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A B S T R A C T

Neurofeedback based on real-time functional magnetic resonance imaging (rt-fMRI) is a novel and rapidly
developing research field. It allows for training of voluntary control over localized brain activity and connectivity
and has demonstrated promising clinical applications. Because of the rapid technical developments of MRI
techniques and the availability of high-performance computing, new methodological advances in rt-fMRI
neurofeedback become possible. Here we outline the core components of a novel open-source neurofeedback
framework, termed Open NeuroFeedback Training (OpenNFT), which efficiently integrates these new
developments. This framework is implemented using Python and Matlab source code to allow for diverse
functionality, high modularity, and rapid extendibility of the software depending on the user’s needs. In
addition, it provides an easy interface to the functionality of Statistical Parametric Mapping (SPM) that is also
open-source and one of the most widely used fMRI data analysis software. We demonstrate the functionality of
our new framework by describing case studies that include neurofeedback protocols based on brain activity
levels, effective connectivity models, and pattern classification approaches. This open-source initiative provides
a suitable framework to actively engage in the development of novel neurofeedback approaches, so that local
methodological developments can be easily made accessible to a wider range of users.

Introduction

About two decades ago, real-time functional magnetic resonance
imaging (rt-fMRI) was introduced (Cox et al., 1995) and turned into a
rapidly developing discipline. Neurofeedback based on rt-fMRI pro-
vides a training protocol that allows participants to voluntarily control
their brain activity and connectivity (Caria et al., 2012; deCharms,
2008; Sitaram et al., 2017; Stoeckel et al., 2014; Sulzer et al., 2013;
Weiskopf, 2012). Conventional measures of brain activity for fMRI-
based neurofeedback continuously track the blood oxygen level depen-
dent (BOLD) signal from a target region of interest (ROI). Most often,

gradient-echo echo-planar imaging (GE-EPI) T2*-sensitive protocols
and their extensions are used to acquire brain volume data in real-time
(Weiskopf, 2012; Weiskopf et al., 2007b). Each GE-EPI voxel value is
proportional to the BOLD signal, which is an indirect measure of
underlying neural activity (Logothetis et al., 2001). The neurofeedback
loop is closed when brain activity induced by the participant’s efforts
for regulation, is presented as the neurofeedback signal (LaConte,
2011; Sitaram et al., 2017). With the help of neurofeedback, partici-
pants can learn voluntary control over the own brain activity and
connectivity. Such neurofeedback training has been shown to cause
behavioral consequences, thus providing a scientific tool for investigat-
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ing the relationship between brain function and behavior (Sitaram
et al., 2017; Sulzer et al., 2013). Likewise, neurofeedback allows
neurological and psychiatric patients to normalize abnormal levels of
brain activity that are associated with their disorder. It thus holds great
promises as a drug-free and non-invasive experimental therapy that
has been shown to be effective in depression, addiction, stroke, chronic
pain, Parkinson’s disease, and tinnitus (Haller et al., 2010; Hartwell
et al., 2013; Li et al., 2013; Liew et al., 2016; Linden et al., 2012;
Subramanian et al., 2011; Young et al., 2014) .

The conventional neurofeedback study involves defining the phy-
siological target in terms of the brain ROI or network to be trained,
assessing the participant’s performance in terms of modulating brain
activity, as well as the learning progression and the ability to transfer
the trained regulation to an experimental situation without feedback.
These experiments are challenging in terms of the evaluation of
behavioral or therapeutic effects before and after learning (Sulzer
et al., 2013). Therefore, neurofeedback studies can consist of multiple
runs accompanying the neurofeedback ones, such as pre- and post-
training tests and transfer runs. Neurofeedback studies range from
short single-day neurofeedback session (deCharms et al., 2005) to
relatively long experiments with up to 10 sessions spanned over several
days (Shibata et al., 2011). Neurofeedback training sessions usually last
approximately 1 h and consist of a few neurofeedback runs (Stoeckel
et al., 2014; Sulzer et al., 2013). The runs are usually composed of
alternating 10–30 s regulation and baseline blocks and last around 5–
20 min each.

On the one hand, neurofeedback based on rt-fMRI is a rapidly
developing and technically highly demanding approach. On the other
hand, technical and methodological developments of the MRI hard-
ware and software advance quickly, which, together with increasing
availability of high-performance computing power, allows for more
sophisticated real-time brain data processing approaches. The cur-
rently available software for rt-fMRI neurofeedback include the
commercially available Turbo-BrainVoyager software (http://www.
brainvoyager.com), and a few non-commercial software packages,

such as FRIEND (https://www.nitrc.org/projects/friend/), which is
written in C++ and based on the FSL libraries (https://fsl.fmrib.ox.ac.
uk/fsl/fslwiki/), the AFNI real-time plug-in written in C (Cox et al.,
1995) (https://afni.nimh.nih.gov/), scanSTAT written in C/C++
(Cohen, 2001) (http://www.brainmapping.org/scanSTAT/), BART
written in C/C++ (Hellrung et al., 2015), and the FieldTrip extension
for rt-fMRI written in Matlab (http://www.fieldtriptoolbox.org/). All of
these software packages except for FieldTrip (which is non-GUI-based)
are written in non-interpreted programming languages that require
more sophisticated programming skills compared to interpreted
languages. Thus, there is need for an open-source GUI-based multi-
processing integrated framework written in more easy interpreted
programming languages such as Python and Matlab, with a broad
functionality asset for neurofeedback studies. However, despite the
relative simplicity of programming in Matlab as compared to C/C++ or
Java, it’s GUI capabilities, parallel architecture implementation, and
concurrent data processing performance is weaker. One solution to this
problem is combining Matlab and Python, which allows for preserving
the relative simplicity of programming in Matlab as well as an
integration with other widely-used Matlab-based neuroimaging
toolboxes, and for benefitting from the advanced GUI capabilities,
parallel architecture and concurrent data processing of Python.

In this technical note, we provide a brief overview of the core
neurofeedback data processing steps required to perform activity-,
connectivity- and classification-based neurofeedback studies, and in-
troduce an open-source framework, termed OpenNFT. This framework
represents a parallel architecture and the set of core modules required
to quickly design and test new neurofeedback experiments. The
OpenNFT is written in an integrated Python/Matlab environment to
facilitate concurrent functionality, high modularity, and the ability to
extend the software in Python or Matlab into new directions depending
on programming preferences, research questions, and clinical applica-
tion. To demonstrate its capabilities, we describe three case studies
covering neurofeedback based on coactivation patterns, advanced
effective connectivity, and classification methods.

Fig. 1. An illustrative data flow for neurofeedback based on rt-fMRI that reflects the OpenNFT built-in functionality. MR – magnetic resonance, TCP/IP – transmission control
protocol/ internet protocol, ROI – region of interest, PSC – percent signal change, GLM – general linear model, iGLM – incremental GLM, cGLM – cumulative GLM, AR(1) –

autoregressive model of the first order, MVPA – multivariate pattern analysis, SVM – support vector machines.
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Methods

In this section, we provide a brief overview of all the methods used
to support OpenNFT functionality. An interested reader is encouraged
to check original publications for more details and outlined methods
validation.

Neurofeedback data acquisition and transfer

The data flow of typical neurofeedback experiments consists of
several major components including data acquisition, data transfer,
data preprocessing, data processing, feedback estimation and feedback
presentation, which creates the core of the OpenNFT functionality
(Fig. 1).

