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A B S T R A C T

Neurofeedback based on real-time functional MRI is an emerging technique to train voluntary control over brain
activity in healthy and disease states. Recent developments even allow for training of brain networks using
connectivity feedback based on dynamic causal modeling (DCM). DCM is an influential hypothesis-driven
approach that requires prior knowledge about the target brain network dynamics and the modulatory in-
fluences. Data-driven approaches, such as tensor independent component analysis (ICA), can reveal spatiotem-
poral patterns of brain activity without prior assumptions. Tensor ICA allows flexible data decomposition and
extraction of components consisting of spatial maps, time-series, and session/subject-specific weights, which can
be used to characterize individual neurofeedback regulation per regulation trial, run, or session. In this study, we
aimed to better understand the spatiotemporal brain patterns involved and affected by model-based feedback
regulation using data-driven tensor ICA. We found that task-specific spatiotemporal brain patterns obtained using
tensor ICA were highly consistent with model-based feedback estimates. However, we found that the DCM
approach captured specific network interdependencies that went beyond what could be detected with either
general linear model (GLM) or ICA approaches. We also found that neurofeedback-guided regulation resulted in
activity changes that were characteristic of the mental strategies used to control the feedback signal, and that
these activity changes were not limited to periods of active self-regulation, but were also evident in distinct
gradual recovery processes during subsequent rest periods. Complementary data-driven and model-based ap-
proaches could aid in interpretation of the neurofeedback data when applied post-hoc, and in the definition of the
target brain area/pattern/network/model prior to the neurofeedback training study when applied to the pilot
data. Systematically investigating the triad of mental effort, spatiotemporal brain network changes, and activity
and recovery processes might lead to a better understanding of how learning with neurofeedback is accomplished,
and how such learning can cause plastic brain changes along with specific behavioral effects.
1. Introduction

Neurofeedback based on functional magnetic resonance imaging
(fMRI) is an emerging technique that allows training of voluntary control
of brain activity and connectivity, and has been shown to lead to
behavioral effects that are specific to the functional role of the targeted
brain areas and networks (Sitaram et al., 2017). Growing scientific evi-
dence indicates that most mental functions, and neurological and
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psychiatric disorders, are associated with brain network abnormalities
assessed in terms of the various connectivity and network estimates
(Bassett and Sporns, 2017; Braun et al., 2018). Similarly, neurofeedback
research, which began from training the average activity level in a single
region of interest (ROI) (deCharms, 2008; Sulzer et al., 2013), has
advanced to training the behaviorally and therapeutically relevant
functional activity patterns (Amano et al., 2016; deBettencourt et al.,
2015; LaConte, 2011; LaConte et al., 2007; Shibata et al., 2011), and
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connectivity and network estimates (Kajal et al., 2017; Kim et al., 2015;
Koush et al., 2013, 2015; Liew et al., 2016; Megumi et al., 2015; Ramot
et al., 2017; Yamashita et al., 2017; Zilverstand et al., 2014). Currently,
the approaches for estimating connectivity for neurofeedback training
can be separated into functional-connectivity estimates based on Pear-
son's correlation (Kajal et al., 2017; Kim et al., 2015; Liew et al., 2016;
Megumi et al., 2015; Ramot et al., 2017; Yamashita et al., 2017; Zilver-
stand et al., 2014), and effective-connectivity estimates based on dy-
namic causal modeling (DCM) of the brain networks (Koush et al., 2013,
2015) given generic classification (Friston, 2011). Thus, the majority of
the neurofeedback studies are based on hypothesis-driven processing
methods typically used for the definition of the target brain area-
s/patterns/networks, feedback estimation in real-time, and post-hoc data
analysis of the neurofeedback runs and sessions. In addition, independent
component analysis (ICA) has been proposed to investigate fMRI data in
real-time by providing data-driven activation maps using the
sliding-window approach (Esposito et al., 2003; Soldati et al., 2013).
Notably, ICA is part of the family of subspace decomposition methods,
such as classical principal components analysis (PCA (Friston et al., 1999;
Worsley et al., 1997)), and non-negative matrix factorization (Hoyer,
2004; Lohmann et al., 2007), which represent the data as a sum of
separable components. The criterion of choice for ICA is a proxy for
statistical independence applied to the spatial domain. When applied to
task fMRI, ICA leads to components with brain activity maps similar to
those of the conventional general linear model (GLM) approach, yet it
also allows for the discovery of additional ‘trends’ in the data and, thus,
extends interpretation of the fMRI data by capturing task- and rest-(un)
related components (Beckmann, 2012; Kelly et al., 2010). The tensor
extension of ICA, tensor ICA, allows data-driven multi-subject and
multi-session analysis by representing the fMRI data in terms of their
spatial, temporal, and subject-dependent variations (Beckmann and
Smith, 2005), whose potential for neurofeedback studies has yet to be
revealed. In particular, tensor ICA explains data using a tensor structure
(time� space� session/subjects), such that a component with a specific
spatial map and time-series is weighted for each session/subject. The
latter weights could then be used to explore the model-based neuro-
feedback post-hoc, and for an effective complementary data-driven and
model-based definition of the target brain areas/patterns/networks prior
to the whole-length neurofeedback studies. In addition, tensor ICA is
more constrained than conventional ICA, since it requires space and time
to be consistent across subjects; conventional ICA has only two di-
mensions space� time, and concatenates subjects along the temporal
dimension.

It has been shown that neurofeedback estimates based on DCM can be
implemented and validated using an alternating neurofeedback-guided
paradigm (Koush et al., 2013). In particular, the connectivity-based dif-
ferential feedback presented in Koush et al. (2013) was congruent with
the conventional alternating visual-spatial attention task (Bressler et al.,
2008a; Greenberg et al., 2010; Hopfinger et al., 2000); for example,
during neurofeedback regulation trials with covert shifts of visual-spatial
attention to the left, the network model that represented attention to the
left was dominant compared to the model that represented attention to
the right, and vice versa during attention to the right neurofeedback
regulation trials. Such a validated effective-connectivity estimate has
been also successfully applied to train voluntary control over emotion
regulation networks (Koush et al., 2015). Notably, DCM is a
hypothesis-driven approach that requires defining the neural network
underlying a specific functional neuroimaging experiment in terms of the
network nodes (ROIs), connections between these nodes, external inputs
to the network, and context-dependent manipulations of the network
(Friston et al., 2003).

We hypothesized that tensor ICA could be applied to connectivity-
based neurofeedback experiments on a trial-by-trial basis, with the spe-
cific constraint that the time-series of the tensor ICA components are
weighted by the neurofeedback trial loadings. We investigated whether
tensor ICA and DCM could be qualitatively linked, and provide
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complementary data-driven and model-based insights into the
neurofeedback-guided dataset. In addition, we aimed to shed light on the
potential dynamic recovery process from induced (de)activation, which
might take place during the relatively long rest epochs (1min) following
neurofeedback-guided alternating visual-spatial attention regulation.
This was accomplished by analyzing data from a previously published
study (Koush et al., 2013), which possesses (1) a well-known alternating
visual-spatial attention paradigm, (2) distinct network models and dif-
ferential feedback values congruent with the alternating regulation task,
and (3) rest epochs at the end of each neurofeedback trial. Comple-
mentary data-driven and model-based approaches could aid in inter-
pretation of the neurofeedback data when applied post-hoc, and in the
definition of the target brain areas/patterns/networks/models when
applied to the pilot data. In addition, task- and rest-related epochs of the
complex neurofeedback experimental paradigms could be jointly char-
acterized using the data-driven approach, and linked to the model-based
feedback estimates. Establishing a link between model-based and
data-driven approaches for neurofeedback research together with a sys-
tematic investigation of the triad of mental effort, spatiotemporal brain
network changes, and activity and recovery processes, might lead to a
better understanding of how neurofeedback regulation is accomplished.

