B). Note that the feedback signal calculation for a

neurofeedback trial was based on the entire ROI time series of
this trial, including baseline and regulation conditions. The feed-
back signal is thus not a comparison between baseline and
regulation conditions (as inmost previousneurofeedback studies),
but is a comparison between how 2 model alternatives describe
the data acquired during a trial, which includes both baseline
and regulation conditions.

Pre- and Posttraining Tests

To test whether learned self-regulation transfers to situations
where neurofeedback is no longer available, participants per-
formed self-regulation in the absence of neurofeedback before
andafterneurofeedback training. The transfer trialswere identical
to the training trials except that theywere composedof 11baseline
blocks interleaved with 10 regulation blocks (4.2 min run dur-
ation), that the presented images were of lower valence and
arousal levels (for details, see “Stimuli” section), and that no neu-
rofeedback was presented. During the pretraining transfer run,
participants were asked to passively look at the images depicting
neutral objects (baseline condition) or to imagine one-self engaged
in the depicted positive social situation (regulation condition).
Using the same design in 7 pilot participants (different from
those recruited in the main experiment), we found increased
top-down modulations from the dmPFC onto the amygdala
when they imagined themselves engaged in the depicted positive
social situation compared with when they passively viewed the
depicted images (for details, see Supplementary Materials and
Methods). During the posttraining transfer run, participants
were asked to apply their newly learned self-regulation skills.

To test whether neurofeedback training modulated the parti-
cipants’ affective responses to visual stimuli, we asked them to
rate their subjective response to visual stimuli similar to those
used during the pre- and posttraining transfer runs in terms of
valence and arousal using the standard self-assessmentmanikin
ratings (SAM) (Lang et al. 1993). The pictures used for these rat-
ings were less positive than the pictures used during training
(for details, see “Stimuli” section). These ratings were performed
once before and once after the neurofeedback training, using the
SAM 9-point rating scale (Lang et al. 1993).

Psychometric Questionnaires

Before the experiment, we asked participants to complete the
Emotion Regulation Questionnaire (ERQ) (Gross and John 2003),
the Thought Control Ability Questionnaire (TCAQ) (Luciano et al.
2005), the White Bear Suppression Inventory (WBSI) (Wegner
and Zanakos 1994), the State-Trait Anxiety Inventory (STAI)
(Spielberger et al. 1983), the Sensitivity to Punishment and Sensi-
tivity to Reward Questionnaire (SPRSQ) (Torrubia et al. 2001; Lardi
et al. 2008), and the Beck Depression Inventory (BDI) (Beck et al.
1961). None of the participants suffered from depression (BDI
scores were ∼1.5 ± 1.1). Average questionnaire scores did not differ
between participants in the experimental group and those of the
control group (2-tailed 2-sample t-tests, P > 0.20 uncorrected).

Statistical Analyses

As dependent variables, we included valence and arousal rating
differences, and learning success. The differences between the
pre- and posttraining valence and arousal ratingswere calculated
for each participant and converted to z-scores. The learning suc-
cess was indicated by the slope of the learning curve, i.e., the
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linear regression of the logarithmic Bayes factor across training
sessions (as indicated by Pearson rho).

To study the covariance patterns between dependent vari-
ables and to further examinewhether valence and arousal rating
differenceswere similarlymodulated by the learning success, we
performed a multivariate analysis of variance (MANOVA) and a
principal component analysis (PCA, for details, see Supplemen-
tary Materials and Methods). To further elucidate the effect of
neurofeedback training on subjectively experienced levels of va-
lence and arousal, we performed 2 separate analyses of variance
(ANOVAs) with the factor group (experimental vs. control) and
the covariate learning success.

We estimated post hoc the difference between the learning
success of the experimental and control groups using a 2-tailed
2-sample t-test. Next, we analyzed the difference in the resulting
logarithmic Bayes factors between the pre- and posttraining
transfer runs, as well as between the participants in the experi-
mental group and those in the control group using 1-tailed Wil-
coxon rank sum tests and z-statistics. This approach was used,
because a Jarque–Bera test established that the logarithmic
Bayes factors of these runs were not normally distributed. To en-
sure that pre- andposttraining transfer run performance could be
compared,we constructed participant-specific ROIs thatwere ap-
plied to both of these runs. These ROIswere based on the disjunc-
tion of the ROIs that were used in the best training run of each
participant. The transfer run time courses of the so-defined
ROIs were extracted, corrected for possible signal drifts, high fre-
quency noise, and spikes, and were fed into the DCM analysis.

