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ABSTRACT
Resting state functional connectivity is defined as correlations
in brain activity measured by functional magnetic resonance
imaging without any stimulation paradigm. Such connectiv-
ity is dynamic, even over the course of minutes, and the de-
velopment of tools for its analysis is an important challenge
in neuroscience. We propose a novel data-driven technique to
extract connectivity patterns from dynamic whole-brain net-
works of multiple subjects. Our technique is based on singu-
lar value decomposition and decomposes a collection of net-
works into linearly independent “eigennetworks” and associ-
ated time courses. To deal with the temporal redundancy of
networks, we propose a novel subsampling method based on
the standard deviation of the connectivity strength. We apply
the proposed technique to dynamic resting-state networks of
healthy subjects and multiple sclerosis patients, and show its
potential to detect aberrant connectivity patterns in patients.

Index Terms— fMRI, dynamic functional connectivity,
complex networks, matrix decomposition, multiple sclerosis

1. INTRODUCTION

Understanding how human brain networks evolve over time,
even across time spans as short as a couple of minutes, is
a crucial challenge in neuroscience. Functional brain net-
works are typically estimated from functional magnetic res-
onance imaging (fMRI) data, which is a proxy for brain ac-
tivity. Functional connectivity (FC) is defined as temporal
correlations between the activity of distinct brain areas, and
resting-state (RS) FC is estimated from data in the absence
of a task. Interestingly, the activity of areas with similar func-
tional properties, such as the primary motor cortex, is also co-
herent during RS [1]. Similar results have since been reported
for other functional networks, leading to novel insights about
the functional organisation of the brain. Most studies assume
FC to be stationary across the duration of a RS scan. How-
ever, recent studies have shown that RSFC is highly dynamic
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[2, 3, 4] and that these fluctuations persist in the absence of
conscious, cognitive processing in anesthetized monkeys [5].
These results suggest that the dynamic nature of RSFC re-
flects an inherent property of the brain’s functional organi-
zation and that common stationary analyses are an oversim-
plification. Most studies analyzing dynamic FC focus on a
single brain region or functional network and how its connec-
tivity changes over time. Discovering FC patterns in dynamic
whole-brain networks is a challenging task. Since the nature
of RS is unconstrained, any patterns need to be identified in
a data-driven manner. Allen et al. [6] recently extracted con-
nectivity states from dynamic whole-brain RSFC networks in
a data-driven manner using k-means clustering.

In this work, we propose a novel approach to extract con-
nectivity patterns from multi-subject, dynamic whole-brain
FC networks. Our technique is based on the singular value
decomposition (SVD) and decomposes a set of networks into
“eigennetworks”, or building blocks of functional connec-
tivity, and associated time courses. To deal with the re-
dundancy of networks that are close in time, we subsam-
ple the set of networks by retaining only networks at “peak
times”, which we define as those having a large standard de-
viation of FC strength. This selection procedure is inspired by
electroencephalogram (EEG) topographical analysis, where
global field power is computed as standard deviation of volt-
ages across electrodes [7].

We apply the proposed technique to dynamic RSFC net-
works from healthy subjects and minimally disabled relapse-
remitting multiple sclerosis (MS) patients. MS is an autoim-
mune disease of the central nervous system and disturbs both
structural and functional connectivity [8]. Altered station-
ary FC has been linked with disease progression and cog-
nitive impairment in MS patients and the analysis of RSFC
promises to yield novel insights into the functional impact of
MS [9, 10].

The paper is organized as follows. In Sect. 2, we describe
the complete data processing and analysis pipeline. In Sect. 3,
we demonstrate the potential of the proposed approach to
identify differences in RSFC dynamics between controls and
patients.
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2. ESTIMATION OF EIGENNETWORKS

2.1. Data processing and dynamic FC estimation

Functional imaging data was realigned and motion-corrected
using SPM8, linearly detrended, low-pass filtered and nui-
sance variables regressed out (6 head realignment parameters,
averaged cerebrospinal fluid and white matter signal). The
anatomical image was parcellated into N = 90 regions cor-
responding to the Automated Anatomic Labeling atlas [11].
Due to signal dropout in ventral regions, the globus pallidus
was excluded from the analysis, resulting in N = 88 regions
being kept. Regional time series were estimated by averaging
the functional data in each anatomical region.