2. Methods

The analyses of our study were based on data from a previously
published study, which was designed as a proof-of-concept experiment to
validate the novel DCM-based estimate for connectivity feedback (Koush
et al., 2013). In this experiment, we tested the ability of participants to
voluntarily control the differential connectivity-based feedback signal by
covertly shifting their visual–spatial attention to the left or to the right
visual fields. The connectivity between visual and parietal areas is known
to be modulated by visual-spatial attention (Blankenburg et al., 2010;
Bressler et al., 2008b; Greenberg et al., 2010), which was a well suited
paradigm for our proof-of-concept experiment. Thus, the modulation of
the feedback signal was implicated in the alternating increase of con-
nectivity between the right/left visual and parietal cortices during
contralateral shifts of attention to the left/right, respectively. This con-
nectivity feedback signal was based on a comparison of two alternative
DCMmodels, which modelled visual-spatial attention to the left or to the
right, and encompassed bilateral visual and parietal areas (see ‘Stimuli
and experimental design’ and ‘Differential neurofeedback signal’ sec-
tions). For the current study, we briefly describe the experimental set-
tings. Further experimental details and thorough analyses of the
DCM-based connectivity estimate can be found in the original publica-
tion (Koush et al., 2013).

2.1. Participants

Imaging data was acquired from fourteen participants (5 male, 9 fe-
male, age 27.2� 5.2 years) who were naïve to neurofeedback experi-
ments. All participants performed visual perception and visual-spatial
attention functional localizer runs (i.e., without neurofeedback). Seven
participants performed only the functional localizer runs, whose data
were used to optimize the DCM feedback estimates (Koush et al., 2013).
The seven other participants performed the complete neurofeedback
experiment (3 male, 4 female, age 27.7� 3.3 years), including the
functional localizer runs and the neurofeedback runs. The participants
gave written informed consent to participate in the experiment, which
was approved by the local ethics committee, and had normal or
corrected-to-normal vision without prior history of neurological or psy-
chiatric diseases. Written instructions provided to the participants before
the experiment described that they would perform a single visual
perception run, two covert visual-spatial attention functional localizer
runs (i.e., without neurofeedback), and three covert visual-spatial
attention regulation runs (i.e., with neurofeedback). The instructions
included an explanation of the experimental conditions. For
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neurofeedback regulation runs, instructions also included an explanation
of the neurofeedback display, and the fact that they would receive neu-
rofeedback information about their regulation success. The strategy for
controlling connectivity between brain areas that was recommended to
participants was shifting of visual-spatial attention; however, it was
emphasized that they should find an individual strategy that worked best.
Furthermore, they were instructed to breathe steadily, and to remain as
still as possible. After the experiment, participants were asked to fill in
the neurofeedback regulation questionnaire and report the applied
regulation strategies. Participants were paid 25 CHF per hour for their
participation, and received an additional reward of 1 CHF for each suc-
cessful neurofeedback trial.

2.2. MRI data acquisition

The experiments were performed at the Brain and Behavior Labora-
tory (University of Geneva) on a 3T MRI scanner (Trio Tim, Siemens
Medical Solutions, Germany). Functional images were acquired with a
single-shot gradient-echo T2*-weighted EPI sequence with 640 and 1315
scans (32 channel receive head coil, TR ¼ 1000 ms, volume
size ¼ 64 � 64 � 16, voxel size ¼ 3 mm3 isotropic, flip angle α¼ 77�,
bw¼ 2.23 kHz/pixel, TE¼ 30ms). For each participant, we acquired a
T1-weighted structural image (3D MPRAGE, voxel size¼ 1mm3

isotropic, flip angle α¼ 9�, TR¼ 1900ms, TI¼ 900ms, TE¼ 2.27ms).
We monitored eye movements with an infrared eye-tracking system (ASL
450, 60 Hz sampling rate, LRO System). In addition, heart rate and
respiration were continuously monitored throughout the experiment
with a modular data acquisition system (MP150, 1kHz sampling rate,
BIOPAC Systems Inc.). Heart rate was measured using a pulse oximetry
sensor, and respiration was measured using an elastic belt around the
participant's chest. Visual stimuli and instructions were displayed on a
rectangular projection screen at the rear of the scanner bore with a mirror
positioned within the head-coil.

2.3. Stimuli and experimental design

For each of the fourteen participants, we first ran a single fMRI session
that consisted of three successive functional localizer runs: a visual
perception run, and two runs of visual-spatial attention to the left or to
the right, respectively. Each of the three runs consisted of 11 baseline
blocks interleaved with 10 blocks of task (10 s block length). For the
visual perception task, we used symmetrical flickering checkerboards
presented simultaneously in the left and right visual field to delineate the
early visual cortex. Flickering checkerboards were projected onto the
middle horizontal axis of the screen with an eccentricity of 5� visual
angle (diameter of 5� visual angle, 100% contrast, 8 Hz contrast
reversal). For the visual-spatial attention runs, we instructed participants
to shift their visual-spatial attention covertly (i.e., without moving their
eyes) to the left or to the right as indicated by changes in the fixation
point. The target location for shifting attention was illustrated by low-
contrast dashed circles that were of the same diameter and presented
at the same location as the visual checkerboards. Throughout the visual
perception run and the visual-spatial attention runs, the participants
were asked to fixate on the central fixation point. The total duration of
the visual perception and attention runs was 10.3 min.

Seven out of the fourteen participants also performed the neuro-
feedback regulation runs. The functional localizer runs were used to
delineate individual left and right early visual cortex (VC), and the left
and right superior parietal lobule (SPL) ROIs. These ROIs were used to
estimate the connectivity-based feedback signal individually for each of
three neurofeedback regulation runs performed within the same day.
Each of the subsequent neurofeedback regulation runs was set up as four
attention to the left (aL) neurofeedback trials alternating with four
attention to the right (aR) trials. Each of the neurofeedback trials con-
sisted of five 10s baseline blocks (fixation condition) interleaved with
four 10s blocks of the corresponding regulation (aL or aR condition)
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followed by a 60s rest epoch and 5s neurofeedback display (Fig. 1A).
During the aL and aR conditions, participants were asked to control

the feedback signal by covertly shifting their attention to the left or to the
right target dashed circles, respectively. The covert shifts of attention
were indicated by fixation dot changes: the brighter half of the fixation
circle pointed to the side of the prescribed attention. During the fixation
condition, participants were asked to fixate and count backwards to
avoid mind-wandering, which was indicated by the plain low-contrast
fixation dot. During neurofeedback trials, bilateral dashed circles and
the pointed fixation circle were always presented, and no other visual
stimuli were provided. During the rest epochs, participants were asked to
close their eyes, and the screen was set to black. After each rest epoch, 3
auditory beeps and 3 visual flashes indicated to the participant that the
feedback and reward values were displayed on the screen. The feedback
signal display indicated the feedback trial (the word “UP” in red for aL
trials, or the word “DOWN” in blue for aR trials), the feedback signal in
terms of the rounded logarithmic Bayes factor value in brackets (positive
for successful aL trials and negative for successful aR trials), and the total
reward that had been earned up to the present trial. The duration of the
neurofeedback run was 21.8 min.