Subsequently, pre- and posttraining valence and arousal rat-
ings were converted to z-scores and compared post hoc using
1-tailed paired t-tests (separately for the experimental and for
the control group). We also calculated post hoc Pearson correla-
tions between each participant’s pre- and posttraining valence
and arousal rating differences (i.e., posttraining–pretraining)
and learning success (i.e., the slope of their learning curve).

To investigate the DCM model parameter differences between
the pre- and posttraining transfer runs, we applied 2-tailed paired
t-tests to the corresponding sets of DCM model parameters from
the pre- and posttraining transfer run models (separately for the
experimental and the control group).

To assess how the dynamic ROIs (based on the incremental
general linear model [iGLM]; for details, see Supplementary Ma-
terials and Methods) changed across neurofeedback training
runs, we analyzed 1) the mean signal change, 2) the mean num-
ber of voxels within each ROI, and 3) the cytoarchitectonic com-
position of the amygdala for each training run (for details, see
Supplementary Materials and Methods).

We calculated Pearson ρ correlations between the partici-
pant’s normalized z-scores on the questionnaires and 1) the
slope of the learning curve, and 2) the slope of the ROI activity
changes across training runs.We also calculated Pearson ρ corre-
lations between the participants’ normalized z-scores on the
questionnaires and 1) the logarithmic Bayes factor differences,
2) the DCM parameter differences, and 3) the ROI activity differ-
ences between the pre- and the posttraining transfer runs. The
correlation with the ROIs was calculated separately for each of
the 3 ROIs. The correlation with the DCM parameter differences
was only reported for significant differences (i.e., between the
top-down and the bottom-up connection between the dmPFC
and the right amygdala). These correlation analyses were done
separately for the participants in the experimental group and
for those in the control group. The statistical significance was
corrected for multiple comparisons using Bonferroni family-
wise error rate correction (FWE).

Finally, we performed a random-effect whole-brain group-level
analysis using a paired t-test comparing posttraining > pretraining
transfer runs (for details, see Supplementary Materials and
Methods).

Results
The MANOVA, which assesses the effect of neurofeedback train-
ing conjointly on learning success (i.e., the slope of the learning
curve) and the differences in valence and arousal ratings,
revealed a significant effect of training (factor group: F3,11 = 6.93,
P < 0.01; for details, see Supplementary Materials and Methods).
The ANOVA on valence rating differences (global fit: F2,12 = 14.47,
P < 0.01) confirmed a main effect of group (factor group: F1,12 =
4.80, P = 0.05), with higher positive valence rating differences in
the experimental than in the control group. The ANOVA on arou-
sal rating differences (global fit: F2,12 = 6.03, P = 0.02) indicated no
effect of training (factor group: F1,12 = 0.86, P = 0.37). Interestingly,
both valence and arousal rating differences were positively
influenced by learning success (learning success covariates:
F1,12 = 28.12, P < 0.01 and F1,12 = 10.89, P < 0.01, respectively). The
PCA further illustrates significant differences between the parti-
cipants in the experimental group and in the control group in
terms of learning success and concomitant changes in behavior-
al ratings (see Supplementary Fig. 1; for details, see Supplemen-
tary Materials and Methods).

Learning to Increase Top-Down Control

Follow-up tests revealed that over the course of training, partici-
pants in the experimental group successfully learned to increase
the dominance of the top-down model compared with the
bottom-up model (Fig. 2A; experimental group: Pearson’s ρ = 0.88,
P = 0.02). Participants in the control group did not learn to increase
top-down control (Fig. 2A; control participants: Pearson’s ρ =−0.20,
P = 0.70). The participants in the experimental group showed sig-
nificantly higher learning success than those in the control
group, i.e., the slopesof the learning curveswere significantly stee-
per (Fig. 2B; 2-tailed 2-sample t-test, t(13) = 2.40, P = 0.03).