To estimate dynamic connectivity we used a sliding-
window technique [2]. We computed pair-wise windowed in-
terregional correlations ρxy(t) = corr(x[t, t + ∆t], y[t, t +
∆t]), where t = 1, 2, ..., 400 and ∆t = 40 is the window
size, which includes typical RSFC fluctuations [4, 5, 6]. Each
N × N correlation matrix A was approximately Gaussian-
ized by using the Fisher R-to-Z transform and normalized by
its `1-norm.

2.2. Estimation of connectivity patterns

We describe the set of dynamic networks by vectoriz-
ing and concatenating the correlation matrices across win-
dows and subjects to form a N2−N

2 × TS matrix A =
[triu(A1)|triu(A2)|...|triu(ATS)], where we keep only the
upper triangular part because of symmetry, T is the number
of windows and S the number of subjects (Fig. 1). Since there
is no temporal correspondence across subjects for RS scans,
we concatenated the correlation vectors a = triu(A) across
subjects instead of forming a third-order array.

Because of the sliding-window technique adjacent corre-
lation matrices are similar. To deal with this redundancy, we
propose to subsample the TS networks using an approach in-
spired by EEG topographical analysis [7]: We retained cor-
relation vectors a corresponding to peaks of “global connec-
tivity power” (GCP), where GCP was defined as the standard
deviation of each a, and peaks as local maxima of GCP. GCP
is high for correlation vectors with pronounced variability and
low for ones with similar strength (Fig. 1).

We then balanced the number of vectors a in the healthy
and patient groups by randomly subsampling the patient
group. We decomposed the reduced matrix containing only
the correlation vectors marked as peaks after subsampling in
the patient group using SVD, i.e., Areduced = USVT , where
U contains spatial maps of connectivity patterns, which we
call eigennetworks and that can be interpreted as building
blocks of dynamic RSFC, and V the associated time courses.
We then projected A onto the eigennetworks, i.e., T = UTA,
to obtain time courses of length T for each subject and eigen-
network. We tested for significant differences in the time
course means associated with the first 10 eigennetworks of

Fig. 1: Example dynamic functional connectivity estimation for a
healthy subject: vectorized and temporally concatenated correlation
matrices; and GCP of each correlation vector.

the two groups using Hotelling’s T2 multivariate test and post-
hoc two-sample t tests. We compared only the mean since in-
dividual windows can not be assumed to be consistent across
subjects.

From the loadings w of Hotelling’s T2 test, we con-
structed a difference network, i.e., the weighted sum
U[1,10]w across the first 10 eigennetworks, where the
weights were such that the group difference was maximised:
max
w

wTµHC −wTµMS , s.t. ||w|| = 1, with µ the vector of
time course means.

2.3. Relationship with motion

To investigate relationships between motion and non-
stationarity in whole-brain connectivity, we converted each
subject’s head realignment parameters into two measures of
displacement in 3-D space between adjacent scans: D1 =√

∆x2 + ∆y2 + ∆z2, and D2 = |∆x| + |∆y| + |∆z| +
|∆α|+ |∆β|+ |∆γ|, where rotational displacements α, β, γ
were converted to millimetres by calculating the displacement
on the surface of a sphere of radius 50 mm [12]. We converted
D1 and D2 to a measure for each window by estimating the
intensity (average) and fluctuation of motion (standard devia-
tion) in each window.

We then computed Pearson’s correlation coefficient be-
tween the motion statistics time series and the GCP peak time
series as well as the V time series for each subject. Statis-
tically significant correlations with motion were determined
by estimating a maximal statistic under the null hypothesis:
i.e., observed correlations in the 95th percentile of the null
distribution of phase randomised time series are significant at
the 5% level (n = 1′000 randomisations, corrected p value)
[13]. Phase-randomised time series preserve mean, variance
and autocorrelation properties [4, 14].
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(a) Eigennetwork 1 (b) Eigennetwork 2 (c) Eigennetwork 3 (d) Eigennetwork 4 (e) Eigennetwork 5

(f) Eigennetwork 6 (g) Eigennetwork 7 (h) Eigennetwork 8 (i) Eigennetwork 9 (j) Eigennetwork 500

Fig. 2: Eigennetworks 1− 9 and 500 and the average time course of healthy subjects (black line) and MS patients (gray line). The columns
of U were reshaped as upper triangular matrices and symmetrized. Colorbars are symmetric around zero, red thus corresponds to positive
and blue to negative signs. Brain regions are arranged with homologous regions adjacent to each other and are ordered by lobe (central
1, 2, 57, 58, frontal 3− 28, limbic 29− 42, occipital 43− 56, parietal 59− 68, subcortical 71− 76, temporal 77− 88).