2.4. Differential neurofeedback signal

The two models that we compared represented covert shifts of visual-
spatial attention to the left or right visual field, and consisted of 4 ROIs,
being the interconnected left visual and parietal cortices and the inter-
connected right visual and parietal cortices (Fig. 1B). The difference
between the models was the external and the modulatory inputs of
attention, which should be stronger on the right SPL and on the con-
nectivity between the right VC and the right SPL when attention is
covertly shifted to the left visual field (MaL), and stronger on the left SPL
and on the connectivity between left VC and the left SPL when attention
is covertly shifted to the right visual field (MaR). The model choice was
based on the suggested modulation of the connectivity between visual
and parietal areas by visual-spatial attention (Blankenburg et al., 2010;
Bressler et al., 2008b; Greenberg et al., 2010; Kelley et al., 2008; Yantis
et al., 2002) and performed near real-time DCM optimization analyses
(Koush et al., 2013).

Real-time data preprocessing encompassed online motion correction
and extraction of the time-series as ROI-specific averages, which was
followed by time-series demeaning, high- and low-pass filtering, and
despiking (Koush et al., 2012). The trial-based feedback signal was
estimated as the result of Bayesian model comparison of the two alter-
native models in terms of the logarithmic Bayes factor given the four
preprocessed time-series. Successful control over the feedback signal was
indicated by positive and negative target feedback values. For attention
to the left trials, a positive logarithmic Bayes factor (BF) indicated the
dominance of the target MaL model. A negative logarithmic BF indicated
the dominance of the target MaR model. The connectivity-based feedback
signal was estimated by adapting DCM10 as implemented in SPM8
(Wellcome Trust Centre for Neuroimaging, UK) (Friston et al., 2003).
Further details about data processing and the connectivity-based neu-
rofeedback signal can be found elsewhere (Koush et al., 2013, 2015).
Notably, an open-source software framework OpenNFT (opennft.org)
(Koush et al., 2017a) provides an improved implementation of the
trial-based DCM estimation scheme; namely, DCM models can be
computed in parallel, and an extension is provided to integrate the linear
trend and head motion residuals directly into the DCMmodel estimation.
In addition, an exemplary dataset (github.com/OpenNFT) (Koush et al.,
2017b) and provided supplementary routines allow testing of the DCM
estimation schemes before implementing them in OpenNFT.

2.5. Data analyses

In addition to the DCM analyses, whole-brain GLM analysis was
performed to support the interpretation of the DCM and tensor ICA

http://opennft.org


Fig. 1. Neurofeedback trial. (A) Each neurofeedback run consisted of 8 alternating trials of covert visual-spatial attention to the left (aL) or to the right (aR). Each trial
consisted of four 10s neurofeedback regulation blocks (attend) interleaved with five 10s baseline blocks (baseline) followed by a 60s rest epoch and a 5s presentation
of the feedback display. During the regulation blocks, the brighter half of the fixation circle pointed to the side of the prescribed attention. The screenshots illustrate
the bilateral dashed circles and low-contrast plain and pointed fixation dots for the baseline and aL blocks, respectively. (B) In the models of attention to the left (MaL),
input entered the network through the right superior parietal lobe (SPLR) and affected the connection between the SPLR and the right visual cortex (VCR); in the model
of attention to the right (MaR), input entered the network through the SPLL and affected the connection between the SPLL and the VCL (for details, see (Koush
et al., 2013)).
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analyses. The first 10 EPI volumes of each run were discarded to account
for T1 saturation effects. The remaining images were spatially realigned
to the mean scan of each run, normalized to the standard MNI structural
template using DARTEL (Ashburner, 2007), and smoothed with an
isotropic Gaussian kernel with 8mm full-width-at-half-maximum
(FWHM).

For the subject-level analysis of the visual perception and visual-
spatial attention functional runs, we specified GLMs with regressors for
the three conditions (i.e., viewing, left attention, right attention) and
fixation. For the subject-level analysis of the neurofeedback runs
(Fig. 1A), we specified regressors for the two attention conditions (REG
aL and aR, respectively), the two fixations with counting backwards (FIX
aL and aR, respectively), the two rest epochs, and the neurofeedback
display conditions.

To capture the gradual recovery of brain activity to baseline, the 60s
rest epochs were split into three equal parts of 20s that were modelled
separately. Specific contrast weights were adopted for linear trend esti-
mates of recovery; i.e., [-1 0 1] and [1 0 -1] for positive and negative
trends, respectively. In addition, we specified temporal derivatives of all
conditions and fixations and of covariates derived from head movement
parameters and physiological measures (i.e., heart rate and respiration).
The temporal derivatives were included in the model to account for po-
tential hemodynamic response function (HRF) onset latencies that might
have been modulated differently by the transition from regulation to
fixation, from fixation to rest, and between the rest conditions (Van De
Ville et al., 2012). The inclusion of temporal derivatives ensured that our
findings would be specific to the gradual recovery process during the rest
epoch, rather than to potential biases due to other transition processes.
The regressors were modeled as boxcar functions convolved with the
canonical hemodynamic response function (HRF) as implemented in
SPM12.

For the whole-brain group-level analysis, we performed 2-way
ANOVAs with the fixed factor ‘condition’ and random factor ‘subject’.
For ‘conditions’ in visual perception and visual-spatial attention runs, we
included viewing, left attention, right attention, fixations, and covariates
for the participants' age and gender. For ‘conditions’ in the neurofeed-
back runs, we included left/right attention regulation, fixations with
counting, and the three rest epochs (i.e., the three 20s segments
comprising the 60s rest epochs). For the three consecutive neurofeedback
runs, the fixed effect model was applied. For covariates, we included the
participant's age, gender, and neurofeedback run number. Notably,
including the run number ensured that improved performance across
neurofeedback trials did not affect the results, i.e. as it has been noted
above, unveiling the learning effect was not a goal of the study. Instead,
we looked into the congruent aL vs. aR regulation and DCM-based
feedback values. We used t-statistics to estimate positive and negative
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contrasts of interest. Group-level statistical maps were corrected for
multiple comparisons using family-wise error correction (FWE, p< .05).
Anatomical labels were derived from the Anatomy toolbox (Eickhoff
et al., 2005).
2.6. ROI definitions and time-series extraction for rest epoch analyses

ROIs for the offline analyses were defined as spheres of 8mm radius
around peaks that showed a significant gradual recovery across rest
epochs. For each ROI, we calculated the average contrast estimates of
deactivation (beta values) during the neurofeedback regulation and the
slope of linear recovery (Fisher-transformed rho values) during rest
epochs. We then performed a correlation analysis between the deacti-
vation and recovery rho values using Spearman correlation. All proba-
bilities were FDR-corrected for multiple comparisons (q< .05).
2.7. Revisited dynamic causal modeling (DCM) analysis of neurofeedback
regulation trials