Rt-fMRI data is acquired using standard MR scanners with para-
meters that are optimized for the specific experimental objectives.
Rapid data acquisition, image reconstruction and export from the MR
scanner, and availability of high-end computing power have made it
possible to acquire and process a large amount of fMRI data in real-
time. However, compared to most conventional fMRI experiments
where analyses are based on data from the entire experiment (i.e., the
complete time course) and where one can average over participants, rt-
fMRI analyses are based on a small subset of the fMRI data and on a
single participant level. They therefore require that MR acquisition
parameters, such as spatial resolution, repetition time (TR) and echo-
time (TE), are chosen in order to carefully balance the tradeoff between
signal-to-noise ratio and BOLD sensitivity (Weiskopf, 2012). For

example, relatively large in-plane voxel sizes in the range of 2–4 mm
and matrix sizes of up to 120×120 voxels with 20–36 slices to cover the
whole brain (i.e., slice thickness 2–3 mm and slice gap 20–25% of the
slice thickness) have been used in rt-fMRI in different neurofeedback
studies at 3T (Stoeckel et al., 2014; Sulzer et al., 2013). The TR in rt-
fMRI studies is usually between 2 and 3 s to cover the whole brain at
3 T (Weiskopf, 2012; Weiskopf et al., 2007a), whereas a TR of 1 s been
used to target specific brain slabs at 3 T and higher magnetic fields
(Koush et al., 2013b, 2014, 2015). The adaptation of recently devel-
oped parallel and multiband acquisition techniques for rt-fMRI pur-
poses could substantially reduce the acquisition time without a
significant loss of data quality, but puts higher demands on the
computational power for image reconstruction and subsequent rt-
fMRI processing (Todd et al., 2016).

To export and process the imaging data, a data analysis workstation
is added to the network that contains the manufacturer’s MR scanner
and reconstruction console. The acquired and reconstructed data are
then exported by the MR hardware and software to a shared destina-
tion folder that can be assessed by the data analysis workstation via
TCP/IP (Weiskopf et al., 2007b). In principle, researchers may export
data from different acquisition-to-reconstruction data flow levels
(Weiskopf et al., 2004a, 2004b). For example, raw spectroscopic data
were exported as soon as they were acquired at 3T and 7T MR scanners
to provide an individual feedback signal based on the localized T2*
changes (Koush et al., 2011, 2013a, 2014). Such customized export
procedure typically requires an extension of the manufacturer’s
reconstruction and/or export prescriptions.

Fig. 2. Timeline of rt-fMRI data flow. The timing of data acquisition and analysis is shown in relation to the scan(n) and the BOLD signal delay. Time onsets are illustrative and may
vary depending on MR scanner hardware and software properties, scanning parameters, selected data analysis modules and computational performance. Note that the haemodynamic
delay of the BOLD signal (blue) is substantially longer (3–5 s) than that of data acquisition (e.g. 1–2 s) and that of data processing (e.g. .2–1 s). *) denote that feedback from the scans of
the baseline condition could be processed and displayed similarly to the regulation condition. **) denotes the first scan during which an intermittent feedback is required to be present,
and that the visual instruction, e.g. a fixation dot, could alternatively appear instead of the regulation instruction to stop the regulation condition until the feedback is processed and
displayed.
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Timing and synchronization

With respect to the timing of rt-fMRI studies, there are substantial
differences between continuous, intermittent and trial-based neuro-
feedback presentation, as well as differences between requirements
regarding the synchronization of scanner and presentation hardware in
rt-fMRI and conventional fMRI experiments. Technically, most fMRI
echo-planar imaging (EPI) protocols allow the scanner to output a
short (e.g., 1 ms) trigger pulse via a local serial/parallel/USB port,
generated at or before the acquisition of the first scan (i.e., at the center
of the k-space). Thus in conventional fMRI experiments, the time-
scales of stimulus presentation and MR trigger pulse generation are
synchronized, which implies a direct synchronization. In conventional
neurofeedback studies, the neurofeedback estimation scheme is linked
to the rt-fMRI scan arrivals so that the data is processed as soon as they
arrive. This implies an indirect synchronization (in contrast to con-
ventional fMRI studies).

In neurofeedback experiments, there are several interdependent
time-scales and event onsets to be considered given the acquisition of
the scan(n), such as the time when the trigger pulse was generated by
the scanner (t0), when the acquired volume was exported and the
software starts reading the file (t1), when the volume was written and
the software finishes reading the file (t2), when the data was pre-
processed (t3) and processed (t4), when the feedback signal was
estimated (t5) and, finally, when it was presented to the participant
(t6) (Fig. 2).

As soon as a volume of fMRI data is acquired, it is exported and
transferred to a local workstation. While the scanner continues to
acquire the next volume, the workstation processes the current volume,
estimates the feedback signal, prepares the visualization and finally
presents it to the participant. Note that the time when MR scanner
generates the trigger pulse for scan(n+1) is different from the time
when the scan(n) first appears in the export directory and the software
starts reading it, i.e. from (t1), which depends on MR hardware and
software.

For intermittent feedback, the instruction can be displayed prior to
the acquisition of the first regulation condition scan, i.e., similarly as
for a conventional fMRI study, and time events (t7) and (t8) stand for
the beginning and the end of instruction/stimuli display (Fig. 2). If
scan(n+1) is the first scan during which the intermittent feedback is
required to be presented, it is presented exactly the same way as for
continuous feedback, i.e. after the processing of the last scan(n) of the
regulation/task block (Fig. 2, denoted with **)). Also note that (t0) and
(t7) will match if instruction/stimuli is displayed based on the trigger
pulse event. Finally, intermittent feedback estimation differs from the
continuous feedback so that it could be estimated once per regulation
block or trial based on the number of the preceding scans in accordance
with a specific estimation scheme (see ‘Feedback estimation and
presentation’ sections).

OpenNFT is currently compatible with Siemens and Philips MR
scanner exports and can be easily adapted to other MR scanner export
formats. The data transfer between scanner hardware and data analysis
workstation is achieved using the TCP/IP via a shared folder within the
local network to which both are connected. Therefore, trigger pulse,
neurofeedback protocol prescriptions, the new data arrivals, and the
time when the feedback signal is calculated and is to be presented could
be governed by the user and a study-specific estimation scheme.
Despite a temporal shift of the first acquired file in continuous feedback
to the first trigger pulse, the acquired time-series can be considered in
the relative real-time scale of the displayed feedback signal. The offline
data processing can compensate for the feedback display shift by
accounting for the precisely recorded trigger pulse, or the TR used. In
addition, the conventional haemodynamic delay is taken into account
when modeling the experimental design for GLM convolving it with the
haemodynamic response function (HRF), and when estimating the PSC
in real-time and skipping the shifted scans.

Data preprocessing

Once the data has been transferred to the local workstation, data
preprocessing commences. The optimal choice of preprocessing steps
depends on the planned data processing scheme and the feedback type.
For example, spatial realignment and reslicing to compensate for
participant head movements are highly recommended and should only
be skipped if special precautions have been taken against movement
(e.g., prospective motion correction (Maclaren et al., 2013)).

OpenNFT offers built-in realignment, reslicing, and spatial smooth-
ing algorithms, which consist of standard SPM12 functions (www.fil.
ion.ucl.ac.uk/spm) that were adapted for real-time purposes.
Specifically, the SPM realignment and reslicing functions were
adapted for recursive estimations, while preserving their original
functionality. For example, it is possible to choose between different
conventional methods, i.e., B-splines of any degree such as linear and
cubic ones. The precision level and the number of iterations required to
apply spatial realignment is set to the custom SPM settings, but we
recommend that these parameters are optimized through a pilot fMRI
run to reach the best trade-off between imaging parameters and TR,
data complexity, accuracy, and computational needs (for details, see
‘OpenNFT performance’ section). The reference EPI used for real-time
realignment should have the same dimensions and orientation as those
used for the real-time acquisition. This reference EPI, and also the
ROIs from which the feedback will be provided, should be prepared
offline before the neurofeedback training. The ROI definitions can be
based on a functional localizer scan, and on anatomical masks (e.g.
atlases, coordinates of other studies, or meta-analyses).

Data processing

In OpenNFT, whole-brain activation maps are estimated using
incremental GLM (iGLM) statistical analysis (Bagarinao et al., 2003)
and displayed in real-time. Incremental GLM algorithm is based on
orthogonalization of the explanatory GLM regressors of which the
parameter weights can then be estimated more efficiently (Bagarinao
et al., 2003). For time-series data processing, cumulative GLM (cGLM)
is used to correct for linear drift and head motions, i.e., when the time-
series acquired up to the current value is used for a regular GLM
estimation. Configurations of the whole-brain iGLM and time-series
cGLM allow for creating regressors of the interest and residual forming
matrix, as well as estimation of the statistics and contrasts of interest.
Note that iGLM and cGLM estimations do not overlap in the current
OpenNFT configuration unless enabled simultaneously. In the latter
case, the extracted time-series will be additionally dependent on iGLM
estimations; e.g., in connectivity-based feedback where dynamic ROIs
are based on the thresholded iGLMs. For iGLM, residual forming
matrix is typically used to remove confounds; e.g., six head motion,
linear trend and high-pass filter with 1/128 s cut-off frequency
residuals (as implemented in SPM).