The learned ability to control top-down connectivity was
subsequently maintained in the absence of neurofeedback. In
posttraining transfer runs without feedback, we found that parti-
cipants in the experimental group could control top-down con-
nectivity significantly better after than before neurofeedback
training (Fig. 2C; 1-tailedWilcoxon rank sum tests and z-statistics;
experimental group, z = 1.94, P = 0.03). No such improvement was
found in the control participants who received sham neurofeed-
back (1-tailed Wilcoxon rank sum tests and z-statistics; control
group, z = 0.40, P = 0.35). In the posttraining transfer runs, domin-
ance of the top-down model was significantly higher for partici-
pants in the experimental group compared with the control
participants (Fig. 2C; 1-tailed Wilcoxon rank sum tests and z-sta-
tistics; posttraining transfer run comparison: z = 1.71, P = 0.04),
whereas pretraining transfer runs did not reveal such a difference
(1-tailed Wilcoxon rank sum tests and z-statistics; pretraining
transfer run comparison: z = 0.06, P = 0.48). These data show that
once participants in the experimental group had learned control
over top-down connectivity, this learned skill could be employed
even in the absence of neurofeedback.

Behavioral Effects of Self-Regulation

Follow-up tests revealed that the difference between the experi-
mental and the control group was driven by a significant increase

1198 | Cerebral Cortex, 2017, Vol. 27, No. 2

http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhv311/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhv311/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhv311/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhv311/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhv311/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhv311/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhv311/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhv311/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhv311/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhv311/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhv311/-/DC1


in valence ratings after compared with before neurofeedback
training thatwas related to learned control over the top-downcon-
nectivity. It was evident only for the participants in the experi-
mental group (Fig. 2D; experimental group; 1-tailed paired t-test,
t(8) = 2.04, P = 0.04), but not in the control participants (Fig. 2D;
control participants; 1-tailed paired t-test, t(5) = 1.33, P = 0.12). The
effect sizes for valence ratingswere large andmedium, respective-
ly (experimental group Cohen’s d = 0.53; control group Cohen’s d =
0.42). When assuming equal group sizes between the experimen-
tal and the control group, the increase in valence ratings that
reached almost trend level in the control group does not become
significant, and is thus not an effect of power (t9 ¼ ð ffiffiffi

9
p

=
ffiffiffi

6
p Þ × t6; t9

= 1.63, P9 = 0.07). Follow-up tests also indicated that arousal ratings
did not changewith training (Fig. 2D; posttraining–pretraining; ex-
perimental group: 1-tailed paired t-test, t(8) = 1.12, P = 0.15; control
group: 1-tailed paired t-test, t(5) = 0.05, P = 0.52), nor didwe find any
other significant intra- and inter-group valence and arousal rating
(P > 0.15).

Over and above group-specific effects, collapsing across both
groups, there was a significant positive correlation between the
degree to which an individual improved top-down control across
training runs (i.e., the slope of the learning curve) and the
increase in valence and arousal ratings that they exhibited
(Fig. 2E,F; Pearson correlation; ρ = 0.77, P < 0.01 and ρ = 0.68, P <
0.01, respectively). Thisfinding accordswith the notion that regu-
lation abilities mediated by the dmPFC–amygdala network were
directly related to the subjective emotion appraisals of the parti-
cipants, but that theywere differentially boosted in those partici-
pants undergoing neurofeedback training.

Unlike for emotion ratings, there were no significant differ-
ences in psychological questionnaire scores assessing mood
and anxiety after compared with before neurofeedback training
(2-tailed paired t-tests, all P > 0.20 uncorrected; Emotion Regula-
tion Questionnaire [ERQ], Thought Control Ability Questionnaire
[TCAQ], White Bear Suppression Inventory [WBSI], State-Trait
Anxiety Inventory [STAI], Sensitivity to Punishment and
Sensitivity to Reward Questionnaire [SPRSQ], Beck Depression
Inventory [BDI]).