3. EXPERIMENTAL RESULTS

3.1. Participants and data acquisition

The dataset included 13 healthy subjects and 22 minimally
disabled relapsing-remitting MS patients (mean ± SD Ex-
panded Disability Status Scale 1.9 ± 0.4) [10]. The resting
state functional scan was acquired on a Siemens 3T TrioTIM
(TR/TE/FA = 1.1 s/27 ms/90◦, matrix = 64×64, voxel size =
3.75×3.75×5.63 mm3, 21 contiguous transverse slices, 450
volumes). Subjects were instructed to lie still with their eyes
closed and to let their mind wander. The anatomical scan
was acquired using a 3-D T1-weighted MPRAGE sequence
(160 slices, TR/TE/FA= 2.4 s/2.98 ms/9◦, matrix = 256×240,
voxel size = 1×1×1.2 mm3).

3.2. Eigennetworks

The 4 motion measures were not significantly different be-
tween healthy subjects and MS patients (p > 0.05) and not
significantly correlated with GCP (p > 0.05).

Fig. 2 shows some of the connectivity patterns cap-
tured by the SVD, which represent connections with coher-
ent (same sign) or incoherent fluctuations (different signs).

The first eigennetworks, which explain most of the variance
across the dynamic FC matrices, identify large-scale struc-
tures. The average network contains well-known functional
clusters (Fig. 2a): a strongly connected visual cortex (nodes
43−56), auditory processing areas (79−86), and motor areas
(1, 2, 19, 20, 57, 58). Coherently fluctuating connections are
for example connections between the visual cortex (43− 56)
and motor areas (1, 2, 17, 18, 57, 58, 69, 70, blue in eigennet-
work 2) or between regions belonging to the default mode
network (23 − 26, 31, 35, 36, 65, 67, 68, red in eigennetwork
5). Eigennetworks of very high components correspond to
noise (Fig. 2j). The time courses of the eigennetworks (i.e.,
the corresponding columns in V) were not significantly cor-
related with the 4 motion measures (p > 0.05).

The average projected time course T of each group is
shown atop the eigennetworks in Fig. 2 and represents the
contribution of this eigennetwork or building block to the
correlation matrix at any given window. Even though RS
behavior cannot be assumed temporally consistent between
subjects, visual inspection of the mean time courses reveals
some differences already. Next, we tested for significant dif-
ferences in the mean of the 10 first time courses between the
two groups using Hotelling’s T2 test. (The subset of 10 eigen-
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Fig. 3: Discriminative network: weighted sum of eigennetworks
1 − 10, where the weights were according to their importance in
separating the two groups in Hotelling’s T2 test.

networks retained 49% of the total variance.) Hotelling’s T2

test detected significant group (p = 0.006) and interaction ef-
fects (p = 0.004). Post-hoc t tests identified differences in
eigennetworks 1 and 8 (p < 0.001, p = 0.01, respectively).
We observe that (1) the overall connectivity strength is re-
duced in patients (|µMS

1 | < |µHC
1 |, Fig. 2a), in accordance

with previous studies [9, 10], and (2) eigennetwork 8 cap-
tures coherent dynamic connectivity that is either increased
in patients (red areas in Fig. 2h since µMS

8 > 0) or healthy
subjects (blue areas since µHC

8 < 0).
The difference network, which highlights differently con-

tributing eigennetworks, shows that most regions are more
strongly connected in healthy subjects (Fig. 3). To identify
the brain regions with the largest connectivity differences, we
calculated the degree of each brain region by summing over
all its weighted connections. Regions with increased con-
nectivity in healthy subjects included the pre- and postcentral
gyri (1, 2, 57, 58), the cuneus (45, 46), lingual gyrus (47, 48),
superior parietal gyrus (59, 60), right superior temporal pole
(82), and left paracentral lobule (69). Regions with increased
connectivity in patients included the right insula (30), right
amygdala (42), left posterior cingulate gyrus (35), left thala-
mus (75), and left parahippocampus (39).

4. CONCLUSION

We have presented a novel approach to identify whole-brain
FC patterns, so-called “eigennetworks”, from dynamic net-
works in a data-driven manner, and shown that they represent
meaningful functional clusters. The comparison of FC dy-
namics between healthy subjects and MS patients revealed
differences in the contribution of these eigennetworks across
the duration of the scan. While the stationary FC profile of
some of these regions has previously been reported to be dis-
criminative between the two groups [10], our analysis of dy-

namic FC complements this study by identifying further re-
gions with aberrant FC. The proposed data-driven technique
for dynamic brain networks holds promise for the study of
how brain dynamics are altered in disease.
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