To deal with high-frequency noise and identify non-linear spikes, a
configurable extension of a low-pass Kalman filter is applied (Koush
et al., 2012). In brief, a low-pass Kalman filter is an adaptive recursive
estimation algorithm that allows extraction of the desired signal
through a filtering operation with approximated cut-off frequency by
adjusting the filter parameters. The extension of the Kalman filter for
spike identification is based on introducing the degree of control over a
discrepancy between predicted and posteriori signal estimates based on
the cumulated standard deviation estimate.

To account for serial correlations in fMRI data due to the aliased
non-neurophysiological fluctuations and non-modeled neuronal
activity, we used a first-order autoregressive model AR(1) that
was implemented by applying recursive filtering to all voxels’ time-
series. This implementation of AR(1) differs from SPM, where it is
performed during residual maximum likelihood estimation given
all the available data. In brief, recursive filtering is performed prior
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to the estimation of the GLM by filtering the observation data
vector (i.e., each voxel at time t) and the design matrix (i.e., each
value at time t) with the first-order filter given default SPM AR(1)
alpha-value: y y αy x x αx α′ = − , ′ = − , = .2t t t t t t−1 −1 .

In addition, iGLM can be used for different dynamic ROI estimation
schemes. For example, dynamically adapting the ROI has been
successfully used for ROI-based feedback (Linden et al., 2012), and
also for connectivity-based feedback (Koush et al., 2015). For con-
nectivity-based neurofeedback, OpenNFT dynamically adapts the ROIs
based on the uncorrected statistical threshold (e.g., p < .01) applied to
the iGLM activation map at the end of each neurofeedback trial. The
voxels that survived thresholding within a predefined mask are selected
as the new ROI for the next run. If fewer than 10 voxels survive the
thresholding, the predefined mask is used as a fallback option. After
two neurofeedback trials have been acquired, the ROI that contains
most voxels is always selected, i.e., if 42 voxels survived thresholding
after trial 1 but only 35 after trial 2, then the dynamic ROI definition
based on trial 1 will be used for the third trial. This adaptation could be
extended for other feedback estimation schemes. The ROI/mask could
be based on pilot studies, or on anatomical definitions (Lancaster et al.,
2000), or on both (Koush et al., 2015).

Feedback estimation

OpenNFT offers three different built-in feedback types to demon-
strate its functionality: (1) constantly displayed (continuous) and
periodically displayed (intermittent) activation-based feedbacks; (2)
intermittent effective connectivity feedback; (3) continuous classifica-
tion-based feedback.

For activation-based feedback, single or multiple ROI activity levels
are often estimated in terms of percent signal change (PSC) after
preprocessing the data. The PSC is typically computed as a percentage
of the average signal during neurofeedback regulation blocks compared
to the average during baseline blocks. Although very common, this
approach suffers from the relative nature of the fMRI BOLD signal and
thus depends on the data quality and baseline definition, i.e., zero-/
reference-line identification. Practically, feedback estimation in terms
of PSC requires basic volume data processing (extracting voxel activity
using ROI/pattern masks), and, subsequently, calculating an average,
weighted average or eigenvector estimate from the spatial-temporal
data sample within the ROI. This basic processing can be extended to
incorporate temporal signal processing of the extracted time-series,
and dynamically adapting the size and shape of the ROI based on
whole-brain iGLM. Before the PSC feedback is visualized, the time-
series is adaptively scaled so that the signal changes are reflected in the
displayed feedback signal. To define the dynamic range, OpenNFT uses
the average of the 5% highest and lowest activity time points of the data
acquired so far, i.e. to estimate the maximum and minimum limits of
the scaling, respectively. This procedure ensures that the feedback
signal stays within the dynamic range of acquired time series. At the
same time it prevents rapid (and potentially artifactual) signal changes
from causing sudden jumps of the scaling range and, thus, the feedback
signal, which can be confusing for the participants (Koush et al., 2012).

Feedback estimates are not limited to single ROI activity in terms of
PSC, but can also involve more advanced feedback estimation methods.
It has been shown feasible to extract the feedback signal from more
than one ROI. For example, feedback signals based on the difference
(Robineau et al., 2014; Scharnowski et al., 2015) and the average
(Chiew et al., 2012; Paret et al., 2014) between activity levels of two
brain areas have been used successfully for neurofeedback training. For
activation-based feedback that involves two ROIs, adaptive scaling
could be used to combine them. For example, we implemented a
scaling procedure that takes the independent dynamic ranges of the
time-series into account by first calculating the limits of each ROI, and
then scaling them based on the average of their limits (Fig. 3A).

Because of the haemodynamic delay, there might only be a few time

points within each block that can be taken into account for calculating
PSC. In our intermittent feedback example (Fig. 3, block length is 10
volumes), we therefore used the median of the past six data points of
regulation and baseline to calculate the PSCs. The PSCs were estimated
separately for each ROI at the end of the regulation block (for more
details about the experimental parameters, see Data in Brief).

Several recent attempts have been made to replace real-time
activity-based neurofeedback signals by real-time functional-connec-
tivity estimates, such as temporal correlations using Pearson correla-
tion coefficient estimation between two time-series (Kim et al., 2015;
Megumi et al., 2015; Zilverstand et al., 2014), and estimation of
functional connectivity networks using real-time Smooth Incremental
Graphical Lasso (rt-SINGLE, (Monti et al., 2016)). The correlation
coefficient could be estimated cumulatively or based on the sliding
window, and is easy to extend in OpenNFT using available multiple
ROI PSC estimation scheme. More computationally demanding esti-
mates of effective connectivity, such as dynamic causal modeling
(DCM, (Friston et al., 2003)), have also been successfully used to train
participants exerting control over specific brain networks (Koush et al.,
2013b, 2015). Neurofeedback training based on effective connectivity
is accomplished in several regulation runs that are each composed of a
set of neurofeedback trials. Each of the neurofeedback trials consists of
several baseline blocks interleaved with regulation blocks and followed
by a rest epoch and neurofeedback display block. The connectivity-
based feedback is estimated as the difference between the logarithmic
evidences of two model alternatives, the target model and the alter-
native model, which is the logarithmic Bayes factor. What enters the
estimation of the DCMs by the end of neurofeedback trial, is the
unscaled preprocessed time-series extracted from the ROIs that con-
stitute DCM models. The resulting logarithmic Bayes factor is the
feedback value that can be presented to the participants (for more
details about experimental parameters, see Data in Brief). OpenNFT
provides an improved implementation of this trial-based estimation
scheme. In particular, DCM models are now computed in parallel, and
an extension is provided to integrate the linear trend and head motion
residuals directly into the DCM model estimation.