Mental Processes Underlying Self-Regulation

Howdid our participants learn to increase top-down connectivity
of the dmPFC over the amygdala? In common with established
practice in the neurofeedback field, we were not prescriptive
about the strategy that participants should adopt during learning
(Sulzer et al. 2013). In debriefing, most reported attempting a
strategy related to imagining themselves as personally involved
and experiencing the depicted positive social situations (see Sup-
plementary Table 1). However, participants in the control group
used similar strategies (although with somewhat greater vari-
ability, see Supplementary Table 1), but they nevertheless failed
to learn self-regulation. This indicates that in addition to feed-
back-guided search for an explicit control strategy, other, more
implicit learning mechanisms attributable to operant condition-
ing based on reinforcement by the feedback might be a factor
(Thorndike 1898; Skinner 1953; Bray et al. 2007; Birbaumer et al.
2013). Furthermore, attentional factors alone cannot explain
our findings, because the participants in the experimental
group and the control participants showed statistically indistin-
guishable attentional effort (2-tailed 2-sample t-test, t(13) = 0.32,
P = 0.76; rating experimental group: 4.33 ± 0.87, rating control
group: 4.17 ± 1.17), yet the training success diverged substantially
(Fig. 2B). Likewise, motivational factors alone cannot explain our
findings, because feedback reward levels in both experimental

groups were identical, and participants in the control group
were unaware that they had received sham feedback.

Neural Substrates of the Learning Effect

To further explore the neural substrates of the learning effect that
we observed, we compared the individual model parameters of
the pretraining and the posttraining transfer runs. This compari-
son revealed a significant increase in top-down modulation and
a significant decrease in bottom-up processing between the
dmPFC and the right amygdala that were found only in the parti-
cipants in the experimental group, and only in the trained model
(i.e., the top-down model; Fig. 3; Pearson correlation; dmPFC→

AMYR connectivity: 2-tailed paired t-test, t(8) = 2.38, P = 0.05
uncorrected; AMYR→ dmPFC connectivity: 2-tailed paired t-test,
t(8) = 2.49, P = 0.04 uncorrected).

An analysis of brain activations in the 3 ROIs that comprised
our emotion network models revealed that dmPFC activity sig-
nificantly increased, and that right amygdala activity significant-
ly decreased in the participants in the experimental group, with
training (see Supplementary Fig. 2A; Pearson correlation; dmPFC:
ρ = 0.81, P = 0.05 uncorrected; AMYR: ρ =−0.81, P = 0.05 uncorrect-
ed). Participants in the experimental group with higher levels of
state anxiety (STAI-S score) showed a smaller increase in dmPFC
activity, which is in line with previous findings that showed de-
creased levels of prefrontal activity in highly anxious individuals
during negative emotion processing (Fig. 4, see Supplementary
Table 2; Pearson correlation; ρ = −0.94, P < 0.01 corrected for 8
STAI correlations; for further results related to the psychometric
questionnaire scores, see Supplementary Fig. 3 and Material and
Methods) (Bishop et al. 2004). In contrast, participants in the con-
trol group showed significantly increased left amygdala activity
with training (see Supplementary Fig. 2B; Pearson correlation; ρ =
0.86, P = 0.03 uncorrected). Interestingly, for the experimental
group, the increased percent signal change in the dmPFCwas as-
sociated with a decrease of its number of active voxels (see Sup-
plementary Fig. 4A), whereas for all other areas in both groups,
the similar trend for percent signal change and the number of ac-
tive voxels was observed (see Supplementary Figs 2 and 4). The
increased left amygdala activity in the control participants is
also reflected in an increasing number of voxels of particularly
the laterobasal nuclei that the control participants recruited
with training (see Supplementary Fig. 5; Pearson correlation;
ρ = 0.90, P = 0.02 uncorrected; our ROIs were defined dynamically
to allow for shaping of brain activity (Skinner 1953); for details,
see Supplementary Fig. 6 and Materials and Methods).

These differences between the experimental group and the
control group were also evident when directly contrasting whole-
brain activation of the pre- and posttraining transfer runs, which
revealed a significant increase in dmPFC activity in the experimen-
tal group and a significant increase in left amygdala activity in the
control group (see Supplementary Fig. 7).