For comparison, real-time signal processing and DCM analysis applied
during the neurofeedback runs (Koush et al., 2013) were revisited based
on the newly preprocessed data (i.e., realigned, transformed into the MNI
space, and smoothed). Functional localizer data (also transformed into
the MNI space) were used to re-define individual ROIs, similarly to what
was done during the neurofeedback regulation session. Subsequently, the
four time-series were extracted from the neurofeedback trials as
ROI-specific averages, followed by demeaning and detrending using the
GLM with constant and linear trend regressors. Similar low-pass filtering
and despiking were applied based on the Kalman filter (Koush et al.,
2012, 2017a). Using the newly preprocessed time-series, the trial-based
feedback signal was estimated by Bayesian model comparison of the
same MaL and MaR model alternatives (Fig. 1B) in terms of the logarith-
mic Bayes factor. In order to re-confirm that voluntary control over the
feedback signal favored MaL (PeMaL) or MaR (PeMaR) for the attention to
the left (aL) or to the right (aR) conditions, respectively, we estimated the
quantified model exceedance probabilities (Pe (Stephan et al., 2009),) as
implemented in the random effect Bayesian model selection (RFX BMS,
DCM10). To confirm that the newly estimated logarithmic Bayes factors
were consistent with regulation during aL and aR neurofeedback trials,
we estimated the non-parametric sign test statistics (one-tailed, me-
dian> 0). Z-statistics was used to approximate the p-values of the
non-parametric sign test. For a complete DCM analysis of the neuro-
feedback runs and a comparison analysis between functional localizer
and neurofeedback runs, refer to the original manuscript (Koush et al.,
2013).
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2.8. Tensor independent component analysis (ICA)

In order to link the DCM-based feedback estimates to data-driven
spatio-temporal features and to test whether model-free methods could
be used to facilitate the ROI selection procedures for DCM-based ap-
proaches in neurofeedback studies, we performed an exploratory tensor
ICA (Beckmann, 2012; Beckmann and Smith, 2005) and subsequent
correlation analysis. We split the preprocessed neurofeedback runs,
which had been used for the whole-brain GLM analysis, into the eight
neurofeedback trials that were demeaned, resulting in 84 aL and 84 aR
demeaned trials (7 subjects, 3 neurofeedback runs, 4 aL/aR trials per run,
155 brain volumes per trial). Note that the runs were split so that the
preceding 5 s feedback display blocks appeared at the beginning of the
trials to highlight the brain response to the feedback evaluation. These
neurofeedback trials were used as ‘session loadings’ for tensor ICA, and
will be called ‘trial loadings’ throughout the manuscript. Tensor ICA
decomposes the preprocessed data into the spatial maps, time-series, and
subject-specific trial modes by optimizing for non-Gaussian spatial source
distributions. It was carried out as implemented in the Multivariate
Exploratory Linear Decomposition into Independent Components
(MELODIC v3.15) package of FSL (fsl.fmrib.ox.ac.uk/fsl). Pooled neu-
rofeedback trials were preprocessed (i.e., masking of non-brain voxels,
voxel-wise demeaning, and normalization of the voxel-wise variance as
implemented in MELODIC). FSL then whitens and reduces the dimen-
sionality of the data using principal component analysis as an internal
preprocessing step, before the ICA criterion is optimized. Independent
component (IC) maps were estimated, Z-scored by dividing by the stan-
dard deviation of the residual noise, and thresholded (posterior proba-
bility p> .5) by fitting a mixture model to the histogram of intensity
values (Beckmann, 2012; Beckmann and Smith, 2004).

The selection of the optimal number of the components (i.e., model
order, number of ICs) remains a challenge for techniques such as ICA and
PCA. We first defined the #ICs based on the automatic choice of
dimensionality as implemented in FSL (Beckmann et al., 2001; Minka,
2000). However, this method is known to overestimate the number of
components with many fragmented maps that make interpretation
difficult. Therefore, and because we have an experimental paradigm that
we proposed to relate to a few ‘dominant’ components, we opted for a
small number of components. Specifically, we checked the automatically
defined #ICs¼ 24 and the range from 6 to 12 #ICs. For each #IC, we
performed the same correlational analysis.

Using Spearman two-tailed correlation, tensor ICA trial loadings were
correlated with the logarithmic model evidences of the corresponding
target DCM models, i.e., for the MaL model during aL and the MaR model
during aR regulation conditions, respectively (168 trial loadings and
logarithmic model evidences, 84 of aL and 84 of aR trials). To avoid inter-
subject variability bias, logarithmic model evidences and trial loadings
were demeaned. P-values were corrected for multiple comparisons using
family-wise error correction (FWE, p< .05). In addition, we performed
the same correlation analysis for the estimated logarithmic Bayes factors.

To demonstrate the spatial consistency of the linked ICA and DCM
results with the initial ROI selections for the neurofeedback runs based
on the functional localizers, we compared group GLM contrast maps
(thresholded at p< .01 unc.) and derived ICs that were significantly
correlated with logarithmic model evidences. For this comparison, we
used the Pearson cross-correlation algorithm as implemented in FSL
(fslcc) given a Pearson rho> 0.25 threshold (Smith et al., 2009).

2.9. Debriefing of participants

After each scanning session, participants were asked to fill in a written
questionnaire and describe the strategies that they used to control the
feedback signal. We also asked them to rate, on a scale from 1 to 5, (a)
how helpful the feedback was in finding this strategy (i.e., the feedback
was not helpful vs. helpful), (b) how vivid their visual imagery was (i.e.,
visual imagery was not vivid vs. vivid), and (c) how often they used other
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sensory modalities (i.e., they used acoustic and somatosensory imagery
often vs. not often). In addition, we asked participants to what extent
successful self-regulation required them to concentrate (i.e., self-
regulation required utmost concentration vs. no concentration), and
how they rated the attentional demands (i.e., focused vs. absent-minded).
Using Spearman one-tailed correlation, the scores from these psycho-
metric measures were correlated with the degree to which participants
were able to control their visual-spatial attention (i.e., neurofeedback
success estimated in terms of the logarithmic Bayes factor averaged
across neurofeedback trials (Koush et al., 2013)). All probabilities were
FDR-corrected for multiple comparisons (q< .05).

3. Results

3.1. Brain activity associated with visual perception and shifting visual-
spatial attention

We first identified brain areas that were modulated by viewing
spatially localized flashing checkerboards and by covert shifts of visual-
spatial attention to the left or to the right visual field. As expected,
viewing the flickering checkerboard stimuli was associated with
increased activity in the V1, V2, and ventral V3 cortices (Table 1,
Fig. 2A). Covertly shifting visual-spatial attention to the left or to the
right visual field (attention> fixation) was associated with increased
activity in the left superior parietal lobule (SPL). We found no significant
differences in brain activity when contrasting the aL and aR conditions.

Covert visual-spatial attention was associated with activity increases
(attention, activation) in the SPL, intraparietal sulcus (IPS), and the
supplementary motor area (SMA), and with decreases (attention, deac-
tivation) in the middle cingulate cortex (MCC), inferior parietal lobule
(IPL), precuneus, posterior cingulate cortex (PCC), primary and second-
ary sensorimotor cortices (S1 and SII), and the motor cortex (MC)
(Table 1, Fig. 2B).

3.2. Brain activity associated with control over the neurofeedback signal

During neurofeedback regulation (REG> FIX), the bilateral SPL was
activated more than during fixation (Table 2). Neurofeedback regulation
was also associated with activation (i.e., positive REG contrast) in the SPL
and ventral V3/V4, medial frontal gyrus (MFG) and IPS, as well as with
deactivation (i.e., negative REG contrast) in the V1/V2/V3, lingual (LG),
V5/MT, IPL, MCC/SMA, SII, precuneus/PCC, medial frontal cortex (FC)
and dorsolateral prefrontal cortex (dlPFC) (Table 2, Fig. 3). Notably,
voluntary control of the feedback signal was not related to horizontal and
vertical eye-positions, which showed no difference between regulation
and fixation blocks during the visual perception runs, the visual-spatial
attention runs, or the neurofeedback runs (for details, see (Koush et al.,
2013)).