In addition to the activity- and connectivity-based neurofeedback,
multivariate pattern analysis (MVPA) based on the support-vector-
machine (SVM) classifier was used to allow regulating one brain state
versus another (Amano et al., 2016; deBettencourt et al., 2015;
LaConte, 2011; Shibata et al., 2011). Note that in MVPA approaches
for neurofeedback, there is an important distinction between the
classifier/regression model training (i.e., the preparation of the feed-
back signal estimation), and the decoding of the brain states in real-
time (i.e., the real-time feedback signal estimation). Thus, for the
example provided (see Data in Brief) we first trained the linear SVM
classifier to discriminate between two attentional states using the data
from two fMRI functional localizer runs acquired prior to the neuro-
feedback run. Each run consisted of seven 20 s regulation blocks that
were interleaved with seven 20 s baseline blocks (for more details about
the experimental parameters, see Data in Brief). First- and second-level
kernels were built based on the masked whole-brain data and the
exemplary classification mask that entailed the parietal lobe (Talairach
Daemon atlas (Lancaster et al., 2000)), respectively. The accuracy of
the classification was determined using n-fold leave-one-out cross-
validation technique applied across blocks of the fMRI runs. The SVM
features were voxel-wise mean-centered using training data, the fMRI
scans were averaged within a block, and 5 s delay and overlap of the
HRF were taken into account when estimating the classification model.
The SVM estimations were performed using the PRONTO toolbox
(Schrouff et al., 2013). Next, the same participant performed a single
neurofeedback run that consisted of 10 baseline blocks interleaved with
11 regulation blocks. The classification-based feedback was computed
in real-time using a conventional decision function, namely the dot
product between the pre-trained classifier weight vector and the
current data vector extracted from the classification mask (LaConte,
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2011; LaConte et al., 2007). For the OpenNFT implementation of the
classification-based feedback, we used similar whole-brain data pre-
processing steps, provided an easy interface to set the pre-trained
classifier weights and classification mask, and computed a classifica-
tion-based feedback value per scan using the decision function. The
resulting time-series undergoes similar signal processing procedures as
for the PSC feedback to remove linear drift, high frequency noise and
spikes. Z-scoring and logarithmic sigmoidal transfer function were
applied to the processed time-series of the feedback estimates, which
allows for a precise mapping between the classifier output and the
relative proportion of two overlapping stimuli types that could con-
stitute the feedback signal (deBettencourt et al., 2015).

Feedback presentation

The estimated feedback signal is typically represented in arbitrary
units and needs to be converted into stimuli that are meaningful for the
participant. This conversion often involves adaptive scaling and thresh-
olding, as well as translating the achieved self-regulation into a
(monetary) reward, which can be adapted according to shaping
algorithms for operant conditioning (Bray et al., 2007; Skinner,
1953). Feedback is most commonly presented visually. Depending on
the experimental needs and hardware availability, the visual feedback
presentation can use anything from MR-compatible 2D screens or
goggles to more sophisticated MR-compatible 3D displays or virtual-
reality goggles. The feedback signal can range from simple visual cues,
such as a thermometer (Weiskopf et al., 2004a) or a moving bar (Koush
et al., 2012), to avatar faces (Mathiak et al., 2010) and VR-scenes
(Baecke et al., 2015).

OpenNFT implementation

OpenNFT (http://opennft.org/) is an open-source integrated
software package designed for neurofeedback using rt-fMRI. It is
implemented as a unified framework and is based on the platform-
independent interpreted programming languages Python (https://
www.python.org/) and Matlab (MathWorks, Natick, Massachusetts,
United States). Our software is adapted, but not limited, to use the
functionality of the SPM (www.fil.ion.ucl.ac.uk/spm) and Psychtoolbox
(psychtoolbox.org) open-source software suites and is distributed via
the GitHub open-source platform (https://github.com/OpenNFT).

Architecture

OpenNFT’s control core, which contains the parallel architecture,
graphical-user-interface (GUI) and synchronization module, is imple-
mented in Python, whilst analytical modules for data processing and
neurofeedback estimation are implemented in Matlab. Python is
chosen because it is an interpreted software language that provides
an extensive support for the concurrent data processing, for flexible
GUI design, and for integration of different software modules, e.g.
machine learning (Pedregosa et al., 2011), while Matlab provides a
comfortable way to program extensions for novel input data, data
processing methods and feedback estimation approaches. Integration
was done via the recently developed Matlab Engine for Python, which
requires Matlab 2015b or higher. Python was used together with the
NumPy package (Van der Walt et al., 2011).

OpenNFT is implemented using seven processes executed in
parallel: the Python Core process and GUI subprocess, the Python
Synchronization process, the Matlab Core process, and three Matlab
Helper processes (Fig. 4). The Python Core process provides the control
architecture over all the other processes, the inter-process commu-
nication, and watches the data from the MR scanner. The Python Core
process also provides the control flow for sequential calls of the Matlab
Core and Helper processes that are used as entry points for different
principal flowchart modules. These calls of Matlab Core and Helper
processes are maintained using the Matlab Engine and could be
blocking, if a Matlab Engine function is called synchronously, and
non-blocking, if an asynchronous Matlab function call is used (i.e.,
using the FutureResult object provided by the Matlab Engine for
Python). Blocking implies that Python Core Process will wait until
the Matlab Engine returns the result, and non-blocking implies that
Python Core Process will continue running through sequential calls
without waiting for the asynchronously launched procedure.

If a new image acquisition is started, the Python Synchronization
process receives trigger pulse from the MR scanner which could either
be recorded or used to initialize the visualization to the participant. The
Python GUI subprocess is implemented as a part of the Python Core
process for maintaining GUI interactions and data visualization for the
experimenter. The GUI subprocess implies its implementation as a part
of the Python Core process, yet being a separate thread.

The Matlab Core process performs fMRI data (pre)processing,
time-series processing, feedback signal estimation and processing. In
addition to the Matlab Core process, the first of three Matlab Helper
processes is reserved for experimental task and feedback visualization,

Fig. 3. Demonstration of the scaling procedure for intermittent activity-based neurofeedback. (A) Example time-series from two visual cortex ROIs (red and blue lines) during visual
imagery (red blocks) vs. fixation (blue blocks). Green blocks denote the feedback presentation. The adaptive scaling for each time series and their average is shown as piece-wise
horizontal lines in the respective colors (the average in green). (B) The time-series scaled according to the average dynamic range.
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i.e., Experiment Visualization (Fig. 4). This is particularly useful when
feedback is presented as complex dynamic visual stimuli, animations or
video sequences. This Matlab Helper can, for example, be used to
present visual feedback using the Psychtoolbox (PTB) (Brainard, 1997;
Pelli, 1997), which is a Matlab toolbox based on the OpenGL library. In
current configuration, this Matlab Helper process is also reserved for
the concurrent estimation of a first DCM model, because during DCM
computation the participant’s screen is set constant (black/fixation),
which also emphasizes how different modules/functions could effi-
ciently share the provided Matlab Helper processes. The second Matlab
Helper process is used to facilitate the presentation of the orthogonal
views of the brain at a location indicated via a mouse-click, i.e.,
facilitating the GUI whole-brain navigation. These orthogonal projec-
tions are computed using adapted SPM scripts. For DCM feedback, the
third Matlab Helper process, the Model Computation (Fig. 4), is used
for the concurrent estimation of a second DCM model, i.e., when the
feedback display is set to a fixation point (for details, see Koush et al.
(2013b, 2015)).

In current configuration, OpenNFT is indirectly triggered by the rt-
fMRI scan arrivals (t1) (Fig. 2). In more details, when the new MR
export data file arrives, the Python watchdog module catches the
corresponding file-system change notification generated by the opera-
tion system and waits until the file is completely written (t2). As soon
as the feedback signal is calculated by the Matlab Core process, the
status of the feedback signal readiness is changed and it becomes
available for display (t6). OpenNFT has an inbuilt capability to

constantly record all the time events (Fig. 2) and the MR trigger pulse
(t0) as a reference time vector for displaying the instructions to the
participant, monitoring time events of the feedback estimation scheme
and adjusting offline data analyses. The trigger pulse is monitored by
the Python Synchronization process.

Real-time GUI and parameters

The OpenNFT GUI to define the experiment encompasses five main
stages: Initialize – Parameter Panel – Setup – Start – Stop (Fig. 5). It is
implemented as a Python subprocess, helps to initiate the key software
parameters and features, illustrate the necessary data plots in real-
time, and provides a real-time access to the whole-brain activation
map.

Clicking “Initialize”, launches the initialization of the concurrent
Matlab processes. Clicking “Review Parameters” opens the panel
containing all settings for the operation mode and the data inputs,
such as the feedback and data types, paths to the ROIs/masks, the
template EPI, the structural scan, and the neurofeedback protocol file
(Fig. 6).