Discussion
Our results establish for the first time that participants can em-
ploy connectivity-based neurofeedback to learn to increase top-
down connectivity from the dmPFC onto the amygdala in a
self-organized, endogenous fashion (Fig. 2A). Control partici-
pants who received sham feedback did not learn such control, in-
dicating that the learning effects observed in the experimental
group cannot be achieved with unrelated feedback (Fig. 2A,B).
The sample size in our study was rather small and, as a conse-
quence, the behavioral effects were somewhat statistically
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weak. Nonetheless, the fact that increasing the level of top-down
connectivity was associated with increased valence ratings
(Fig. 2D,E) might indicate the potential for enhancing emotion
regulation through connectivity-based neurofeedback training.

Our new connectivity-based neurofeedback approach goes
beyond previous neurofeedback approaches that were limited
to training localized brain activity within a ROI (Sulzer et al.
2013). Although connectivity-based neurofeedback training can
result in accompanying changes in the level of activity in ROIs
(as was found in the present study, see Supplementary Figs 2
and 4, for details, see Supplementary Materials and Methods),
we have previously shown that it is a new and distinct feedback
measure that reflects connectivity between areas, and that is
qualitatively different from activity-based feedback (i.e., activ-
ity-based feedback signals and connectivity-based feedback sig-
nals can be uncorrelated) (Koush et al. 2013). Connectivity-based
neurofeedback thus provides a novel way to noninvasively and
nonpharmacologically change interactions within intercon-
nected functional brain networks, to provide brain-based train-
ing for causing specific behavioral changes.

Learning to increase top-down control of the dmPFC over the
amygdala was associated with decreased bottom-up processing
between the dmPFC and the right amygdala (Fig. 3A). It was
also associated with increased activity in the dmPFC and de-
creased activity in the right amygdala (see Supplementary
Fig. 2A), which is particularly involved in inducing negative emo-
tions (Lanteaume et al. 2007). Such trainingmight thus be used to
directly target emotion regulation disorders such as depression
and anxiety, which are often characterized by insufficient top-
down inhibition, excess bottom-up processing, hyperactivity in
the amygdala, and hypoactivity in the dmPFC (Disner et al.
2011). It is particularly important for clinical applications that
after training, self-regulation of effective connectivity between
the dmPFC and the amygdala can be applied even without

Figure 4. State anxiety predicts neurofeedback learning success. STAI-S scorewas

correlated negatively with the degree to which dmPFC activity increased across

neurofeedback training runs. Asterisk indicates that the result survived

Bonferroni FWE correction for multiple comparisons; P-value is indicated in

brackets.

Figure 3. Model parameter differences. (A) Comparing pre- and posttraining transfer runs, the connectivity between the dmPFC and the right amygdala changed

significantly in the experimental group. Specifically, top-down connections from the dmPFC onto the amygdala were increased, and bottom-up connections from the

right amygdala onto the dmPFC were decreased. These changes were specific to the trained top-down model (i.e., they were not found in the bottom-up model), and

(B) specific to the participants in the experimental group (i.e., they were not found in the control participants). Asterisks and bold lines denote statistical significance;

P-values are indicated in brackets.
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neurofeedback, as demonstrated by our transfer runs (Fig. 2C)
(Sulzer et al. 2013).

Our connectivity-based neurofeedback approach is not lim-
ited to enhancing positive emotions through training of top-
down emotion regulation connectivity, whichmay help counter-
act the frequent anhedonia component of emotion regulation
disorders. It might also be applied to improve emotion regulation
capabilities by decreasing negative emotions associated with
these disorders. In principle, any functional brain network
might be targeted with this newmethod to study causal relation-
ships with noninvasive neuroimaging methods, or to normalize
dysfunctional brain networks in psychiatric andneurological dis-
orders (Stoeckel et al. 2014). In the future, neurofeedback training
of functional brain networks may provide a powerful and highly
specific mean to promote plasticity and learning in various con-
ditions, by modulating patterns of interactions between brain
areas—rather than the level of activity within one brain area
only, as traditionally implemented by most neuromodulation
techniques such as single-ROI neurofeedback, transcranial mag-
netic stimulation (TMS), or deep brain stimulation (DBS). This in
turn opens new perspectives for treatment of neuropsychiatric
disorders associated with emotion regulation failure, including
depression and anxiety, possibly in combination with other
procedures based on psychotherapy and medication.
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