In addition, contrasts aL> aR (Fig. 3B, Table 2) and aR> aL (Fig. 3C,
Table 2) showed that visual cortices were differently involved in the
attention tasks. For example, during attention to the left, the left ventral
V3 was activated more than during attention to the right, and during
attention to the right, the left anterior V3 was deactivated more than
during attention to the left. These areas do not coincide with the DCM
ROIs selected using the visual functional localizer (Fig. 2).

3.3. Linking DCM and tensor ICA for neurofeedback-guided regulation

The feedback signal in terms of the re-estimated logarithmic Bayes
factor was significantly greater than zero (one-tailed sign test and z-sta-
tistics, sign¼ 99, z¼ 2.2, p¼ .01, negative aR feedback values were
inverted), and the successful neurofeedback regulation was reflected by
increased target model exceedance probabilities of model MaL during aL
(PeMaL¼ 0.86, PeMaR¼ 0.14) and model MaR during aR (PeMaL¼ 0.23,
PeMaR¼ 0.77) regulation conditions, respectively.

We found that our dataset provides consistent ICA decompositions



Table 1
Brain areas related to passive viewing and covert visual-spatial attention.

contrast anatomical label main peak MNI coordinates Peak T-value Peak p-value

x y z

viewing V1/V2/V3v L/R �7/13 �95/-88 �5/-5 5.39/5.55 .009/.005

attention> fixation SPL (7A/7P) L �11 �68 61 5.50 .006

attention (activation) SPL (7A/7P) L/R �13/18 �68/-61 61/63 8.56/5.98 <.001/.001
IPS L/R �36/31 �43/-40 36/43 6.02/5.64 .001/<.001
SMA L/R �2/0 9/16 58/50 4.91/5.19 .042/.037

attention (deactivation) MCC L �4 �23 63 5.97 .001
IPL (PGa) R 56 �58 34 5.85 .002
Prec./PCC R 5 �43 38 4.97 .035
SII (PO) L �40 �29 9 5.77 .002
S1 L �61 �11 36 7.28 .022
MC L/R �13/20 �36/-36 72/76 7.44/7.02 <.001/<.001
MC/S1 R 36 �32 68 6.26 <.001

Reported are the main peaks that survived whole-brain FWE correction (p< .05). V1/V2/V3v – visual cortices, SPL(7A/7P) – superior parietal lobule, IPS – itraparietal
sulcus, SMA – supplementary motor area, MCC – middle cingulate cortex, IPL(PG) – inferior parietal lobule (precentral gyrus), SII (PO) – secondary somatosensory
cortex (parietal operculum), S1 – primary somatosensory cortex, MC – motor cortex, L – left, R – right, a – anterior, v – ventral.

Fig. 2. Visual perception and covert visual-spatial attention. (A) Viewing localized bilateral flashing checkerboards was associated with increased activity in the visual
cortex (Table 1, viewing). (B) Covert shifts of visual-spatial attention to the left or to the right were mainly associated with activity in the left but also the right SPL
(Table 1). For illustration, the activation maps were thresholded (p< .0001 unc.). The yellow dashed rectangle denotes the acquired field of view.
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and correlational analyses when automatically defining the subspace
dimension as implemented in FSL (#ICs¼ 24: rhoIC17¼ 0.27,
pIC17¼ 0.01), and when varying across low subspace dimensions from 6
to 12 (Table S1). Because automatic definition of the #ICs provides many
fragmented maps that are difficult to interpret, and because we have an
experimental paradigm that we aimed to relate to a few representative
components, we reported the results for #ICs¼ 10 in detail (Figs. 4 and
S1).

Thus, preprocessed neurofeedback trials for tensor ICA were decom-
posed into a set of #ICs¼ 10 spatial maps and time-series. ICs eight to ten
were visually identified as noise and removed from the subsequent
analysis (Kelly et al., 2010). The first IC encompassed V1-V4, V5/MT,
SPL, and IFG, anticorrelated with primary motor and premotor cortices,
PCC, SII, and aIPL clusters (Fig. 4A). The second and fourth ICs encom-
passed V1/V2/LGmedial visual cortices (Figs. 4A and S1A). Importantly,
the third IC corresponded to the lateral V1/V2/V3v, matching the ones
from the functional localizer (Fig. 2A). The fifth IC was similar to the first
IC and, additionally, encompassed the SMA/MCC, PG, and IPS clusters
(Fig. S1A). The sixth IC was similar to the fifth IC and, additionally,
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encompassed the medial FC and a large cluster spanning the PCC, part of
the precuneus, and V1/V2 (Fig. S1A). The seventh IC encompassed SII,
SI, and primary motor cortices (Fig. S1A).

All ICs showed neurofeedback regulation-dependent temporal dy-
namics (Fig. 4B, S1B). The first and third ICs showed strong recovery
processes during the rest epoch, unlike the second and fourth ICs.
Interestingly, the fifth, sixth, and seventh ICs did not show the amplitude
rise associated with the feedback display block and closing the eyes at the
beginning of the rest epoch. Note that the second and fourth ICs have
very similar spatial and temporal modes; however, only the second IC
survived FWE correction for multiple comparisons. We did not find dif-
ferences between aL and aR trial loadings (two-tailed t-statistics, p-val-
ues>.5), which suggested that the ICs were expressed similarly in both
conditions.

For each IC, 168 trial loadings, or weights, were estimated in the trial
domain (84 of aL and 84 of aR trials). We found that demeaned loga-
rithmic model evidences of target model MaL during aL and target model
MaR during aR regulation conditions were correlated with the intra-
subject trial loadings of the first three ICs (Fig. 4C, two-tailed



Table 2
Brain areas activated during neurofeedback runs.

contrast anatomical label main peak MNI coordinates Peak t-value Peak p-value

x y z

REG> FIX SPL (7A/7P) L/R �18/18 �69/-66 54/60 5.19/5.16 .003/.004
REG (activation) SPL (7A/7P) L/R �9/18 �72/-69 57/54 7.48/6.30 <.001/<.001

V3v/V4v L/R �24/33 �93/-81 �15/-15 55/5.01 .001/.006
MFG R 45 3 57 4.65 .030
IPS L �33 �42 48 4.57 .040

REG (deactivation) V1/V2/V3 L/R �9/9 �87/-84 24/18 9.90/11.06 <.001/<.001
V1/V2/LG L/R �15/12 �60/-63 0/0 14.98/14.13 <.001/<.001
V5/MT R 45 �84 12 6.62 <.001
IPL (PGa) L/R �60/57 �60/-54 27/36 6.08/7.46 <.001/<.001
MCC/SMA L/R �9/9 �6/-15 45/45 5.57/5.63 .001/.001
SII (PO) L/R �39/57 �36/-27 12/15 11.18/10.29 <.001/<.001
Prec./PCC R �6/6 �45/-45 42/39 5.96/6.49 <.001/<.001
medial FC R 6 30 48 5.77 <.001
dlPFC R 48 30 39 5.63 .001

aL> aR V3v/V4v L �27 �96 �12 6.70 <.001
aR> aL V1/V2/V3 L �18 �96 15 5.91 <.001

Reported are the main peak coordinates that survived whole-brain FWE correction (p< .05). REG – neurofeedback regulation, FIX – fixation with counting, SPL (7A/7P)
– superior parietal lobule, V1-V5 – visual cortices, MFG – middle frontal gyrus, IPS – itraparietal sulcus, MT – middle temporal gyrus, LG – lingual gyrus, IPL(PG) –
inferior parietal lobule (precentral gyrus), MCC/SMA – activity pattern spanning middle cingulate cortex and supplementary motor area, SII (PO) – secondary so-
matosensory cortex (parietal operculum), Prec./PCC – activity pattern spanning precuneus and posterior cingulate cortex, FC – frontal cortex, dlPFC – dorsolateral
prefrontal cortex, L – left, R – right, a, v – anterior, ventral.