The main control parameters include the number of volumes and
their dimensions, TR, number and the volume name of the data series
that will be exported next, and the next neurofeedback run. All the
settings and parameters are stored in the initialization INI file that can
be prepared prior to the experiment and loaded, rather than entering
the parameters manually. The neurofeedback experimental protocol is

Fig. 4. The OpenNFT architecture. Every block at the top level indicates a separate process. Matlab processes are colored in yellow, Python processes in blue. Their functionality is
briefly specified in lower more transparent blocks of the same color. Vertical lines under each block indicate calling of the sequence of processes that are within the specific time interval
and required for the processing of one data portion from the MR scanner. Colored vertical bars denote active stages of the processes, and dashed lines denote their inactive states.
Horizontal arrows denote data transfers between the processes. Note, DCM models are computed using Matlab Helper Processes, which is an optional configuration for DCM feedback
type.
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stored in a JavaScript Object Notation (JSON) format file and contains
the timeline of the conditions in terms of the start and end of each
block. The experimental protocol can be edited in Matlab and stored in
JSON format using the jsonlab Matlab toolbox (https://ch.mathworks.
com/matlabcentral/fileexchange/33381-jsonlab–a-toolbox-to-encode-
decode-json-files). Once the main parameters are set, OpenNFT can be
switched into real-time operation mode (Fig. 5). In this mode, the
quickset parameter panel is available, which allows for a quick set of
some parameter settings between runs, e.g., changing the file name of
the real-time exported MR images, and the run number (which is also
used to make the run-specific data storage folder). To advance to the
next run, the user has to change the feedback run number, the image
series number, and then click “Setup” and “Start”. During Setup, all the
necessary files are loaded. If necessary for the visual presentation of the
selected feedback type, the Psychtoolbox (PTB) is configured and the
PTB screen is prepared. The execution of the principal feedback
procedure is started by clicking Start, after which the framework
idles until it receives real-time data input from the MR scanner (i.e.,
either the MR trigger pulse or the exported image file). Clicking “Stop”
terminates the feedback workflow and saves the Matlab Core process
workspace and all the user-specified data into the feedback run-specific
data folder.

During the rt-fMRI run, head motion correction parameters, the
raw and processed time series, an orthogonal view of the structural
scan, the fMRI volume, the ROIs, and an activation map are plotted
and updated for each volume (Fig. 5). The temporal data plots can be
enlarged by double-clicking on the respective panel. The dynamically
updated activation map and the ROI contours can be overlaid either
onto the current EPI data volume or onto the structural scan, and can
be displayed as a 2D mosaic or in an orthogonal interactive viewer.
Using the mouse, it is possible to navigate through different views of
the orthogonal projection without affecting the timing of data proces-
sing.

To guarantee high performance and flexible data flows, the core
architecture of OpenNFT was motivated by a high degree of parallel
processing and modularity. Parallel processing implies independent
processes for user interface, synchronization with MRI pulse, data
acquisition, data processing, and, among other options, the possibility
to launch multiple Matlab processes. High modularity implies the
possibility to enable/disable/extend parts of the estimation scheme
independently from each other. Practically, this means that developers
can combine modules, functions and their settings (e.g., optimized for
speed or accuracy) according to the needs of the specific neurofeedback
application, and, in addition, they can implement additional modules

Fig. 5. Screenshot of the OpenNFT software in action showing the interface at the end of a neurofeedback run. The intermittent feedback signal was estimated as the percent signal
change scaled average between two ROIs (for details, see 'Feedback estimation' section). On the left panel, there is a quickset panel, the plot of head motion parameters, the plot of the
raw time-series extracted from the two ROIs, the plot of the processed time-series and their dynamic scaling range, and the plot of the feedback signal in the scaled units ready to be
converted into the feedback display. The blue, red and green backgrounds of the time-series plots denote baseline, neurofeedback regulation and neurofeedback presentation blocks. The
right panel shows orthogonal views of the participant’s brain structural scan, the fMRI volume (opaque green area), the ROI masks (blue and green contours), and an activation map
based on iGLM statistics.
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within the OpenNFT architecture, using Python, Matlab and even non-
interpreted programing languages (C, C++, Java).

Data streaming

The use of shared data structures is common practice for efficient
Python and Matlab implementations. To minimize the overhead that
could be caused by data exchange, most of the fMRI data processing
steps are performed in the Matlab Core process. The data is shared
between the Matlab Core processes using parameter structures without
direct sharing the fMRI data. Two synchronized copies of the structure
are used to present these shared parameters to the Python Core and
Matlab processes. However, currently, there is a limitation for trans-
ferring large data amounts using the Python application programming
interfaces (API) of the Matlab Engine; e.g., the time required by this
API for transferring a 512×512 uint8 matrix might take up to a second.
We thus use the Python API of the Matlab Engine only for sending and
receiving scalars and vectors of moderate length; e.g., the parameter
structure that is exchanged between all the processes and a reduced
version of this structure for the helper processes. In addition, we use
the API to send the time-series vectors for plotting from the Matlab
core process to the Python GUI subprocess.

OpenNFT uses memory-mapped files to transfer large matrices
from the Matlab Core and Helper processes to the Python Core process

and GUI sub-process. For example, when an estimated activation map
is updated dynamically in the Matlab Core process, it is directly
transferred to the Python Core process for display as a mosaic
(Fig. 4). However, for displaying the activation map as an overlay over
the structural orthogonal views, we first overlay all the displayed items
and then compute the orthogonal projections using the Matlab Helper
process, to allow for interactive mouse navigation. These projections
are then sent to the Python Core process using memory-mapped files.

Importantly, Python allows efficient communication with other
software. Interfacing external software (e.g., for stimuli and feedback
visualizations) can be performed using the UDP network socket. Using
Python and Matlab functionality, OpenNFT can also be extended to
handle input from a large range of standard hardware (e.g., via USB,
parallel and serial data ports). The Python core also allows integrating
other packages with OpenNFT, and implementing time-critical proces-
sing stages in a multithreading environment or on the GPU (graphical
processing unit), which is relevant for heavy numerical implementa-
tions, e.g. DCM estimations (Aponte et al., 2016).

OpenNFT performance

To demonstrate the OpenNFT performance and feasibility, we
briefly showcase selected quality measures for three neurofeedback
data sets that use (1) continuously and periodically displayed (inter-

Fig. 6. Screenshot of the window with the main parameter settings.
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mittent) activation-based feedback estimated as a PSC between the
activation and baseline conditions; (2) intermittent effective connec-
tivity feedback estimated based on the DCM estimations; (3) contin-
uous classification-based feedback estimated based on the SVM
decision function (for details, see Data in Brief). An interested reader
can download the anonymized experimental data that include a single
participant for each paradigm and the necessary configuration files,
and reproduce the experiments using OpenNFT. The real-time perfor-
mance of the OpenNFT can be simulated without MR scanner using
real-time simulation routine which copies fMRI scans from an arbitrary
source folder to the destination folder specified in OpenNFT as ‘MRI
Watch folder’ using a delay between successive copies (i.e., equal to the
suggested repetition time (TR)). Similarly, OpenNFT operates in an
offline mode reading acquired data as quickly as possible from ‘MRI
Watch folder’.

We performed a set of tests for conventional SPM functions that
underwent some adaptations for computationally-sensitive real-time
operations in OpenNFT and compared them to the conventional SPM
analyses without this adaptation. The programming adaptations that
do not affect the computations were systematically validated by all the
performance checks and the ongoing neurofeedback studies. For
example, only the spatial realignment routine underwent the computa-
tional modifications, whilst reslicing routine was adopted from the
real-time coding perspective. All the adaptations are marked appro-
priately in code.

Data preprocessing

The SPM realignment procedure based on the B-splines interpola-
tion of the 4th order was adapted to limit the maximum number of
iterations (10 iterations) and the accuracy of the approximations ( <
.01 mm), by this, ensuring the stable convergence of the interpolation
given the limited time at TRs of ≤ 1 s (Koush et al., 2012, 2013b). In
addition, masking unwanted voxels that contribute the least to the
determinant of the inverse covariance matrix of the parameters is
implemented in SPM to speed up the realignment of the successive
scans. This algorithm is preserved in OpenNFT and could be either
optionally disabled for its real-time mode, because it might take several
seconds to be computed in the beginning of the acquisitions, or it could
be integrated into the first baseline condition when the feedback signal
is typically not displayed.