Table 3
Gradual recovery during rest epochs.

contrast anatomical area main peak MNI
coordinates

Peak
t-
value

Peak
p-
value

x F-
value

z

recovery V1/V2/
V3v

L/
R

�6/
15

�81/-
84

�6/-
9

4.96/
5.43

.009/

.001
V1/V2/
LG

L �9 �66 3 4.75 .021

V3a L/
R

�15/
15

�72/-
84

24/
27

4.82/
5.05

.016/

.006
V5/MT R 45 �66 9 4.87 .013
MCC/
SMA

L/
R

�6/6 3/9 51/
54

5.13/
5.61

.001/

.004
PG R 45 �3 51 4.89 .012
Precuneus R 3 �48 45 4.59 .037
Thalamus C 0 �9 9 4.89 .012
dlPFC L �33 42 30 4.71 .024

conjunction
(REG
deactivation
& recovery)

V1/V2/
V3

R �6/
21

�81/-
96

�6/
6

4.82/
5.48

.016/

.001
V1/V2/
LG

L �9 �66 3 4.75 .021

V3a L/
R

�15/
18

�72/-
84

24/
27

4.82/
5.05

.016/

.006
V5/MT R 42 �66 9 4.84 .014
Precuneus R 3 �48 45 4.59 .037

Reported are the main peak coordinates that survived whole-brain FWE correc-
tion (p< .05). REG – regulation, V1-V5 – visual cortices, MT – middle temporal
gyrus, MCC/SMA – activity pattern spanning middle cingulate cortex and sup-
plementary motor area, PG – precentral gyrus, dlPFC – dorsolateral prefrontal
cortex, C – central, L – left, R – right, a, v – anterior, ventral.
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Spearman correlation; first IC: rho¼ 0.22, p¼ .03; second IC: rho¼ 0.26,
p¼ .01; third IC: rho¼ 0.25, p¼ .01; FWE-corrected for multiple com-
parisons). Conversely, we did not find any correlation between the log-
arithmic model evidences of opposed model MaR during aL and opposed
model MaL during aR regulation conditions, and the intra-subject trial
loadings of the ICs (two-tailed Spearman correlation; all p-values> .17;
FWE-corrected for multiple comparisons). We also found a significant
correlation between aL and aR loadings for the fifth IC (Fig. S1C,
rho¼ 0.30, p¼ .04, FWE-corrected for multiple comparisons), which
suggests that this IC reflects the carry-over visual-spatial attention be-
tween trials of different conditions. Note that spatial-temporal ICs can
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encompass anticorrelated networks (Beckmann and Smith, 2005): for
example, the fifth IC encompasses anticorrelated default-mode and
visual-spatial attention networks. We did not find correlations between
logarithmic Bayes factors and tensor ICA trial loadings that survived the
FWE correction for multiple comparisons (p-values> .3).

Notably, we found that the first and third ICs overlapped significantly
with the corresponding GLM contrast maps: namely, the first IC over-
lapped with the visual perception and visual-spatial attention contrast
maps, rho-values¼ 0.26; and the third IC overlapped with the visual
perception contrast map, rho¼ .43 (Fig. 4D and E).
3.4. Recovery to baseline during rest epochs

To identify brain areas with significant recovery processes, we used
whole-brain GLM and a contrast of linear modulation over the 60s rest
epoch that was partitioned into three periods of 20s each. We found
significant recovery processes in the V1/V2/V3, V1/V2/LG, anterior
V3, V5/MT, MCC/SMA, precentral gyrus (PG), precuneus, thalamus,
and dlPFC, in the sense that they became less deactivated (Table 3,
Fig. 3), which was consistent with the tensor ICA time-series (Figs. 4
and S1).

Using the contrast estimates provided by SPM, we also performed a
conjunction analysis between areas that showed gradual recovery and
areas that were (de)activated during the regulation and fixation condi-
tions of the neurofeedback runs (Table 3). We found gradual recovery in
areas that were deactivated during neurofeedback regulation (V1/V2/
V3, V1/V2/LG, V3a, V5/MT and precuneus). To visualize the relative
temporal dynamics of the areas that showed a conjunction effect, we
illustrated their contrast estimates (Fig. 5). There was no conjunction
between areas that showed gradual recovery and areas that were acti-
vated during regulation. Despite some minor differences between brain
activations and deactivations during aL and aR trials (Fig. 3B and C),
there was no difference between recovery processes after aL and aR
neurofeedback trials.

For aR regulation trials, post-hoc correlation analysis revealed a sig-
nificant correlation between the degree of activation and negative
gradual recovery during subsequent rest epochs in the bilateral SPL (left
SPL rho¼ .65 and right SPL rho¼ .68, p¼ .01, FDR-corrected; Fig. 6A),
and between the degree of deactivation and positive gradual recovery
during the subsequent rest epochs in the precuneus (rho¼ 0.62, p¼ .01,
FDR-corrected; Fig. 6B).



Fig. 3. Covert shifts of visual-spatial attention during neurofeedback regulation and subsequent gradual recovery processes. (A) Neurofeedback regulation through
visual-spatial attention shifts to the left (aL) and to the right (aR) were associated with activations (red) in SPL, ventral V3/V4, MFG and IPS, and with deactivations
(blue) in the visual cortices V1/V2/V3, LG, V5/MT, IPL, MCC/SMA, SII, precuneus/PCC, medial FC and dlPFC (Table 2). Gradual recovery of brain activity during the
rest epochs (green) was found in the MCC/SMA, PG, precuneus, thalamus, dlPFC, and distinct visual cortex regions including V1/V2/V3v, V1/V2/LG, V3a, and V5/MT
(Table 3). For illustration, the activation maps were thresholded (p< .00001 unc.). ROI contours (red) show the result of conjunction analysis between deactivations
during aL and aR trials and the gradual recovery of brain activity during the rest epochs (Table 3). (B) During aL, the left ventral V3 was activated more than during aR.
(C) During aR, the left anterior V3 was deactivated more than during aL. (B,C) The right panels display contrast estimates for peak activity and their 90% confidence
intervals (red error bars).
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3.5. Mental processes underlying self-regulation

To control the feedback signal, all but one of the seven participants re-
ported having to covertly shift their visual-spatial attention using visual
imagery of activities and movements that overlapped with the displayed
dashed circles (Table S2). Our participants reported that control over the
neurofeedback signal required a substantial attentional effort (5� 0), that
successful regulation required utmost concentration (4.6� 0.5), that their
imagery was highly vivid (4.6� 0.8), and that they often included other
sensorymodalities (2.9� 1.8). Interestingly,we founda significant positive
correlation between the degree of control over the neurofeedback signal
(i.e., neurofeedback success in terms of the logarithmicBF) and the extentof
concentration that participants reported (rho¼ 0.87, p¼ .03, Fig. 6C).

4. Discussion

We investigated whether DCM-based neurofeedback and data-driven
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tensor ICA estimates could be qualitatively linked using data from
alternating visual-spatial attention neurofeedback-guided trials. Our re-
sults demonstrated correlation between these model-based and data-
driven estimates. However, only DCM captured the differences be-
tween the alternating visual-spatial attention conditions. These results
suggest that data-driven explorative analyses and model-based analyses
of neurofeedback studies could complement each other to aid in under-
standing the target neural network dynamics and regulation mecha-
nisms. In particular, tensor ICA could be used to define the
spatiotemporal components constrained to the neurofeedback regulation
trials, and aid in the complex connectivity/network definitions through
the use of model-based assumptions, such as DCM. These analyses could
be performed either prior to the whole-length neurofeedback studies
when definition of the target brain area/pattern/network/model is
required based on pilot data, or post-hoc to explore the dataset. Sys-
tematically investigating the triad of mental effort, spatiotemporal brain
network changes, and activity and recovery processes through the



Fig. 4. Linking DCM and ICA for neurofeedback-guided regulation. (A) Thresholded (posterior probability, p> .5) first three IC spatial maps, whose intra-subject trial
loadings were significantly correlated with the logarithmic model evidences of the target DCM models MaL and MaR during aL and aR trials, respectively. (B) Time-
series of the corresponding ICs. (C) Correlation between intra-subject trial loadings and logarithmic model evidences. Asterisks denote statistical significance (FWE-
corrected for multiple comparisons, p< .05). (D) Spatial overlap between the first IC (orange), visual perception (V, green, rho¼ .26), and aL/aR (blue, rho¼ 0.26)
contrast maps, and (E) between the third IC (red) and the visual perception (V, green, rho¼ 0.43) contrast map. For a simplified comparison, we thresholded GLM
contrast maps at p< .01 unc. as implemented in SPM.
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combined use of data-driven andmodel-based approaches might lead to a
better understanding of how learning with neurofeedback is accom-
plished, and how such learning can cause plastic brain changes along
with specific behavioral effects (Harmelech et al., 2013; Megumi et al.,
2015; Shibata et al., 2011; Sitaram et al., 2017).
4.1. Controlling the connectivity-based neurofeedback signal

Despite the fact that our study did not target a behavioral outcome,
the positive correlation between the extent of concentration and the
control over the neurofeedback signal confirmed that successful self-
regulation required substantial attention and concentration (Fig. 6).
The reported strategies showed that our participants focused mostly on
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shifting attention to lateralized visual imagery of moving objects and
complex scenes (Table S2). This is in line with previous reports
showing that, for example, voluntarily modulating the connectivity
between the visual and parietal areas by shifting visual-spatial atten-
tion requires effort and is associated with visual imagery (Hopfinger
et al., 2000).
4.2. Activity changes related to neurofeedback-guided visual-spatial
attention

We found that neurofeedback-guided visual-spatial attention regula-
tion resulted in activity changes that were characteristic of the mental
strategies used to control the feedback signal. The activity changes



Fig. 5. Displayed are the areas that showed significant conjunction between the contrast estimates for deactivation during neurofeedback regulation (REG) and
gradual recovery (Table 3). Red, blue and green blocks denote regulation (REG), fixation with counting (FIX), and rest epochs, respectively. The contrast estimates for
the SPL (i.e., an area that did not show a significant gradual recovery process) is shown for comparison. L – left, R – right. Asterisks denote statistical significance
(whole-brain FWE, p< .05). Vertical bars denote the standard error of the mean.

Fig. 6. Correlation between (A) the activation and gradual recovery in the SPL and (B) the deactivation and gradual recovery in the precuneus (separately plotted for
each of the 3 trials that every participant performed). For illustration purposes, the negative recovery trend values (panel A, x-axes) and negative beta values of the
precuneus deactivations (panel B, y-axes) were inverted, and all the values were z-scored. Notably, these dependencies were observed only for aR conditions. (C)
Correlation between the degree of control over the differential neurofeedback signal and the extent of concentration required for successful neurofeedback regulation
(plotted for each participant). Asterisks denote statistical significance (FDR-corrected for multiple comparisons, q< .05).
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during the neurofeedback runs were mainly found in attention-related
(SPL) and visual (ventral V3/V4) areas (Fig. 3, Table 2). This is in line
with other studies that revealed the role of the parietal cortices in
directing covert visual-spatial attention (Greenberg et al., 2010; Hop-
finger et al., 2000; Kelley et al., 2008; Yantis et al., 2002). Deactivation is
less well characterized in the literature, and typically refers to a decrease
of neural activity relative to the baseline level (Amedi et al., 2005;
Raichle et al., 2001). During the neurofeedback regulation trials, we
found widespread deactivation in the visual cortices, LG, SII, IPL, dlPFC,
MCC/SMA, precuneus/PCC, and medial FC (Fig. 3, Table 2). Widespread
deactivation in the early visual cortices V1/V2/V3 and LG might be
surprising, because covert shifts of attention and visual imagery have
often been associated with increased activity in visual areas (Brefczynski
and DeYoe, 1999; Guillot et al., 2009; Kastner et al., 1999; Kosslyn et al.,
2001; Slotnick et al., 2005; Stokes et al., 2009). However, there are other
reports of deactivation in the visual cortices that were associated with
imagery (Kaas et al., 2010). Likewise, in another neurofeedback study
that involved visual imagery, we also found consistent deactivation in the
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visual cortex (Scharnowski et al., 2015). We speculate that decreased
somatosensory activity during visual imagery might reflect the suppres-
sion of concurrent sensory inputs to prevent disruptions of the internally
generated mental image (Amedi et al., 2005). The observed deactivation
in the bilateral dlPFC, a brain area associated with executive control and
maintenance in workingmemory (Greicius andMenon, 2004; Menon and
Uddin, 2010), might reflect the dominance of attention-related tasks over
executive control.

The default mode network (DMN) commonly refers to a large-scale
cerebral network, and is the hallmark of the resting-state condition
(Fox and Raichle, 2007; Laird et al., 2011). It can be defined as the
regions that deactivate during experimental tasks when compared to
baseline, or, alternatively, using functional-connectivity analysis be-
tween brain regions (Amedi et al., 2005; Fox and Raichle, 2007;
Greicius et al., 2003). The deactivation in the medial FC, PCC, MCC,
and precuneus could be associated with the disengaging DMN during
our goal-directed and attention-demanding tasks. For example, parts of
the DMN were found to be deactivated during several tasks, including
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visual imagery, high attention demands, and working memory (Gus-
nard et al., 2001; Mayer et al., 2010; Raichle et al., 2001). Quite
curiously, we found that using covert shifts of attention to control the
neurofeedback signal elicited more widespread (de)activation
compared to using the very same strategy during the visual-spatial
attention runs without neurofeedback (Figs. 2 and 3; Tables 1 and
2). These qualitative findings reflect other evidence highlighting that
the neurofeedback experiment is associated with distinct brain
changes (Emmert et al., 2016; Haller et al., 2013; Papageorgiou et al.,
2013). However, we cannot infer that observed activity changes are
specific to the neurofeedback condition rather than alternated
visual-spatial attention regulation in our neurofeedback-guided para-
digm, which remains outside the scope of this study and could require
a full-length neurofeedback training study and specific control groups
(Sitaram et al., 2017).