Thus, we first tested two specific modes of the spatial realignment
in OpenNFT comparing them to the conventional SPM realignment:
the matched mode that approaches conventional SPM approach (i.e.,
the mode that underwent only programing adaptations), and the real-
time mode that could be used for real-time applications (i.e., with
realignment adaptations outlined above). For comparison purposes, we

realigned all the scans in the particular neurofeedback run to the first
scan of the run in OpenNFT and in SPM. For both modes of the spatial
realignment, we used the same reslicing (B-splines of the 4th order)
and smoothing (5 mm full-width-at-half-maximum (FWHM)). We
found no differences between matched OpenNFT mode and the
conventional SPM approach in terms of the correlation between head
motion estimates, and negligible differences in terms of the correlation
between time-series extracted from the preprocessed data given ROIs
(Spearman correlation, all rho-values > .9995 and p-values < .0001).
For real-time OpenNFT mode, the differences were somewhat larger
for head-motion estimates (Spearman correlation, all rho-values >
.9771 and p-values < .0001) and for extracted time-series (Spearman
correlation, all rho-values > .9984 and p-values < .0001).

Incremental GLM

We tested the performance of the incremental GLM algorithm
(Bagarinao et al., 2003) implemented in OpenNFT. For this purpose,
we compared the activation maps estimated with the reduced and
extended configuration modes of OpenNFT and SPM. Neurofeedback
data for this comparison were preprocessed using OpenNFT that was
configured the same way as the conventional SPM for spatial realign-
ment, reslicing and smoothing operations.

First, for reduced GLMs in OpenNFT and SPM, we modeled
experimental design regressors without regressors of no-interest (for
details, see Data in Brief and SPM structures in provided data). In
addition, we disabled the orthogonalization of the modulations in SPM,
the correction for serial correlation using autoregressive model of the
first order (i.e., the AR(1)) and the high-pass filtering in OpenNFT and
SPM. Note that the AR(1) is implemented differently in SPM and
OpenNFT. Thus, for reduced OpenNFT and SPM configurations, we
found high similarity between thresholded activation maps and their
binary activation maps (p-values < .01 unc.) using t-statistics (Tables
1 and 2; Fig. 7; two-sample, two-tailed). The spatial similarity between
corresponding binary activation maps was assessed using the Jaccard
index, computed as the size of the intersection of binary maps over the
size of their union. For comparison purposes, both, OpenNFT and SPM
activation maps were masked using a mask created by the correspond-
ing SPM estimation under comparison, because OpenNFT does not
perform the same masking for statistical analysis. We estimated the
neurofeedback condition-specific contrasts (for details, see Data in
Brief).

Next, for extended SPM and OpenNFT configurations, we further
explored the differences between their GLM implementations. Thus, we
added six head motion regressors, the linear trend regressor, the 128 s
high-pass filter, the autoregressive voxel-wise time-series filtering in
OpenNFT and the similar AR(1) feature in SPM. Because the precision

Table 1
Average t-values ( ± sd) for reduced (red.) and extended (ext.) GLM estimations using SPM and OpenNFT.

Configuration/
Case study

PSC SVM DCM trials

SPM red. 3.6 ± 1.1 5.0 ± 2.5 3.5 ± 1.3 3.7 ± 1.4 3.3 ± 1.0 3.5 ± 1.7 3.4 ± 1.0 3.5 ± 1.1 3.6 ± 1.3
ext. 3.0 ± .7 4.4 ± 1.9 3.4 ± 1.1 3.2 ± .9 3.0 ± .6 3.1 ± .7 3.0 ± .7 3.2 ± .8 3.3 ± 1.0

OpenNFT red. 3.6 ± 1.1 5.0 ± 2.5 3.6 ± 1.3 3.7 ± 1.5 3.3 ± 1.0 3.5 ± 1.2 3.4 ± 1.0 3.5 ± 1.2 3.6 ± 1.4
ext. 3.1 ± .7 4.7 ± 2.2 3.4 ± 1.1 3.3 ± .9 3.1 ± .8 3.5 ± 1.1 3.2 ± .8 3.5 ± 1.2 3.6 ± 1.3

Table 2
Jaccard indices / t-values (p-values) for comparisons between SPM and OpenNFT activation maps.

Configuration/
Case study

PSC SVM DCM trials

reduced .92 /.3 (.80) .99 /.1 (.01) .87 /1.9 (.06) .87 /2.2 (.03) .88 /.9 (.38) .88 /.9 (.36) .85 /.8 (.45) .87 /1.7 (.08) .87 /2.3 (.02)
extended .43 /2.7 (.01) .78 /19.1 (.00) .78/.8 (.43) .41 /1.7 (.09) .38 /8.1 (.00) .51 /20.0 (.00) .37 /5.2 (.00) .31 /12.2 (.00) .52 /7.3 (.00)
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of the incremental GLM strongly depends on the number of modeled
regressors (Misaki et al., 2015) and included data points, whilst SPM
explores the whole data set at ones, we observed an expected reduction
of the conventional SPM activation maps and their average t-values in
SPM as compared to the incremental GLM in OpenNFT (Table 1). We
also observed a reduction of the Jaccard similarity index between
corresponding binary activation maps (Table 2; Fig. 7).

Timing

Finally, we evaluated OpenNFT time intervals to characterize the
functional data flow modules in the Core Python process (Fig. 2) using
real-time data export simulation, real-time data preprocessing and
extended iGLM configuration (Table 3).

The time intervals were estimated separately to characterize the
functional data flow modules in the Core Python process, which implies
some supplementary time for inter-process communication and data
transfer in addition to the time that was spent for computations, which
could deviate depending on the operation system, workstation config-
uration and performance. Note that elapsed time represents time that
the Core Python process spends for processing the single fMRI scan
including updating the OpenNFT panels and some supplementary data
transfers between the concurrent processes which specification was
skipped. For example, elapsed time does not include time spent in
asynchronous parallel processes to display the feedback, or calculate
the orthogonal projections in GUI. For intermittent PSC feedback, the

display of condition instruction time t7-t6 is somewhat longer, because
a fixation dot was used to fix participants’ gaze in the center of the
screen, which was displayed with random 30–100 ms display period to
facilitate flashing (Table 3). Similarly, t8-t5 time interval in DCM
feedback implies the feedback flashing with 600–800 ms random
display time. For DCM feedback, both DCM models converged in
13.7 ± 2.7 s (for more details, see Koush et al. (2013b, 2015)). The SVM
feedback was sent out using UDP, which is quick in OpenNFT and
implies an additional time to account for to present the stimuli/
feedback using an additional software.

The performance tests were conducted using a portable Dell
Precision 7510 workstation with 32 GB RAM, 512 GB SSD drive and
Intel Xeon CPU with 4 free cores. The minimum system requirements
for OpenNFT are 8 GB RAM, i5 CPU with 2 or 4 free cores for two
modes of the software using 3 or 4 Matlab processes, respectively,
which needs to be compromised with the neurofeedback study design
complexity, computational demands and the repetition time of the data
acquisition. The recommended system configuration is 16 GB RAM
and i7 CPU with 4 free cores. Note that time event metrics deviates on
different workstations due to their hardware and software differences.

Discussion

Neurofeedback developments, applications and perspectives have
been thoroughly investigated in recent reviews (Sitaram et al., 2017;
Stoeckel et al., 2014; Sulzer et al., 2013). Here, we mostly focus on

Fig. 7. Histograms of the activation map t-values for reduced and extended GLMs estimated using SPM and OpenNFT.

Table 3
Average data flow durations ( ± sd), ms.

Time/
Study

t2-t1 t3-t2 t4-t3 t5-t4 t6-t5 t8-t7 elapsed

PSC(cont.) 2.3 ± 2.4 427.2 ± 17.3 14.9 ± 4.0 3.2 ± 1.8 3.5 ± .6 – 481.5 ± 26.1
PSC(int.) 2.3 ± 2.5 431.2 ± 22.0 15.4 ± 4.8 3.2 ± 2.2 4.6 ± 3.3 130.9 ± 29.8 484.0 ± 31.7
DCM 4.2 ± 13.6 322.1 ± 17.8 18.1 ± 28.8 9.3 ± 5.4 736.7 ± 47.2 4.5 ± 4.5 398.3 ± 42.5
SVM 3.5 ± 2.5 547.7 ± 31.6 17.5 ± 8.4 3.6 ± 1.7 .1 ± .2 – 610.9 ± 45.0

For PSC, DCM and SVM studies (74×74×36, 120×120×18 and 100×100×35 data sizes, respectively), t2-t1 – time to read the data volume, t3-t2 – time to spatially preprocess the data,
t4-t3 – time to spatially-temporally process the data, t5-t4 – time to estimate and process the feedback signal, t6-t5 – time to present the feedback signal to the participant (continuous
feedback), and t8-t7 – time to present the instruction to the participant (intermittent feedback). int. – intermittent, cont. – continuous.
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technical, computational and programming aspects of the neurofeed-
back studies. We performed an overview of the key methods required to
build various feedback estimation schemes and provided a modular
open-source software framework using conventional and more recent
feedback signal estimates. This includes activation-based feedback,
more sophisticated connectivity-based feedback and classification-
based feedback.

Data (pre)processing

Necessary data (pre)processing modules are rationalized, on one
side, by the required neurofeedback signal (e.g., activity-, connectivity-
or classification-based), the neurofeedback paradigm (e.g., continuous,
intermittent or trial-based), the form of the feedback signal presenta-
tion (e.g., visual, audio, tactile), and, on the other side, by the amount
of data to be processed in real-time and the repetition time (TR) of the
rt-fMRI data acquisitions. In particular, SPM remains one of the most
commonly used open-source software tools in neuroimaging written in
Matlab, from which we adopted conventional fMRI data realignment,
reslicing, the estimation of the whole-brain orthogonal projections for
GUI, and DCM estimations for connectivity-based feedback (Koush
et al., 2013b, 2015).

Different artifacts considerably affect the quality of the whole-brain
and extracted time-series data, especially if their signal amplitude
exceeds twice the standard deviation of regular BOLD fluctuations
(Koush et al., 2012; Weiskopf et al., 2004b). Such artifacts can be
induced by the inhomogeneity of the static magnetic field, electrostatic
discharges, motion-by-susceptibility interaction during head move-
ments, eye-movement, irregular respiration, swallowing, and heart
beats (Diedrichsen and Shadmehr, 2005; van Gelderen et al., 2007).
Especially in patients, some of these non-linear artifacts can result in
spikes (Koush et al., 2012). Depending on the feedback estimation
scheme, the end-user can decide if whole-brain data (pre)processing is
sufficient to provide enough quality of the extracted time-series, and
apply additional signal processing to improve the feedback signal
(Koush et al., 2012). In particular, OpenNFT provides a set of tools
to preprocess the data, and remove residuals, noise and artifacts on the
level of whole-brain and time-series data processing (Fig. 1).

The visualization of the whole-brain activity in real-time using
incremental GLM (iGLM) (Bagarinao et al., 2003) provides access to
the participant’s performance during the neurofeedback experiment.
The iGLM allows for modeling the regressors of interest, estimation of
the contrasts of interests, removing low- and high-frequency noise and
confounds, such as those related to head motion, respiration and
cardiac rhythm (Misaki et al., 2015). In addition, the iGLM can be
applied in specific dynamic feedback estimation schemes; e.g., for
dynamic ROI definitions based on the moderately thresholded statis-
tical maps provided at the end of each neurofeedback trial. Such a
dynamic ROI adaptation has been shown to be beneficial for con-
nectivity-based feedback (Koush et al., 2015). If needed for future
experiments, the whole-brain iGLM can also be easily extended for
sliding-window GLMs (Nakai et al., 2006). However, the calculation of
the whole-brain iGLM can be blocked if it is not needed (Koush et al.,
2012). To process just the extracted time-series, we provide an option
to compute the cumulative GLM which can be further extended to be
calculated incrementally or based on a sliding-window. Overall,
estimating whole-brain and time-series GLMs is computationally not
demanding and can thus be done in real-time, but the limited data
available in a real-time setting poses difficulties that are inherent to any
neurofeedback experiment. In particular, partial GLM estimations
suffer from high sensitivity to the provided data length and the number
of modeled regressors (Misaki et al., 2015; Nakai et al., 2006). Indeed,
a comparison between the available GLM configurations in OpenNFT
and that of SPM showed reduced t-map activations and a reduction of
the Jaccard similarity index for binary activation maps (Tables 1 and 2;
Fig. 7).

Feedback estimation

In addition to conventional activity feedback estimation using
percent signal change, we implemented more advanced connectivity-
based and classification-based feedback estimations. It has previously
been shown that a connectivity-based feedback signal based on DCM
can be controlled in a differential visual-spatial attention paradigm
(Koush et al., 2013b), and can be trained in an emotion-regulation
paradigm (Koush et al., 2015). We provided an open-source imple-
mentation of this approach to facilitate its application and improved its
estimation scheme. In particular, we parallelized the estimation of the
target and the opposed DCM models, and added a possibility to include
regressors of no interest into the DCM model estimations at the end of
the neurofeedback trial. This new approach shortened the DCM
estimation by a factor of two compared to the previously used
sequential estimation of the models. The number of DCM models
processed simultaneously can now be easily extended depending on
how many Matlab processes can be simultaneously processed by the
local workstation, and this without reduction of the computational
efficiency. In the future, massive DCM estimations can substantially be
sped up by using the GPU (Aponte et al., 2016), and integrating them
with multiple Matlab processes. Importantly, a special attention needs
to be paid to the differences between default settings for DCM
estimation parameters in SPM8 and SPM12. We addressed these
differences and provided recommended configurations in offline DCM
test functions available under GitHub repository.

In addition to providing an easily usable tool to implement
computationally challenging connectivity-based neurofeedback,
OpenNFT also provides complex MVPA feedback. Although MVPA
approaches have been successfully used for real-time fMRI and
neurofeedback (Cortese et al., 2016; Shibata et al., 2016) (Amano
et al., 2016; deBettencourt et al., 2015; LaConte, 2011), a thorough
investigation of the classification/regression update schemes, their
influence on feedback learning and further advances towards incre-
mental classification/regression approaches remain to be addressed in
the future studies (e.g., compare (deBettencourt et al., 2015; LaConte
et al., 2007; Shibata et al., 2011)). For example, an incremental SVM
might allow for incremental training of the classifier and estimation of
the decision function after each rt-fMRI scan (Cauwenberghs and
Poggio, 2001), something which be easily implemented in future
versions of OpenNFT.

OpenNFT implementation, set up and timing considerations

Our goal was to balance best practices in Python and Matlab
programming to implement conventional and advanced neurofeedback
measures based on rt-fMRI. The core programing engine is Python,
which provides larger functionality and flexibility than Matlab. Based
on this core, we integrate Matlab processes to add specific functions.
Together, Python and Matlab allow for maximal flexibility and an
efficient integration (Table 3). OpenNFT modularity is implied by its
architecture, which encompasses seven processes written in two
different programming practices, so that its multi-processing, GUI,
and synchronization are written in Python and can be easily distin-
guished from the computational part written mostly in Matlab (Fig. 4).
Such modularity allows for rapid implementation of different rt-fMRI
paradigms and can easily be extended, despite somewhat complex
software architecture and interdependent programming logics. The
choice for Matlab to accomplish the most of the necessary computa-
tions is motivated by its popularity, availability, strong mathematical
potential and relatively easy scripting language, as well as by the
availability and the potential of Matlab-based toolboxes as such SPM,
PRONTO and PTB. OpenNFT is not limited to the use of Matlab and
Matlab-based toolboxes, as different parts or even all of the Matlab
code can be replaced with Python code. For example, OpenNFT uses
PTB toolbox functions for feedback presentation, but the feedback
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values could also be provided using UDP commands (as it is imple-
mented for classification-based feedback). For the moment, the com-
putational part is implemented in Matlab to facilitate the quick and
efficient integration of the novel and existing computational ap-
proaches so that experienced developers can use a flexible set of
implemented features and the parallel architecture both, to extend
already implemented data processing schemes and to develop their
own. Depending on the growing popularity of Python vs. Matlab, future
versions of OpenNFT can flexibly adapt to such developments and
might focus more on one or the other.