4.3. Tensor ICA for DCM-based neurofeedback

Hypothesis-driven DCM analysis is a model-based approach that re-
quires solid prior assumptions about the problem being studied, while
data-driven ICA is an exploratory data-driven approach that typically
requires less prior knowledge (Calhoun and Sui, 2016; Friston, 2011;
Friston et al., 2003). In contrast to conventional offline DCM, where one
seeks to find the model that best explains the data, DCM-based neuro-
feedback requires the participants to modulate brain activity (i.e.,
effective connectivity estimates) such that one of two predefined models
dominates the other, thus allowing for training a specific network ar-
chitecture and causal regulatory mechanisms (Koush et al., 2013, 2015).
Nevertheless, for DCM-based neurofeedback, prior assumptions need to
be made about the connectivity architecture, including the target and
opposed network models, with their ROIs, intrinsic connections, and
external and modulatory inputs.

Our results confirmed a qualitative link between the DCM-based and
data-driven tensor ICA metrics (Fig. 4A, C), in line with the generally
successful use of ICA to define the ROIs for conventional DCM analysis
(Di and Biswal, 2014; Li et al., 2012; Sharaev et al., 2016). More spe-
cifically, we found that the logarithmic model evidences of target model
MaL during aL and target model MaR during aR regulation conditions
were correlated with the intra-subject trial loadings of the first three ICs
(Fig. 4C, rhofirst IC ¼ 0.22, rhosecond IC¼ 0.26, rhothird IC¼ 0.25), which
was not observed for the opposed DCM models. However, we did not
find any correlation between the logarithmic Bayes factors and tensor
ICA trial loadings. Importantly, SPL and visual cortex areas, which were
functionally localized for DCM-based neurofeedback using conven-
tional GLM analysis prior to the neurofeedback runs, largely overlapped
with the corresponding ICs (Fig. 4D and E). These findings highlight
that DCM metrics in terms of the logarithmic Bayes factor, estimated as
the difference between the target and opposed logarithmic model evi-
dences, captured the causal differences between the relatively similar
network architectures (Fig. 1; MaL and MaR models with the same ROIs
and intrinsic connections, but different external and modulatory in-
puts), while more generic DCM metrics in terms of the logarithmic
target model evidence were consistent with the trial loadings of the ICs.
Thus, identifying spatiotemporal ICs might allow for tailoring the target
networks to the connectivity-based neurofeedback. Notably, ICs also
captured the anticorrelated DMN areas, which was consistent with the
whole-brain GLM analysis (Figs. 3 and 5), and emphasized the
decreased activity due to the visual imagery and attention tasks as
outlined above. Therefore, such analyses could provide insights as to
whether the specific regulation mechanism might involve co-(de)acti-
vated brain areas or distinct networks such as the DMN. Tensor ICA
could aid in the definition of the brain network models and (anti)
correlated brain areas/patterns for functional connectivity neurofeed-
back estimates; for example, it could indicate and limit the number of
nodes for complex network models and pair-wise functional (anti)cor-
relations under investigation.
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4.4. Gradual recovery following neurofeedback-guided visual-spatial
attention

It has been shown that the preceding experimental task might
modulate the subsequent resting-state activity (Buckner et al., 2008;
Waites et al., 2005), such as in emotional (Eryilmaz et al., 2011), motor
(Albert et al., 2009), visual learning (Lewis et al., 2009; Urner et al.,
2013), memory (Deuker et al., 2013; Stevens et al., 2010; Tambini et al.,
2010) and pain (Riedl et al., 2011) experiments. In line with these
findings, resting-state activity has been reported to predict neurofeed-
back success (Scheinost et al., 2014) and to be modulated by neuro-
feedback training (Harmelech et al., 2013; Megumi et al., 2015; Ramot
et al., 2017; Young et al., 2018; Yuan et al., 2014). We found that induced
activity changes were not limited to periods of active self-regulation, but
were also evident in distinct gradual recovery processes during the in-
tegrated rest epochs. There were two recovery processes that took place
(Fig. 4B, Fig. S1B). First, there was a recovery of the deactivated areas
during the baseline blocks, which was consistent with a similar recovery
process of the DMN activity observed during relatively short (20 s)
baseline blocks in a study that trained down-regulation of the primary
auditory cortex (Van De Ville et al., 2012). Our results are also in line
with previous findings that have demonstrated that resting-state DMN
can be modulated through neurofeedback training (Harmelech et al.,
2013; Megumi et al., 2015). The second recovery process related to
gradual recovery to the baseline level during the relatively long rest
epoch after the neurofeedback trial (Fig. 5). We found gradual recovery
in areas that showed activity changes during regulation and fixation
conditions, namely, the visual cortices (V1/V2/V3, V1/V2/LG, anterior
V3, and right V5/MT), MCC/SMA, precuneus, thalamus, and dlPFC
(Table 3, Figs. 3 and 5). We also found that areas that exhibited deacti-
vation during neurofeedback spatially overlapped to a large degree with
areas that showed a gradual recovery during rest (Table 3, Figs. 3 and 5).
Interestingly, recovery in the SPL could be predicted by the level of
activation during neurofeedback (Table 3, Fig. 6A), and recovery in the
Precuneus could be predicted by the level of deactivation during neu-
rofeedback (Table 3, Fig. 6B). Hence, during rest, activity changes in
areas that were associated with the neurofeedback-guided task, notably
visual and attention-related areas, gradually recovered to baseline levels.
Recovery of the deactivated thalamus, which is the gatekeeper for so-
matosensory and visual information (McCormick and Bal, 1994), might
reflect recovery from the suppression of concurrent sensory inputs that
helped to prevent disruptions of the internally generated mental image
that was used during neurofeedback-guided trials (Amedi et al., 2005).
Recovery of DMN-related deactivation likely reflected
task-disengagement after neurofeedback regulation, which required
participants to concentrate and exert vivid visual imagery (Fig. 6C). This
is well in line with previous findings showing that fast performance in a
selective-attention task (Weissman et al., 2006), and in a psychomotor
vigilance task (Thompson et al., 2013), was associated with higher
anticorrelation between task-related activation and DMN deactivation. In
addition, Weissman et al. have shown that early attentional lapses were
characterized by less efficient stimulus processing, by less deactivation in
the DMN, and by less stimulus-evoked sensory activity. Finally, the
time-series of the first, third, and fifth to seventh ICs highlighted the
striking similarity with the recovery processes identified with
whole-brain GLM analysis (compare Figs. 4B and S1B and Fig. 5).

4.5. Specificity of the DCM-based neurofeedback

Despite having identified some lateralization in the visual cortices
specific to the left and right attention shift using whole-brain GLM
(Fig. 3B and C), we did not find any differences in aL and aR
neurofeedback-guided regulation and recovery after regulation, and be-
tween the aL and aR tensor ICA trial loadings. The correlation between aL
and aR loadings for the fifth IC might indicate that this IC reflected a
general brain state of attention (i.e., the spatial map shows default-mode
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vs. visual-spatial attention networks) that carried over between trials of
different conditions, while the loadings of the other ICs captured within-
trial effects. Therefore, in general, the differences between the aL and aR
neurofeedback trials were captured exclusively by the DCM estimates
(i.e., by increased target model exceedance probabilities PeMaL¼ 0.86
and PeMaR¼ 0.77, respectively) given the same areas involved in aL and
aR regulation tasks (Fig. 1) (Koush et al., 2013). These findings further
highlight the specificity of the causal DCM-based neurofeedback esti-
mates, which captured specific network interdependencies and regula-
tion mechanisms that could not otherwise be revealed by whole-brain
GLM or tensor ICA analyses.
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