The OpenNFT architecture is based on multiple concurrent pro-
cesses: the Core Python process, the Python Synchronization process,
the Python GUI subprocess, the Matlab Core process, and three Matlab
Helper processes (Fig. 4). The Core Python process provides the control
architecture over all the other processes and the inter-process commu-
nication. The Matlab Core process performs the major computations
including whole-brain and time-series data (pre)processing and feed-
back estimation. The total number of implemented Python and Matlab
processes can be flexibly reduced or extended, depending on the
required software functionality and on the workstation capabilities.
For example, to reserve more time for a precise spatial realignment, to
perform heavy computations in real-time, to facilitate an interactive
brain activity navigation and feedback visualization, we used a multi-
processing approach and implemented an estimation of the DCM
models, orthogonal projections and feedback visualization functions
separately from the Matlab Core process. Matlab Helper processes can
be used to support heavy computations and their number can be further
extended, as well as GPUs could be used (Aponte et al., 2016). In
addition, OpenNFT records specific time events that correspond to the
presentation of stimuli, data acquisition, data processing, and feedback
presentation (Table 3), which can then be included in post-hoc analyses.

An integrated Python/Matlab framework requires multiple compo-
nents to work together, which includes the Python environment that
interacts with Matlab using the Matlab Engine API. Both programming
practices are written in interpreted programming languages, hence,
OpenNFT represents itself a set of packages and functions running
under the roof of an integrated framework. We provide a detailed
installation manual accompanied with exemplary datasets, simula-
tions, and testing routines to ease the installation and use of the
OpenNFT framework (see Data in Brief and GitHub project repository).
Once the framework is settled following these guidelines, OpenNFT has
been shown to work as a stable and reliable tool on different
operational systems and workstations. Further information can be
obtained through direct contact with the developers via the webpage
http://opennft.org/ and GitHub repository, which also provides the
communication channel for feedback on potential problems, bugs or
possible extensions. We anticipate that OpenNFT will greatly benefit
from improvements of future SPM, PRONTO and PTB versions, as well
as from contributions of its users.

Neurofeedback based on rt-fMRI is typically presented to the
participant once per repetition time (TR) of the data acquisition (i.e.,
with 1–3 s period) (Fig. 2). Further increases of the temporal resolu-
tion of the rt-fMRI feedback signal is mainly limited by the intrinsic
haemodynamic delay of the BOLD signal (3–5 s). However, increasing
the temporal resolution (i.e., TR ≤ 1 s) might increase the signal-to-
noise ratio and the reliability of the computationally demanding
methods, i.e., connectivity estimates (Koush et al., 2013b). Like in
conventional SPM analyses, the haemodynamic delay is taken into
account when modeling the regressors of interest as a convolution of
the box-car function with the haemodynamic response function. In
OpenNFT, this applies to the whole-brain iGLM and the time-series
cumulative GLM. During experiments, participants are always in-
formed about the intrinsic haemodynamic delay to their brain activity
in continuous neurofeedback paradigms. Some paradigms, such as
intermittent and trial-based designs, do not suffer from this disadvan-
tage so much (Koush et al., 2015, Johnson et al., 2012).

In our implementations, real-time data preprocessing takes approx.
80–90% of the total processing time (Table 3), mainly due to the high
precision level of the real-time realignment that comes close to the
quality of conventional offline realignment in SPM. If faster feedback
estimations are needed, this can be easily achieved by reducing the
complexity of the applied algorithms (e.g., using linear instead of 4th
order B-spline interpolation), and by blocking estimation modules that
are not needed for the current experiment. For example, the real-time
preprocessing time can be reduced by masking out the voxels that non-
significantly contribute to the spatial realignment as implemented in
SPM, which is an optional feature in OpenNFT. Also, the rt-fMRI brain
volumes acquired during the current neurofeedback session can be
realigned to the current session realignment template, which typically
results in a reduction of the initial displacement and speeds up the
convergence rate of the spatial realignment algorithms. In this case and
if otherwise required by the feedback estimation scheme, previously
prepared ROIs/masks/weights, including those from the previous
sessions, have to be coregistered to the same realignment template.
However, for conventional scanning parameters, and using conven-
tional computer hardware, measures for improving the speed of
computations won’t be necessary because the standard pipeline can
usually be performed in time.

Software overview for neurofeedback based on rt-fMRI

As it was outlined above in detail, OpenNFT is an open-source GUI-
based multi-processing integrated Python/Matlab framework with a
broad functionality asset for neurofeedback studies. The combination
of the outlined features makes it the first software of this type. Due to
the high heterogeneity of the available software and because not all of
their components are freely accessible or publicly documented, we are
not able to provide a systematic comparison between them. Instead, we
provide criteria that can be used to evaluate neurofeedback software,
and discuss OpenNFT in that context. Although this list is not
exhaustive, we consider availability, programming language, perfor-
mance, interface, extendibility, and functionality. In contrast to other
software packages that are commercial (e.g., TurboBrainVoyager), non-
commercial but available only upon request (e.g., scanSTAT), or freely
available but not open-source (e.g., AFNI real-time plug-in), OpenNFT
is non-commercial, freely available under the GNU GPL license, and
open-source. Thus, it is most easily accessible and its development will
benefit from contributions of the user community. OpenNFT is
implemented in interpreted Python/Matlab that does not require
source-code compilation as needed for example for C or C++ (e.g. as
in FRIEND, BART, AFNI). This has the advantages that programming
in these languages is relatively simple, adaptable to an extensive array
of different computer platforms and operating systems (currently
tested for Windows 7–10, and macOS), and that it allows for integrat-
ing available libraries to easily extend functionality or adapt to specific
needs. On the other hand, interpreted languages require the installa-
tion of a framework to interpret and run the code (i.e., Matlab), and
GUI programming, parallel architecture and concurrent data proces-
sing is weaker compared to compiled code. To partly overcome these
drawbacks while maintaining the advantages of using Matlab (simpli-
city of programming, extendibility using existing toolboxes), the core
process is implemented in Python, which offers extensive GUI cap-
abilities, parallel architecture and concurrent data processing that is
similarly performant as that of compiled code. While compiled
languages typically possess the higher performance characteristics,
extensive test of OpenNFT have shown that conventional computer
hardware is sufficient to perform all computations that are necessary
for real-time fMRI based neurofeedback. The GUIs of neurofeedback
software range from advanced 3D visualizations to no GUI at all.
Although the optimal GUI varies depending on the neurofeedback
study design, it is evident that a GUI can ease the use of the software,
avoids mistakes of the users, and benefits monitoring the progress of
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the experiment. For this reason, OpenNFT provides a GUI that can be
used to insert, modify, and review the experimental parameters before
the run has started, including the specification of quick-set parameters
that repeat between neurofeedback runs and sessions. The GUI also
allows for observing the ROI localizations, whole-brain and ROI-
specific activations, head motion parameters and the extracted time-
series in real-time during the experiment. Furthermore, the GUI can
also easily be modified to adapt it to the specific needs of each
experiment or to the preferences of the user. In terms of functionality,
OpenNFT offers conventional ROI-based feedback (including the use of
multiple and adaptively changed ROIs), advanced effective connectivity
feedback, as well as MVPA feedback.

Outlook

The field of rt-fMRI is advancing rapidly. It started with neurofeed-
back from BOLD measures in a single ROI, but now it became possible
to provide feedback based on sophisticated measures of brain con-
nectivity and patterns of brain activity. New developments in fMRI,
such as the use of VR and hyperscanning (where two participants can
interact while being scanned in two different MR scanners at the same
time) allow for highly immersive and interactive paradigms that can be
adapted for rt-fMRI purposes (Baecke et al., 2015; Montague et al.,
2002; Mueller et al., 2012). Even simultaneous EEG-fMRI has recently
been accomplished in real-time for neurofeedback purposes (Zich et al.,
2015; Zotev et al., 2014). These novel developments will benefit from a
modular open-source rt-fMRI framework that facilitates interfacing
and integration of new approaches to support the progress in this
highly dynamic field of research. The interested researcher is encour-
aged to actively engage in the development of novel neurofeedback
approaches using the open-source opportunities provided through
GitHub that will make it easy to follow the software updates, make
your own fork releases, and request the software team to integrate your
own development into the next core release.
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